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DERIVABILITY OF RULES

FROM RULE COMPLEXES
∗

Abstract. In the paper we focus upon the problem of derivability of rules
from rule complexes. The notion of a rule complex is the main mathematical
notion of generalized game theory (GGT for short). Derivability of rules, as
defined here, comprises the concept of an extension from a default theory [9]
as well as the classical notion of derivability of rules in logic. The idea of
localness of reasoning, reasoning with a limited access to rules, is realized
by the concept of relative derivability. Starting with derivability of rules, we
next touch upon the questions of the activation of rules and (in)consistency
of rule complexes.

Keywords: rule complex, derivability of rules, activation of rules, (in)con-
sistency of a rule complex, generalized game theory.

1. Introduction

Nowadays one can observe a growing interest of social and political scien-
tists, and even economists to study various kinds of social interactions that
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essentially depart from the classical economic game paradigm. Some impor-
tant aspects of the mentioned interactions are: (1) participating actors (or
in other words, players, agents) may not be ordinary rule followers but can
innovate, modify, fabricate or even refuse to follow rules of the game; (2) ac-
tors’ social roles and, in particular, values and norms are important factors
having impact on the behaviour of actors in interaction situations; (3) infor-
mation may be not only incomplete but also vague, and this fuzziness is an
additional source of uncertainty.

Tom R. Burns’1 idea to build a theory of such social game-like interactions
has been realized in the form of generalized game theory (GGT in short).
GGT, being still in progress, extends and reconceptualizes the classical game
theory by von Neumann and Morgenstern [10]. In GGT all “rules of the
game”, information as well as actors’ values, norms, beliefs, and knowledge
that are expressible in a considered language are formalized in the form of
rules. The key mathematical concept of GGT is rule complex, a notion coined
by the author of the present paper [2, 6, 7]. A prototype of a rule complex is
an algorithm containing procedures. Interactions considered in GGT, social
actors, and their systems are uniformly represented by rule complexes.

In economic game theory by von Neumann and Morgenstern [10], a game
may be specified by a collection of pre-determined rules, a set of players,
and possible moves and strategies for each and every player. Players have
to follow the “rules of the game” and are not allowed to change them unless
stated otherwise. Nevertheless, they may choose a strategy and decide which
of the possible moves to take. The classical approach was intended for the
purpose of formalization of economic behaviour of fully rational agents. Why
should we expect then that all kinds of game-like social interactions can be
captured by the framework proposed by von Neumann and Morgenstern?
Clearly we should not.

In GGT we generalize von Neumann and Morgenstern’s classical work
(cf. [2, 3, 4, 5, 6]) in that the rules of a game may be imprecise and toler-
ating exceptions; games may be underspecified or specified in a vague way;
actors may not know strategies for themselves and/or for other participants
but, nevertheless, they may modify or change the rules, construct or plan
actions, fabricate rules. In GGT actors are not merely rule followers or pure
rationalists maximizing a value. They are social beings trying to realize their
relationships and cultural forms, and hence they engage in processes of re-
structurization of games. With every actor we associate social roles played
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by the actor, his/her values, norms, actions and action modalities, judge-
ment rules and algorithms, beliefs, and knowledge. All these constituents
are represented as appropriate rules or rule complexes. Also actors are rep-
resented as rule complexes, having as their parts, among other things, the
just mentioned components. Actors apply their rule complexes in situations
of action or interaction to achieve private or group objectives, to plan and
implement necessary activities, and to solve problems. Needless to say, sys-
tems of actors may also be viewed as rule complexes. On the other hand,
a social interaction, and a game in particular, may be given the form of a
rule complex as well. Such a rule complex specifies more or less precisely
who the actors are, what their roles, rights, and obligations are, what the
interaction is, what action opportunities, resources, goals, procedures, and
payoffs of the game are, etc. Examples of games well-known from the lit-
erature can be rewritten to the form of appropriate rule complexes without
special difficulties. To the contrary, it is quite easy to find a game-like social
interaction (e.g., “school”) for which it would be very difficult or impossible
at all to find an adequate representation in normal form, in the form of a
tree or by means of the characteristic function. Thus, rule complexes seem
to be a flexible and powerful tool to represent social actors and to represent
and analyze social interactions. Nevertheless, one has to emphasize that we
do not pretend to be able to formalize every aspect of social interaction or
to find a formula describing the whole complexity of social actors and their
behaviour.

In the present paper we focus upon the problem of derivability of rules
from rule complexes. According to [8], the first formal definition of deriv-
ability of inference rules had been formulated by K. Ajdukiewicz in 1928 [1],
before the general notion of an inference rule was studied in a systematic
way. In Hilbert-style logical systems, derivability of rules corresponds to
provability of theorems. In formalisms where exceptions to rules are allowed
(for instance, in Reiter’s default logic [9]), the concept of an extension gener-
alizes that of the set of theorems. Members of such an extension do not have
the force of theorems. They may be seen as tentative candidates for theo-
rems only. Taking into account logical aspects of our approach, it belongs
to the family of rule-based formalisms, where formulas play an auxiliary role
only. The concept of derivability of rules from a rule complex, studied in the
present paper, extends the classical logical notion of derivability of rules in
the way as to take into account possible exceptions to rules. At the same
time it comprises the notion of “provability” of candidates for theorems which
are elements of possible extensions. The idea of localness of reasoning, un-
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derstood as reasoning with a limited access to rules, is realized by means of
the relative derivability of rules. Starting with derivability of rules, we can
discuss the activation of rules and define (in)consistency of rule complexes.
Activation of a rule is a key concept needed to speak of the application of
rule complexes, viz., only activated rules can possibly be applied. The no-
tion of (in)consistency of a rule complex is important to study the problem
of (in)compatibility of rule complexes. One can say that two or more rule
complexes are compatible if the rule complex obtained as the result of their
composition is consistent.

In the present definition of derivability of rules from a rule complex, two
important aspects have been taken into account, viz. exceptions to rules and
localness of reasoning. Some preliminary attempts to incorporate judgements
of similarity have been made but, generally, vagueness of reasoning has not
been incorporated yet. Reasoning under vague information in the context of
rule complexes and GGT will be discussed elsewhere.

For any set X, we denote the cardinality of X by #X and the power set
of X by ℘(X). The set of natural numbers (with 0) will be denoted by N.
x0 ∈ x1 ∈ · · · ∈ xn ∈ xn+1 is an abbreviation of x0 ∈ x1∧x1 ∈ x2∧· · ·∧xn ∈
xn+1.

In the paper we present revised and generalized versions of the notions
of a rule (Sect. 2), a rule complex (Sect. 3), and related concepts: a complex
base, a rule base, a generalized element, and a subcomplex (Sect. 4).2 Next,
we define derivability of rules step by step (Sect. 5). In Sect. 6 we give some
preliminary remarks on the activation of rules and the application of rule
complexes. In Sect. 7 we address the problem of (in)consistency of a rule
complex. A brief summary is given in Sect. 8.

2. Rules

A rule and a rule complex are key mathematical concepts underlying gen-
eralized game theory (GGT). Rules are major components of games and in-
teractions. Instructions of procedures and algorithms may be seen as rules.
Values and norms as well as beliefs and knowledge of social actors may also
be represented in the form of rules. One can mention action rules specifying
pre- and post-conditions of various actions and interactions, highly context-
independent rules of logical inference, generative rules and specific situational
rules, control rules and, in particular, judgement rules, strict rules and rules

2 In [2, 3, 5, 6] we use earlier versions of the mentioned notions.
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with exceptions, precise and vague rules, and last but not least meta-rules
of various kinds.

In this section we introduce a notion of rule and propose a few alterna-
tive forms of representation of rules. Such questions as transformation of
rules and, in particular, composition and decomposition will be discussed
somewhere else.

Assume a language L is given, where ¬, ∨, ∧, →, ↔ are propositional con-
nectives of negation, disjunction, conjunction, implication, and equivalence,
respectively. At the present stage we do not specify the language totally nor
insist on a classical understanding of the connectives above. The parentheses
(, ) are auxiliary symbols. Next, F(L) denotes the set of all formulas of L

formed according to some formation rules. We use lowercase Greek letters,
with subscripts whenever needed, to denote formulas. Thus if α, β ∈ F(L),
then at least ¬α, (α∨β), (α∧β), (α → β), (α ↔ β) ∈ F(L). As usual, paren-
theses will be omitted whenever possible. Given a set of formulas X ⊆ F(L),
we denote by ¬X the image of X given by the operation ¬, that is,

(1) ¬X
def
= {¬α | α ∈ X}.

From formulas and finite sets of them we form rules, usually denoted by
r with subscripts if needed. We write rul(x) to say that x is a rule. By a
rule r over L we mean a triple

(2) (r-1) r = (X,Y, α)

where X, Y are finite sets of formulas of L called premises and justifica-
tions of r, respectively, and α is a formula of L called the conclusion of r.
Premises and justifications form pre-conditions of r, while the conclusion is
the post-condition. Pre-conditions have to be declarative statements, thus
no order (e.g., Do β!) may be a pre-condition. On the other hand, post-
conditions may be declarative or imperative statements but not interrogative
statements. The set of all rules over L is denoted by R(L). The reference
to L will be omitted if no confusion will result. The informal meaning of r

is that if all elements of X hold and all elements of Y possibly hold, then α

is concluded. The definition of a rule taken above differs from the definition
used in our earlier papers [2, 3, 5, 6]. From the present perspective rules in
the old sense are sets of rules in the new sense. Thus, rules of logical inference
as, for instance, modus ponens MP: α,α→β

β
where α, β are arbitrary formulas

of L, are not longer rules but sets of rules. Without going into details, the
motivation for such a change of the definition of a rule came from the field
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of knowledge discovery in information systems. However, it can be useful to
recall a traditional notion of an inference rule, e.g. that one described in [8].

Definition 2.1. By a rule∗ of inference over L we mean a non-empty binary
relation r ⊆ ℘(F(L)) × F(L) such that for any pairs (Xi, αi) ∈ r (i = 1, 2),
#X1 = #X2 < ℵ0.

Rules without premises and justifications are called axiomatic. For every
formula α, there is a unique axiomatic rule corresponding to α, viz. αrul =
(∅, ∅, α). Where X is a set of formulas,

(3) Xrul def
= {αrul | α ∈ X}.

In particular, ∅rul = ∅. The set of all axiomatic rules over L is denoted
by AXR(L). Thus, AXR(L) ⊆ R(L). In our approach two kinds of pre-
conditions are distinguished: premises and justifications. Premises of a rule
r are stronger than justifications; they have to hold if r is to be applied. On
the other hand, it suffices for the sake of application of r that justifications
possibly hold. That is, a justification β may actually not hold but it suffices
that we do not know for sure that it does not hold. We use the name
‘justification’ for historical reasons mainly. The term is adopted from the
formalism introduced by Reiter and widely known as default logic [9]. Indeed,
our rules make possible to reason “by default” and to deal with “exceptions
to rules”. Such features of rules may be particularly useful when formalizing
commonsense reasoning. Needless to say, such a form of reasoning is common
in social life, and hence in social actions and interactions. Of course, not all
rules admit of exceptions and the set of justifications is empty in many cases.
Taking into account rules which may have exceptions usually adds to the
complexity of the formalism. On the other hand, a form of incompleteness
of information may be grasped.

Consider a rule r = (X,Y, α), where X = {α0, . . . , αm} and Y =
{αm+1, . . . , αn}. The rule r may also be written in the following forms when-
ever convenient:

(r-2) (α0, . . . , αm : αm+1, . . . , αn, α)

(r-3)
α0, . . . , αm : αm+1, . . . , αn

α
(r-4) α0 ∧ · · · ∧ αm ∧ bαm+1 ∧ · · · ∧ bαn ⇒ α

(r-5) α0, . . . , αm, bαm+1, . . . , bαn ⇒ α(4)

In the cases (r-4) and (r-5), ‘b’ is used to distinguish justifications from
premises and ⇒ is to separate the pre-conditions from the post-condition of
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r. If r = (X, ∅, α), i.e., Y = ∅, then r is a rule without exceptions and may
also be written as follows:

(α0, . . . , αm, α)
α0, . . . , αm

α
α0 ∧ · · · ∧ αm ⇒ α

α0, . . . , αm ⇒ α(5)

If r = (∅, Y, α), i.e., X = ∅, then r may also take the following forms:

(: αm+1, . . . , αn, α)
: αm+1, . . . , αn

α
bαm+1 ∧ · · · ∧ bαn ⇒ α

bαm+1, . . . , bαn ⇒ α(6)

Finally, if r = (∅, ∅, α), i.e., both X and Y are empty, then r may also be
written as follows:

(7) αrul or
α

or ⇒ α.

Consider two rules r1 and r2 over L. If the application of our rule-based
formalism to GGT is to be taken seriously, we should be able, for instance,
to write formally that: If both r1 and r2 are applicable in a situation s, then
apply r1 first. Let r be the name of the just written rule. As a matter of fact,
r is a meta-rule relative to r1 and r2. We may assume that the language L

is a multi-level language where various levels are not separated. In this case
r, when written formally, would be a rule over L. A well-known drawback of
such an approach is the possibility of circularities. To avoid such problems,
we could consider, e.g., a hierarchy of languages instead of one language. In
this paper we choose the first possibility and shall treat meta-rules relative
to rules (or rule complexes introduced in the next section) over L as rules
over L as well.

3. Rule Complexes

In GGT social actors and their interactions are represented by means of
systems of rules called rule complexes. Consider the actor case. We organize
the totality of rules associated with an actor i in a situation s into a rule
complex, i’s actor complex in s, written ACTORi,s. The part of ACTORi,s
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which is the most interesting from our perspective concerns i’s social roles
in s. Such roles can be, for instance, family roles like father, mother, son,
dauther, etc., roles played at the work place like supervisor, subordinate,
teacher, student, physician, politician, businessman or businesswoman, etc.,
customer, church member, party member, society member, friend, and so
on. The totality of rules associated with i’s roles in s are arranged in i’s
role complex in s, ROLEi,s, which is a rule complex being a subcomplex of
ACTORi,s. The notion of a subcomplex will be defined later on. For the
time being, a subcomplex of a rule complex C may be understood as a rule
complex which is a part of C. Roughly speaking, the rule complex ROLEi,s

is obtained from ACTORi,s by neglecting all these rules of ACTORi,s that
are irrelevant for the notion ‘social role’. With every role j played by i in
s one can associate a corresponding rule complex ROLEj

i,s, specifying and
describing this role. This rule complex is a subcomplex of ROLEi,s.

To play their social roles, actors are equipped with systems of norms and
values, telling them what is good, bad, worth being strived for, what ought
to be done, and what is forbidden. In the case of actor i in situation s,
these systems of norms and values are represented as i’s value complex in s,
VALUEi,s. Norms and values relevant for a particular role j in s form an

appropriate rule complex, VALUEj
i,s, being a subcomplex of VALUEi,s and

ROLEj
i,s, simultaneously. On the other hand, both VALUEi,s and ROLEj

i,s

are subcomplexes of ROLEi,s.

Actors also have beliefs and knowledge about themselves, other actors
involved in the interaction situation, and about the situation. The actor i’s
beliefs and knowledge in s form a model of the actor i, other actors, and the
situation s. The model is represented by a rule complex MODELi,s called
simply i’s model in s. This rule complex is a subcomplex of ROLEi,s.

Actors are provided with repertoires of actions and activities but can also
construct and plan appropriate actions. Modes of acting and interacting are
determined by procedures called action modalities. There are several major
action modalities distinguished by social scientists: instrumental rational-
ity (modality of consequentialism), normatively oriented action, procedural
modality, ritual and communication, and play [3]. Repertoires of actions
associated with i in s are composed into i’s action complex in s, ACTi,s.
Moreover, the collection of actions associated with a particular role j in s is
arranged into a rule complex ACTj

i,s. The last rule complex is a subcomplex

of ACTi,s as well as ROLEj
i,s. Action modalities of the actor i in s are rep-

resented in the form of a rule complex called i’s action modality complex in
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s, ACTMODi,s. Both ACTi,s as well as ACTMODi,s are subcomplexes of
ROLEi,s like i’s value complex and model.

Apart from rules and their systems mentioned above, actor complexes
also contain various rules and rule complexes concerning control over the
whole actor complex, where ‘control’ is understood in a broad sense. Con-
trol procedures available to the actor i in situation s are represented by a
rule complex called i’s control complex in s, CTRLi,s, being a subcomplex
of ACTORi,s. The rule complex CTRLi,s comprises, among other things,
judgemental and reasoning procedures that play an important role in almost
every social action and interaction. Human actors are able to reason in a
rational (or logical) way, draw conclusions, derive new rules from the exist-
ing ones, etc. Collective social actors can “reason” indirectly via their human
members. All rules of logical inference (including meta-rules of derivability
describing how to derive rules from a given rule complex), available to the
actor i in s, are arranged in a rule complex LOGICi,s called i’s logic in s and
being a subcomplex of CTRLi,s.

What are rule complexes then? Informally speaking, rule complexes are
particular sets formed of rules and/or the empty set. Usually we shall denote
them by C,D,E with subscripts whenever needed. The expression cpl(x)
means that x is a rule complex.

Definition 3.2. The class of rule complexes over the language L, written
CPL(L), is the least class of sets containing all sets of rules and closed under
the following formation rules:

(rc-1) If C is a family of rule complexes over L, then
⋃

C is a rule complex
over L.

(rc-2) If C is a rule complex over L, then the power set of C, ℘(C), is a rule
complex over L.

(rc-3) If C ⊆ D and D is a rule complex over L, then C is a rule complex
over L.

We shall omit the reference to L if no confusion will result. The following
two properties may be directly obtained from the definition.

Proposition 3.3. (a) For any non-empty family of rule complexes C,
⋂

C
is a rule complex. (b) Where C is a rule complex and X is a set, C −X is a
rule complex.

Proof. Let us note that for any rule complex C ∈ C,
⋂

C ⊆ C. Similarly,
for any rule complex C, C − X is a subset of C.
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Example 3.4. The sets C1 = {r1, r2}, C2 = {r2, C1}, and C3 = {r1, {r1},
{{r1}}, . . .} are rule complexes.

Example 3.5. Algorithms as collections of instructions and/or procedures
may be seen as rule complexes. As a matter of fact, an algorithm with
embedded procedures was a prototype of the notion of a rule complex.

Let us consider the following statements:

(rc-4) Every set of rules is a rule complex.

(rc-5) Every set of rule complexes is a rule complex.

(rc-6) cpl(C) iff for each x ∈ C, rul(x) or cpl(x).

Theorem 3.6. (a) Conditions (rc-3) and (rc-5) imply (rc-2).

(b) Conditions (rc-1)–(rc-3) imply (rc-5).

(c) Conditions (rc-1) and (rc-4)–(rc-6) imply (rc-3).

(d) Conditions (rc-1)–(rc-4) imply (rc-6).

Proof. For (a) consider a rule complex C. For each D ⊆ C, cpl(D) by (rc-
3). Hence cpl(℘(C)) by (rc-5). For (b) assume X is a set of rule complexes.
By (rc-1), cpl(

⋃
X). Hence cpl(℘(

⋃
X)) by (rc-2). Since X ⊆ ℘(

⋃
X),

cpl(X) by (rc-3). For (c) assume C ⊆ D where cpl(D). Let x be any element
of C. By assumption, x ∈ D. Hence by (rc-6), rul(x) or cpl(x). Again by (rc-
6), cpl(C). For (d) consider the class A of all sets consisting of rules and/or
rule complexes. Let C be a member of A. Then X = {x ∈ C | rul(x)} and
Y = {x ∈ C | cpl(x)} are rule complexes by (rc-4) and (rc-5), respectively.
Since C = X ∪ Y , cpl(C) by (rc-1). For the left-to-right part of (rc-6) we
prove that every rule complex is a member of A. To this end we show that
A is closed under (rc-1)–(rc-3). Assume C =

⋃
C where C is a family of sets

of A, and consider x ∈ C. There is D ∈ C such that x ∈ D. By assumption,
rul(x) or cpl(x) as required. Now assume that C ⊆ D, where D is a member
of A. For each x ∈ C, x ∈ D as well. By assumption, rul(x) or cpl(x),
i.e., C belongs to A. Finally, assume C = ℘(D) where D is in A. Consider
x ∈ C. By assumption x ⊆ D and for each y ∈ x, rul(y) or cpl(y). By the
right-to-left part of (rc-6), cpl(x). Hence C belongs to A as needed. Since
A contains all sets of rules and is closed under (rc-1)–(rc-3), it contains the
class of all rule complexes.

Corollary 3.7. For any rule complex C, there are sets C1 and C2 such
that C = C1 ∪ C2 and one of the following cases holds:

(a) C1 = C2 = ∅.
(b) C1 = ∅ and C2 is a non-empty set of rules.
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(c) C1 = ∅ and C2 is a non-empty set of rule complexes.
(d) C1 is a non-empty set of rules and C2 is a non-empty set of rule complexes.

All rule complexes over L do not form a set, i.e., CPL(L) is a proper class.
Suppose to the contrary that CPL(L) is a set. By part (b) of Theorem 3.6,
CPL(L) must be a rule complex consisting of all rule complexes. Since each
subset of CPL(L) is a rule complex by (rc-3), ℘(CPL(L)) ⊆ CPL(L). Then
#℘(CPL(L)) ≤ #CPL(L) contrary to Cantor’s Theorem.

4. Complex Bases, Rule Bases, and Subcomplexes

In this section we define a few auxiliary concepts related to the notion of a
rule complex like a complex part, a rule part, a complex base, and a rule
base. Next, we show how the notions of membership and a subset may be
generalized in the case of rule complexes.

The complex part of a rule complex C, cp(C), is the set of all elements
of C that are complexes.

(8) cp(C)
def
= {x ∈ C | cpl(x)}.

Similarly, the rule part of C, rp(C), consists of all elements of C being rules.

(9) rp(C)
def
= {x ∈ C | rul(x)}.

Example 4.8. Consider the rule complexes from Example 3.4. Their complex
parts are: cp(C1) = ∅, cp(C2) = {C1}, and cp(C3) = C3 − {r1}. On the
other hand, their rule parts are: rp(C1) = C1, rp(C2) = {r2}, rp(C3) = {r1}.

Several properties of operations cp and rp are given below. For simplicity,
let τ ∈ {cp, rp}.

Proposition 4.9. For any rule complexes C,D, we have that:

(a) rp(C) ∪ cp(C) = C and rp(C) ∩ cp(C) = ∅.

(b) If C ⊆ D, then τ(C) ⊆ τ(D).

(c) If rp(C) = ∅, then τ(
⋃

C) =
⋃
{τ(D) | D ∈ C}.

(d) If rp(C) = ∅ and C 6= ∅, then τ(
⋂

C) =
⋂
{τ(D) | D ∈ C}.

(e) τ(C − D) = τ(C) − τ(D).

(f) rp(℘(C)) = ∅ and cp(℘(C)) = ℘(C).
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Proof. We only prove (c) for τ = cp, leaving the remaining cases as exer-
cises. To this end, assume that rp(C) = ∅. For any x, x ∈ cp(

⋃
C) iff cpl(x)

and ∃D ∈ C.x ∈ D iff ∃D ∈ C.(cpl(x) ∧ x ∈ D) iff ∃D ∈ C.x ∈ cp(D) iff
x ∈

⋃
{cp(D) | D ∈ C}.

We generalize the above two notions and define the complex and rule
bases of C as the sets of all rule complexes and rules, respectively, constitut-
ing (or, in other words, occurring in) C. Precisely, the complex base of C,
cb(C), is defined as follows:

(10) cb(C)
def
= cp(C) ∪ {D | ∃n ∈ N.∃D0, . . . ,Dn.(∀i = 0, . . . , n.cpl(Di)

∧ D ∈ D0 ∈ · · · ∈ Dn ∈ C)}.

Now the rule base of C, rb(C), is defined as

(11) rb(C)
def
= rp(C ∪

⋃

cb(C)).

Example 4.10. Again consider the rule complexes from Example 3.4. Their
complex bases are: cb(C1) = ∅, cb(C2) = {C1}, and cb(C3) = C3 − {r1};
and their rule bases are: rb(C1) = rb(C2) = {r1, r2} and rb(C3) = {r1}.

Complex and rule bases of rule complexes have interesting properties
some of which are stated in the following two propositions.

Proposition 4.11. For any rule complexes C,D, and E, we have that:

(a) cb(C) = ∅ iff cp(C) = ∅.

(b) If C ⊆ D, then cb(C) ⊆ cb(D).

(c) If C ∈ D, then cb(C) ∪ {C} ⊆ cb(D).

(d) cb(C) = cp(C) ∪
⋃
{cb(D) | D ∈ C}.

(e) If C ∈ D ∈ cb(E), then C ∈ cb(E).

(f) If C ∈ cb(D) and D ∈ cb(E), then C ∈ cb(E).

(g) cb(℘(C)) = ℘(C) ∪ cb(C).

(h) If rp(C) = ∅, then cb(
⋃

C) =
⋃
{cb(D) | D ∈ C}.

Proof. (a) easily follows from the definition. For (b) assume C ⊆ D.
Consider any E ∈ cb(C). By definition, E ∈ cp(C) or there are n ∈ N

and rule complexes x0, . . . , xn such that E ∈ x0 ∈ · · · ∈ xn ∈ C. In
the former case E ∈ cp(D) by assumption and Proposition 4.9, and hence
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E ∈ cb(D) by definition. In the latter case notice that xn ∈ D by as-
sumption. Hence E ∈ x0 ∈ · · · ∈ xn ∈ D, and finally E ∈ cb(D) by
definition. For (c) assume C ∈ D. Obviously C ∈ cb(D). Now consider
E ∈ cb(C). As in (b), E ∈ cp(C) or there are n ∈ N and rule com-
plexes x0, . . . , xn such that E ∈ x0 ∈ · · · ∈ xn ∈ C. In the former case
E ∈ C ∈ D which entails E ∈ cb(D) by definition. In the latter case notice
that E ∈ x0 ∈ · · · ∈ xn ∈ C ∈ D and apply the definition of cb. For (d)
assume E ∈ cb(C) first. By definition, E ∈ cp(C) or there are n ∈ N and
rule complexes x0, . . . , xn such that E ∈ x0 ∈ · · · ∈ xn ∈ C. In the former
case we are done. In the latter one notice that E ∈ cb(xn) and xn ∈ C

as required. To prove the remaining part, it suffices to assume that there
is (i) D ∈ C such that E ∈ cb(D). Indeed, cp(C) ⊆ cb(C) by definition.
E ∈ cb(D) implies that E ∈ cp(D) or there are n ∈ N and rule complexes
x0, . . . , xn such that E ∈ x0 ∈ · · · ∈ xn ∈ D. In the former case E ∈ cb(C)
by (i) and definition. In the latter one, E ∈ x0 ∈ · · · ∈ xn ∈ D ∈ C

and E ∈ cb(C) by definition. For (e) assume C ∈ D ∈ cb(E). By defi-
nition, D ∈ cp(E) or there are n ∈ N and rule complexes x0, . . . , xn such
that D ∈ x0 ∈ · · · ∈ xn ∈ E. In the former case C ∈ cb(E) by assump-
tion and definition. In the latter one, C ∈ D ∈ x0 ∈ · · · ∈ xn ∈ E and
C ∈ cb(E) by definition. Actually (e) is a particular case of (f). Now for (f)
assume (ii) C ∈ cb(D) and (iii) D ∈ cb(E). Hence the following cases hold:
(iv) C ∈ D ∈ E or (v) C ∈ D and there are n ∈ N and rule complexes
y0, . . . , yn such that D ∈ y0 ∈ · · · ∈ yn ∈ E or (vi) there are m ∈ N and
rule complexes x0, . . . , xm such that C ∈ x0 ∈ · · · ∈ xm ∈ D and D ∈ E

or (vii) there are m,n ∈ N and rule complexes x0, . . . , xm, y0, . . . , yn such
that C ∈ x0 ∈ · · · ∈ xm ∈ D and D ∈ y0 ∈ · · · ∈ yn ∈ E. In each
case C ∈ cb(E) is easily obtained by definition. For (g) notice first that
(viii) cp(C) = C implies cb(C) = C ∪

⋃
{cb(D) | D ∈ C} by (d). Clearly,

⋃
{cb(D) | D ∈ ℘(C)} =

⋃
{cb(D) | D ⊆ C} = cb(C) by (b). Finally,

cb(℘(C)) = ℘(C) ∪ cb(C). For (h) assume that rp(C) = ∅. (⊆) Suppose
that for some rule complex x, x ∈ cb(

⋃
C). Then (ix) x ∈ cp(

⋃
C) or

(x) there are n ∈ N and rule complexes x0, . . . , xn such that x ∈ x0 ∈
· · · ∈ xn ∈

⋃
C. In the former case there is D ∈ C such that x ∈ cp(D)

by assumption and Proposition 4.9. Then x ∈ cb(D) easily. In summary,
x ∈

⋃
{cb(D) | D ∈ C}. In the case (x), there is a rule complex D ∈ C

such that x ∈ x0 ∈ · · · ∈ xn ∈ D. That is, for some D ∈ C, x ∈ cb(D)
by definition. Again x ∈

⋃
{cb(D) | D ∈ C}. (⊇) Now suppose that

x ∈
⋃
{cb(D) | D ∈ C}. Hence there is D ∈ C such that x ∈ cb(D).

Since D ∈ C, D ⊆
⋃

C. Thus by (b), x ∈ cb(
⋃

C) as required.
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Proposition 4.12. For any rule complexes C,D, and E, we have that:

(a) rb(C) ∩ cb(C) = ∅.

(b) rb(C) =
⋃
{rp(D) | D = C ∨ D ∈ cb(C)}.

(c) rb(C) = ∅ iff rp(C) = ∅ and ∀D ∈ cb(C). rp(D) = ∅.

(d) If C ⊆ D, then rb(C) ⊆ rb(D).

(e) If C ∈ D, then rb(C) ⊆ rb(D).

(f) If C ∈ cb(D), then rb(C) ⊆ rb(D).

(g) If rp(C) = ∅, then rb(
⋃

C) = rb(C).

(h) rb(℘(C)) = rb(C).

The proof is left as an exercise.

Now we can generalize the notions of an element and a subset to the case
of rule complexes. x is a generalized element (or simply g-element) of C,
x ∈g C, in case x is an element of the complex base or the rule base of C.
That is,

(12) x ∈g C
def
↔ x ∈ cb(C) ∪ rb(C).

Two different rule complexes may have the same g-elements.

Example 4.13. Consider C = {r0, C0} and D = {C0} where C0 = {r0, r1}.
Rule complexes C and D are different but have the same g-elements.

The notion of a subcomplex, introduced below in a semi-formal way, is
of great importance in GGT. In the preceding section we briefly described
fundamental ideas of our representation of social actors.3 In GGT a social
actor i in an interaction situation s is represented by i’s actor complex in s

ACTORi,s. Parts of this rule complex, being of particular interest, are i’s
role and control complexes in s, ROLEi,s and CTRLi,s, respectively. Impor-
tant parts of ROLEi,s are: (1) i’s value complex VALUEi,s, (2) i’s model
of him/herself, other actors, and the situation, written MODELi,s, (3) i’s
action complex ACTi,s, and (4) i’s action modality complex ACTMODi,s;
all related to s. These parts are examples of subcomplexes. More formally,
a rule complex C is a subcomplex of a rule complex D, C ⊑ D, if C = D

or C is obtained from D by deleting some occurrences of g-elements of D

and/or by removing redundant parentheses. The notion of redundancy de-
serves a detailed elaboration. For lack of space however, we only give an

3 Also social interactions may be similarly modelled by means of rule complexes.
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example of such a redundancy of parentheses. Consider rule complexes C

and D = {. . . {
︸ ︷︷ ︸

n

C } . . .}
︸ ︷︷ ︸

n

where n > 0. As far as the application of rule com-

plexes is concerned, these parentheses are redundant since the application of
D intuitively resolves itself into the application of C. A simple operation of
removing of parentheses, κ, may be defined as follows. For any rule complex
C,

(13) κ(C)
def
=

{
D if C = {D} and cpl(D)
C otherwise.

Applying κ a sufficient number of times, we eventually remove all parentheses
redundant in the above sense.

One can see that every subset of a rule complex is a subcomplex of it,
but not vice versa.

Example 4.14. Let ri (i = 0, . . . , 3) be different rules. Consider a rule complex
D = {r0, r1, C0, C1}, where C0 = {r2, r3, C2}, C1 = {r0, C0}, and C2 = {r1}.
Let C3 = {r2, C2}, C4 = {r0, C5}, and C5 = {r2, r3}. The rule complex
C = {r1, C3, C4} is a subcomplex of D, in symbols C ⊑ D. However, C is
not a subset of D.

Let us note a useful observation that if C is a subcomplex of D, then C

is also a subcomplex of D ∪ E, for any rule complex E.

5. Derivability of Rules

Derivation of (possibly new) rules from given rules is a form of reasoning.
Actually, it is the main form of reasoning in the case of our formalism since
formulas play an auxiliary role only.

The notion of derivability of inference rules was formally defined by K. Aj-
dukiewicz in 1928 [1]. It was before the notion of inference rule was studied
systematically. We recall Ajdukiewicz’s notion using the terminology pro-
posed in [8]. First, we say that a set X of formulas of L is closed under a set
of inference rules∗ R (cf. Definition 2.1), written clR(X), in case

(14) ∀r ∈ R.∀Y ⊆ F(L).∀α ∈ F(L).(((Y, α) ∈ r ∧ Y ⊆ X) → α ∈ X).

Consider a Hilbert-style logical system (R,A), where R is a set of inference
rules∗ and A is a set of formulas of L. With (R,A) we can associate a unique
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consequence operator CR,A : ℘(F(L)) 7→ ℘(F(L)) such that for any set of
formulas X,

(15) CR,A(X)
def
=

⋂

{Y ⊆ F(L) | A ∪ X ⊆ Y ∧ clR(Y )}.

Now we can formulate the definition of Ajdukiewicz’s concept of derivability
of rules.

Definition 5.15. A rule∗ r is derivable in the system (R,A) iff

(16) ∀X ⊆ F(L).C{r},∅(X) ⊆ CR,A(X).

One can prove that condition (16) is equivalent to the following one:

(17) ∀X ⊆ F(L).∀α ∈ F(L).((X,α) ∈ r → α ∈ CR,A(X)).

Along the standard lines, the latter formula is just taken as the condition
defining that r is derivable in (R,A).

Thus roughly speaking, derivability of rules corresponds to provability of
theorems in Hilbert-style logical systems. In our framework however, excep-
tions to rules are admitted like in Reiter’s default logic [9]. In default logic
the notion of the set of theorems of a theory is generalized to the notion of
an extension. Since a rule can block the application of another one, there
can be no, one or more than one extension of a given theory. Elements of an
extension may be seen as tentative candidates for theorems.

The notion of derivability of rules from a rule complex, proposed in this
paper, is introduced in a few steps. First, we define derivability of axiomatic
rules from a set of rules. As axiomatic rules represent formulas (viz., conclu-
sions of the rules) in our formalization, the possible sets of derived axiomatic
rules are counterparts of extensions in default logic. In the second step we
generalize, in some sense, the classical concept of derivability of rules de-
scribed above4 as to obtain the notion of derivability of arbitrary rules from
a set of rules. According to the definition formulated in the next step, deriv-
ability of rules from an arbitrary rule complex C is understood as derivability
from the rule base of C, rb(C). Such a view is not oversimplified if it is as-
sumed that all rules of C are equally accessible. In practice an unrestricted
access to rules is rare since most actors are “local” reasoners. Therefore, we
finally define the notion of relative derivability of rules.

We start with derivability of axiomatic rules from a set of rules. This
notion is related to that of an extension in Reiter’s default logic [9].

4 Recall that our notion of a rule differs from the usual one.
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Definition 5.16. Given a set of rules D, we define a sequence of operators
∆n

D (n ∈ N) as follows. For any set of rules C, let

(i) ∆0
D(C) = C ∩ AXR(L);

(ii) (X,Y, α) ∈ ∆n+1
D (C) iff X = Y = ∅ ∧ ∃T,Z ⊆ F(L).((T,Z, α) ∈ C ∧

T rul ⊆ ∆n
D(C) ∧ (¬Z)rul ∩ D = ∅).

D is called a possible set of axiomatic rules derived from C, D ∈ PSARD(C),
if

(iii) D =
⋃

n∈N
∆n

D(C).

It is easy to see that for any n ∈ N, ∆n
D(C) (and hence

⋃

n∈N
∆n

D(C))
consists of axiomatic rules only. Moreover, PSARD(∅) = {∅}. A few other
basic properties are given below.

Proposition 5.17. (a) For each D ∈ PSARD(C), C ∩ AXR(L) ⊆ D.

(b) For any sets of rules C,D and m < n, ∆m
D(C) ⊆ ∆n

D(C).

(c) If C ⊆ AXR(L), then PSARD(C) = {C}.

Proof. If PSARD(C) = ∅, then (a) is obvious. In the remaining case
it suffices to notice that for each n ∈ N and a set of axiomatic rules D,
∆0

D(C) ⊆ ∆n
D(C), and to apply Definition 5.16. For (b) we first prove by

induction on n ∈ N that (∗)∆n
D(C) ⊆ ∆n+1

D (C). For n = 0 apply simply the
definition. Now assume inductively that (∗) holds for some n ∈ N. Suppose
that (X,Y, α) ∈ ∆n+1

D (C). By definition, X = Y = ∅ and there exist finite
sets of formulas T,Z such that (T,Z, α) ∈ C, T rul ⊆ ∆n

D(C), and (¬Z)rul ∩
D = ∅. By the inductive assumption, T rul ⊆ ∆n+1

D (C). Hence (X,Y, α) ∈
∆n+2

D (C) by definition, and we are done by the principle of induction. Let
k = n − m. Thus we prove by induction on k > 0 that (∗∗)∆m

D(C) ⊆
∆m+k

D (C). The case k = 1 has been already proved. Assume inductively

that (∗∗) holds for all k ≤ l. Then ∆m
D(C) ⊆ ∆m+l

D (C) and ∆m+l
D (C) ⊆

∆m+l+1
D (C) by the inductive assumption. Hence ∆m

D(C) ⊆ ∆m+l+1
D (C) as

required, and we are done by the principle of induction. For (c) assume
C ⊆ AXR(L). Let D be any set of formulas. First notice that ∆0

D(C) = C.
Hence C ⊆

⋃

n∈N
∆n

D(C). Consider an arbitrary n > 0 and a rule (X,Y, α).
Suppose that (X,Y, α) ∈ ∆n

D(C). By definition, X = Y = ∅ and there exist
sets T,Z such that (T,Z, α) ∈ C, T rul ⊆ ∆n−1

D (C), and (¬Z)rul ∩D = ∅. By
assumption, T = Z = ∅. Clearly, (X,Y, α) ∈ C. Thus

⋃

n∈N
∆n

D(C) = C for
any set of rules D. Hence PSARD(C) = {C}.
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One can see that C ∩ AXR(L) 6= ∅ implies ∅ 6∈ PSARD(C).

Example 5.18. Derivability of axiomatic rules is non-monotonic, viz., it can
be that C1 ⊆ C2 but their correponding possible sets, D1 and D2, of ax-
iomatic rules derived from C1 and C2 are not comparable. Suppose that β 6=
¬α and consider C1 = {(∅, {α}, β)} and C2 = C1 ∪ {¬αrul}. PSARD(C1) =
{{βrul}} and PSARD(C2) = {{¬αrul}}.

Example 5.19. There can be more than one possible set of axiomatic rules
derived from a set of rules. Let C = {(∅, {α}, α), (∅, {¬α}, ¬α), ({α}, ∅,
¬¬α)}. PSARD(C) = {D1,D2} where D1 = {α,¬¬α}rul and D2 = {¬αrul}.

Example 5.20. There can be no possible set of axiomatic rules derived from
a set of rules. Let C = {(∅, {α},¬α)}. Suppose D ∈ PSARD(C). Then
(¬α)rul ∈ D iff (¬α)rul 6∈ D. Thus PSARD(C) = ∅.

Now we can formulate the definition of derivability of arbitrary rules
from a set of rules. In that definition we try to generalize the classical idea
of derivability to the case of rules with exceptions.

Definition 5.21. A rule (X,Y, α) is derivable from a set of rules C, (X,Y, α)
∈ Der(C), if there are a ⊆-maximal set of rules D ⊆ C such that PSARD(D ∪
Xrul) 6= ∅ and a set of rules E ∈ PSARD(D∪Xrul) such that (¬Y )rul∩E = ∅
and αrul ∈ E.

At first sight, one could wonder why one should look for a set of rules
D ⊆ C instead of taking simply C in the definition above. It is mainly for
pragmatic reasons. Observe that adding new axiomatic rules Xrul to the
whole set of given rules C may block derivability for good, i.e., it can easily
be that PSARD(C∪Xrul) = ∅. Moreover, the question arises why one should
require the set of rules E to be disjoint with the set of all axiomatic rules
obtained from negated justifications, (¬Y )rul. The motivation is related to
the informal reading of the rule (X,Y, α). Namely, to conclude α, all premises
of X have to hold and it has to be the case that all justifications of Y possibly
hold, i.e., no negated justification of Y may hold.

Example 5.22. Axiomatic rules βrul and γrul are derivable from C =
{(∅, {α},¬α), βrul , ({β}, ∅, γ)} in spite of the fact that PSARD(C) = ∅.
Indeed, PSARD(C) = ∅ because of the rule (∅, {α},¬α). Thus in accor-
dance with Definition 5.21, we consider the set D = C − {(∅, {α},¬α)} =
{βrul, ({β}, ∅, γ)}. It is easy to see that PSARD(D) = {E} where E =
{β, γ}rul. Thus βrul, γrul ∈ Der(C).
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Example 5.23. Let us observe that

Der(∅) = {(X,Y, α) ∈ R(L) | α ∈ X ∧ X ∩ ¬Y = ∅}.

Indeed, for every rule (X,Y, α) as above, PSARD(Xrul) = {Xrul}, αrul ∈
Xrul, and Xrul∩(¬Y )rul = ∅. One can also see that for C from Example 5.20,
Der(C) = Der(∅) though PSARD(C) = ∅. Finally, let us note that C 6⊆
Der(C).

Now we can define an unrestricted form of derivability of rules from an
arbitrary rule complex. We assume implicitly that all rules of a considered
rule complex are equally and unrestrictedly accessible. Under such an as-
sumption, deriving rules from a rule complex C may actually be the same as
deriving rules from the rule base of C.

Definition 5.24. A rule r is derivable from a rule complex C, r ∈ Der(C),
iff r is derivable from the rule base of C, i.e.,

Der(C)
def
= Der(rb(C)).

Clearly, rb(C) = rb(D) implies Der(C) = Der(D). One can see that all
axiomatic rules, being g-elements of C, are derivable from C. Observe also
that αrul is not derivable from C unless α is the conclusion of a rule r ∈g C.

Example 5.25. Let αi 6= ¬α2 for i = 0, . . . , 4. Consider the following rules:
r0 = ({α0, α1}, {α2}, α3), r1 = ({α0}, ∅, α4), r2 = ({α1, α4}, ∅, α3), r3 =
(∅, {α2},¬α2), and the rule complex C = {r1, {r2, r3}}. In this case rb(C) =
{r1, r2, r3}. Notice that PSARD(rb(C)∪{α0, α1}

rul) = ∅ because of the rule
r3. According to the definition, we look for a ⊆-maximal subset D of rb(C)
such that PSARD(D ∪ {α0, α1}

rul) 6= ∅. Let D = rb(C) − {r3} = {r1, r2}.
Then PSARD(D∪{α0, α1}

rul) = {E} where E = {α0, α1, α3, α4}
rul. Clearly,

(¬α2)
rul 6∈ E and αrul

3 ∈ E. Hence r0 ∈ Der(C).

According to Definition 5.24, all rules of a rule complex are accessible in
the process of deriving rules. However, it is more realistic to assume that
only some rules of a given rule complex may be used. Such a form of local
reasoning can be modelled by means of relative derivability.

Definition 5.26. Given a rule complex C and a non-empty family X of
subcomplexes of C. A rule r is derivable from C relative to X , r ∈ Der(C|X ),
iff there is D ∈ X such that r ∈ Der(D), i.e.,

Der(C|X ) =
⋃

{Der(D) | D ∈ X}.
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In this case we are allowed to use only rules occurring in those subcom-
plexes of C that are members of the family X . Nevertheless, if X = {C},
then Der(C|X ) = Der(C).

Example 5.27. Consider again Example 5.25. Let X = {{r1, {r2}}} and Y =
{{r1}, {r2}}. Observe that r0 ∈ Der(C|X )−Der(C|Y). Indeed, Der(C|X ) =
Der(C) and Der(C|Y) = Der({r1}) ∪ Der({r2}).

6. Some Remarks on the Activation of Rules

The activation of a rule is a notion relating derivability of rules to such
an important issue as the application of rule complexes. In this section we
only give some preliminary remarks on the problem of activation of rules,
postponing a more systematic study to a separate paper.

As expected, the application of rule complexes resolves itself into the
application of rules. A necessary but usually insufficient condition for a rule
r to be applied in a situation s is that r is activated in s. Generally, only
rules that are activated in s may possibly be applied in s. The activation
of a rule may be defined with help of the notion of derivability. Informally
speaking, a rule r is activated in a situation s if each premise of r holds in s

and it is possible for each justification of r to hold in s. Thus, the question of
activation of a rule in a given situation may be reduced to checking whether
or not some formulas hold or possibly hold in the situation.

Whether or not a formula α holds in s is not a simple matter. For in-
stance, we can say that α holds in s in an actor i’s opinion, written (s, i) |= α,
in case there is a formula β similar to α to some sufficient extent (determined
by s and i) and such that the corresponding axiomatic rule βrul is derived
from i’s model in s, MODELi,s, under some conditions (again determined by
s and i) and given some rules of logical inference, represented in the form of
a rule complex LOGICi,s. Suppose that simi,s(α, β) means that β is suffi-
ciently similar to α with respect to i and s. Along the standard lines, we may
assume that the similarity relation simi,s is reflexive and symmetric. Next,
let X be a non-empty family of subcomplexes of MODELi,s, where the ele-
ments of X consist of those rules of MODELi,s that are accessible to i in the
process of derivation of rules in the situation s. Thus, the above definition
of the fact that α holds in s in i’s opinion may be formulated as follows:

(18) (s, i) |= α
def
↔ ∃β.(simi,s(α, β)∧βrul ∈ Der(MODELi,s∪LOGICi,s | X )).

We stop at this point and postpone further investigations to a separate paper.
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7. (In)consistency of a Rule Complex

The notion of derivability of rules is a good starting point to discuss
(in)compatibility of rule complexes. Generally, two or more rule complexes
(e.g., social roles) are compatible if the rule complex, obtained as the result
of their composition under some specified conditions, is consistent; otherwise
the rule complexes are incompatible. Clearly, to obtain a working version
of the definition, ready to be applied in GGT, we should modify the above
definition by relating it to a particular actor and a situation and by specify-
ing what we mean by composition and (in)consistency of rule complexes. In
this section we only focus upon a few theoretical notions of (in)consistency
of rule complexes.

Like in the case of activation of rules, (in)consistency of a rule complex
may be defined with help of derivability of rules. Below we distinguish four
forms of inconsistency of a rule complex: (1) xs-inconsistency (’xs’ for ’extra
strong’), (2) s-inconsistency (’s’ for ‘strong’), (3) inconsistency, and (4) rel-
ative inconsistency. There are also four corresponding forms of consistency:
(1) xw-consistency (’xw’ for ‘extra weak’), (2) w-consistency (‘w’ for ‘weak’),
(3) consistency, and (4) relative consistency, respectively.

The first of the mentioned forms of inconsistency of a rule complex C is
called extra strong because it arises in every possible set of axiomatic rules
derived from a ⊆-maximal subset D of the rule base of C. Inconsistency of
such a sort cannot be avoided by separating elements of D or rejecting of
some of them.

Definition 7.28. A rule complex C is called xs-inconsistent if there exists
a ⊆-maximal set of rules D ⊆ rb(C) such that PSARD(D) 6= ∅ and for every
set E ∈ PSARD(D) of axiomatic rules derived from D, there is a formula α

such that αrul,¬αrul ∈ E; otherwise C is xw-consistent.

Example 7.29. To illustrate the above notion it suffices to modify slightly
Example 5.19. Let

C = {(∅, {α}, α), (∅, {α}, β), (∅, {¬α},¬α), (∅, {¬α}, γ),

({α}, ∅,¬¬α),¬βrul,¬γrul}.

PSARD(rb(C)) = {E1, E2} where E1 = {α,¬¬α, β,¬β,¬γ}rul and E2 =
{¬α,¬β, γ,¬γ}rul. The rule complex C is xs-inconsistent.

Weaker, yet still strong is the second form of inconsistency, where con-
tradictory axiomatic rules like αrul and ¬αrul obtain in at least one of the
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possible sets of axiomatic rules derived from the set D ⊆ rb(C) as mentioned
above. In the optimistic case this form of inconsistency can be avoided by
rejecting of “infected” elements of PSARD(D).

Definition 7.30. A rule complex C is called s-inconsistent if there exist
a ⊆-maximal set of rules D ⊆ rb(C) such that PSARD(D) 6= ∅, a set of
axiomatic rules E ∈ PSARD(D), and a formula α that αrul,¬αrul ∈ E;
otherwise C is w-consistent.

Example 7.31. Suppose that α 6= ¬β and β 6= ¬α. Let

C = {{(∅, {α}, α), ({α}, ∅,¬¬α), (∅, {α}, β), (∅, {γ},¬γ)},

(∅, {¬α},¬α),¬βrul}.

In this case PSARD(rb(C)) = ∅ because of the rule (∅, {γ},¬γ). We con-
sider the ⊆-maximal subset D of rb(C) such that PSARD(D) is non-empty.
Thus D = {(∅, {α}, α), ({α}, ∅,¬¬α), (∅, {α}, β), (∅, {¬α},¬α),¬βrul}. In
this case PSARD(D) = {E1, E2} where E1 = {α,¬¬α, β,¬β}rul and E2 =
{¬α,¬β}rul. In summary, the rule complex C is both s-inconsistent and
xw-consistent.

Inconsistency of the third kind, called simply inconsistency is weaker.
In the optimistic case one can omit the problem by separating sets in
PSARD(D), where D is as earlier.

Definition 7.32. A rule complex C is called inconsistent if there is a formula
α such that αrul,¬αrul ∈ Der(C); otherwise C is consistent.

It is easy to show that this kind of inconsistency may be characterized
by the condition below.

Proposition 7.33. A rule complex C is inconsistent iff there are a ⊆-maxi-
mal set of rules D ⊆ rb(C) such that PSARD(D) 6= ∅, sets of axiomatic rules
E1, E2 ∈ PSARD(D), and a formula α that αrul ∈ E1 and (¬α)rul ∈ E2.

Example 7.34. Consider any rule complex D such that rb(D) = C, where C

is the rule complex from Example 5.19. The rule complex D is inconsistent
since αrul,¬αrul ∈ Der(D). On the other hand, D is w-consistent.

In monotonic logics, every set of formulas containing an inconsistent set
of formulas is inconsistent as well. Conversely, every subset of a consistent
set of formulas is consistent. In our framework this is not true in general.
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Example 7.35. Consider the rule complexes C,D from Example 7.34 and let
E = D ∪ {¬αrul}. The rule complex E is consistent since PSARD(rb(E)) =
{{¬αrul}}. In summary, D ⊆ E (and hence D ⊑ E), D is inconsistent,
while E is consistent.

Interdependencies among the above three forms of (in)consistency are
clear.

Proposition 7.36. Let C be any rule complex. (a) If C is xs-inconsistent,
then C is s-inconsistent. On the other hand, if C is w-consistent, then it
is xw-consistent. (b) If C is s-inconsistent, then C is inconsistent. To the
contrary, if C is consistent, then it is w-consistent.

Starting with relative derivability we obtain the corresponding form of
(in)consistency.

Definition 7.37. A rule complex C is inconsistent relative to a non-empty
family X of subcomplexes of C if there is a formula α such that αrul,¬αrul ∈
Der(C|X ); otherwise C is consistent relative to X .

Notice that inconsistency as described in Definition 7.32 is a particular
case of relative inconsistency, where the rule complex C is taken as the only
member of the family X . Indeed, C is inconsistent iff C is inconsistent
relative to {C}, and analogously for consistency.

Example 7.38. Let D and E be as in Example 7.35. Recall that E is consis-
tent. On the other hand, E is inconsistent relative to {D}.

It is also easy to find an example of a rule complex C and a non-empty
family X of subcomplexes of C such that C is inconsistent and at the same
time consistent relative to X .

8. Summary

The aim of the paper was to define and study an appropriate notion of
derivability of rules from a rule complex. To this end, we first introduced
updated and improved versions of fundamental notions of our theory of rule
complexes. Starting with the concept of derivability of rules we were able to
obtain the corresponding notions of (in)consistency of a rule complex. We
also formulated some ideas on the activation of rules and the application of
rule complexes. An important direction for future research on derivability
of rules from a rule complex seems to be vagueness of information and, in
particular, reasoning about similarity.
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