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A COMPARISON OF TWO APPROACHES

TO PARAINCONSISTENCY:

Flemish and Polish

Abstract. In this paper we present a comparison of certain inconsistency

adaptive logics and Jaśkowski’s logic.

Introduction

One of the first formal ways of handling inconsistency was presented in [11].
The approach opened the way to further investigations concerning paracon-
sistent logic. In time the importance of so called M -fragments of a given
modal logic was also discovered.

Another approach is given by D. Batens. The whole project started with
the paper [1]. The idea is very attractive and can be applied to many different
logical calculi.

1. Inconsistency adaptive logics

The adaptive logics are built with the help of two consequences relations: a
weaker one (in the case of inconsistency adaptive logics it is a paraconsistent
logic) and a stronger (classical logic). You can always derive a conclusion
from given premises using the first kind of consequences relation, while in
some cases we can use the second one. The cases in which the stronger
consequence relation is allowed are determined by a given strategy. Logics
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ACLuN1 and ACLuN2 are the most famous. In what follows, we will re-
fer only to the propositional part of these logics, since the most important
features of the predicative formulations are retained in the propositional ver-
sions.

In both these logics, the logic CLuN is the lower limit logic. The propo-
sitional case of the logic CLuN is defined as the full positive classical logic
plus the law of excluded middle.

Let us recall a very important theorem from [2] which was originally
expressed for the propositional case.

⊢CL A iff there are C1, . . . , Cn (n > 0) that ⊢CLuN DEK(C1, . . . , Cn) ∨ A.

This suggests rules of inference for inconsistency adaptive logics.
In the proofs of inconsistency adaptive logics every formula is added under

assumption of consistent behavior of some set of formulas. If the set of
assumptions under which a given formula is added to the proof, is the empty
set, we say that the formula appears unconditionally in the proof.

We only recall the meta-rules which govern the inferences for ACLuN1

logic. It is enough for our purposes since in the case of consistent sets of
premisses both consequences coincide, while in general if X ⊢ACLuN1 A then
X ⊢ACLuN2 A. For the exhaustive formulations of semantics and syntax of
both logics, see for example [3].

We say that a formula of the form (C1 ∧ ∼C1) ∨ · · · ∨ (Cm ∧ ∼Cm) is a
minimally inconsistent disjunction in a given proof if it appears in the proof
unconditionally and no formula of the form (Ci1 ∧∼Ci1)∨· · · ∨ (Cik ∧∼Cik)
where k < m, appears in the given proof unconditionally.

A formula of the form (C1 ∧ ∼C1) ∨ · · · ∨ (Cm ∧ ∼Cm) is a minimally
inconsistent consequence of a given set X iff it is a consequence of X in the
sense of the logic CLuN and no formula of the form (Ci1 ∧ ∼Ci1) ∨ · · · ∨
(Cik ∧ ∼Cik) where k < m, is a consequence of X. Here are the rules:

RU If ⊢CLuN (A1∧· · · ∧An) → B and A1, . . . , An appears in the proof, B
can be added. The assumption under which B is derived is the sum of
assumptions under which formulas A1, . . . , An appeared in the proof.

RC If ⊢CLuN

(

(C1∧∼C1)∨· · ·∨(Cm∧∼Cm)
)

∨
(

(A1∧· · ·∧An) → B
)

, and

A1, . . . , An appears in the proof, then B can be added provided that
no formula of the form Ci∧∼Ci for all 1 6 i 6 n occurs as the disjunct
of a minimally inconsistent disjunction in that proof. The appropriate
assumption is the sum of assumptions under which formulas A1, . . . ,
An appeared in the proof plus the set {C1, . . . , Cm}.
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RD It is obligatory that if A has been inferred under an assumption of
consistent behavior of a set containing a formula B, and the formula
B ∧ ∼B became a disjunct of a minimally inconsistent disjunction,
then A has to be deleted from the proof.

Using the above meta-rules one can formulate the notion of a proof of a
given formula on the basis of a set of premises X. But since RD can cause
the deletion of a step in a proof, the notion of final derivability has to be
introduced. We say that A is finally derived on the basis of premises the
set X iff there is a proof of A on the basis of that set, in which A appears
under some assumption ∆, and even if A were deleted in some extension of
the proof, it could be further extended in such a way that A is derived under
∆ once more.

For our purposes the notion of a model is needed. By CLuN-model we
mean any valuation v classical with respect to positive connectives, while
in the case of negation for any A the following is fulfilled: v(A) = 1 or
v(∼A) = 1. In the standard way we semantically define the consequence
relation for CLuN.

A CLuN-model v is the ACLuN1 model of a given set X iff it satisfies
X and the only formulas of the form B ∧∼B valid under v are disjuncts of
minimally inconsistent semantical consequences of the set X.

Since for the logic CLuN the completeness result is valid, the word ‘se-
mantical’ can be dropped in the last paragraph.

A CLuN-model v is the ACLuN2 model of a given set X iff it satisfies
X and it is a minimally inconsistent CLuN-model of X, i.e., there is no
CLuN-model of X, which would have validated fewer inconsistences.

2. Jaśkowski’s Logic D2

Jaśkowski’s logic D2 is a propositional logic defined with the help of the
modal logic S5.

A formula A is a theorem of the system D2 iff it is built in the standard
way with the help of ‘↔’, ‘→’, ‘∧’, ‘∨’ and ‘∼’, and the formula 3A′, which
arises by the substitution of C ∧ 3D, 3C → D, (3C → D) ∧ 3(3D → C)
respectively for subformulas C ∧ D, C → D and C ↔ D in 3A, is the
theorem of S5.1

The notion of the theorem of D2 can be expressed more accurately. Let
us use the following definition of Jaśkowski’s transformation:

1 The Appendix contains some basic notions from the modal logic pp. 22–27.
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4 Marek Nasieniewski

Definition 1. By a Jaśkowski’s transformation we mean the function
(·)d : For −→ Form from the set of all propositional formulas into the set
of all modal propositional formulas, defined by induction for any A ∈ For:

1. If A is a propositional variable, then A d = A

2. (a) A is of the form B ∨ C, we put A d = B d ∨ C d

(b) A is of the form B ∧ C, we put A d = B d ∧ 3C d

(c) A is of the form B → C, we put A d = 3B d → C d

(d) A is of the form B ↔ C, we put A d = (3B d → C d)∧3(3C d → B d)

(e) A is of the form ∼B, we put A d = ∼(B d).

Jaśkowski’s logic defined with the help of M-fragment of the modal logic
P we call set:

P
J = {A ∈ For : 3A d ∈ P }

i.e., for A ∈ For: A ∈ P
J iff 3A d ∈ P .

By the above definition we have:

D2 = S5
J.

Connectives of conjunction, implication and equivalence can be treated
as abbreviations of some modal formulas. In this sense we can call them
“discussive” and denote them with the additional symbol ‘d’:

A ∧d B := (A ∧ B)d

A →d B := (A → B)d

A ↔d B := (A ↔ B)d

Now we can define the consequence relation by saying that from A1, . . . ,
An a formula A is derivable in the sense of D2 iff on the basis of 3A d

1
, . . . ,

3A d
n a formula 3A d is S5-provable.2

Proposition 2. The Logic D2 is closed under the Modus Ponens rule:

(MP)
A → B A

B

2 It is obvious that in the case of the presented definition the addition of Gödel’s rule

makes no difference. See the definition 18 on page 23.

© 2001 by Nicolaus Copernicus University



A comparison of two approaches . . . 5

Proof. It is enough to see that the following rule is provable in S5:

3(3A → B) 3A

3B

Let us assume that in a given proof 3(3A → B) and 3A appears. By
Lemma 23 from p. 24 one can derive 3A → 3B, therefore by the rule of
Modus Ponens (being used in S5) we get 3B.

3. Jaśkowski’s logic and inconsistency adaptive logics

In the present section we will compare Jaśkowski’ logic and inconsistency
adaptive logics ACLuN1 and ACLuN2. To achieve this aim connectives of
implication, conjunction and equivalence will be treated as discussive ones.
Firstly, let us notice that each axiom of the logic CLuN is a theorem of the
logic D2: a fortiori the full positive logic is contained in D2. Corollary 4
was implicite expressed already by Jaśkowski (see [11] and [12]). We present
its full proof here.

Theorem 3. Each of the following schema represents a theorem of D2.

Ax1. A → (B → A)

Ax2. ((A → B) → A) → A

Ax3. (A → (B → C)) → ((A → B) → (A → C))

Ax4. A ∧ B → A

Ax5. A ∧ B → B

Ax6. A → (B → A ∧ B)

Ax7. A → A ∨ B

Ax8. B → A ∨ B

Ax9. (A → B) → ((C → B) → (A ∨ C → B))

Ax10. (A ↔ B) → (A → B)

Ax11. (A ↔ B) → (B → A)

Ax12. (A → B) → ((B → A) → (A ↔ B))

Ax13. (A → ∼A) → ∼A
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Proof. Using the introduced definitions of discussive connectives and the
definition of Jaśkowski’s logic it is enough to show that modal versions (de-
noted by ‘Axd’) of considered axioms are theorems of S5.

Ad Axd1. On the basis of S5 a formula 3(3A → (3B → A)) is by
Lemma 23 and extensionality equivalent to 3A → (3B → 3A). The latter
is a substitution of A → (B → A), so belongs to S5.

Ad Axd2. By Lemma 23 the following equivalences hold in S5:
3[3(3(3A → B) → A) → A], 3(3(3A → B) → A) → 3A, (3(3A →
B) → 3A) → 3A, ((3A → 3B) → 3A) → 3A. The latter formula is a
substitution of the law of Peirce. Therefore Ax2 ∈ D2.

Ad Axd3. The axiom 3[3(3A → (3B → C)) → (3(3A → B) →
(3A → C))] belongs to S5, since by Lemma 23 it is equivalent to the formula
(3A → (3B → 3C)) → ((3A → 3B) → (3A → 3C)). The latter is a
substitution of Frege’s law.

Ad Axd4. ⊢S5 3(3(A ∧ 3B) → A) by lemmas 23 and 24, this formula
is equivalent to the law of absorption for conjunction.

Ad Axd5. ⊢S5 3(3(A ∧ 3B) → B). The proof proceeds in an analogue
way.

Ad Axd6. ⊢S5 3(3A → (3B → A ∧ 3B)). The proof goes similarly
since the formula under consideration is equivalent to the law of adjunction.

Ad Axd7. ⊢S5 3(3A → A ∨ B) This follows directly from the law of
absorption for disjunction, Lemma 23 and the monotonicity rule.

Ad Axd8. ⊢S5 3(3B → A ∨ B) as in the previous case.

Ad Axd9. ⊢S5 3(3(3A → B) → (3(3C → B) → (3(A ∨ C) → B))).
By Lemma 23 this formula is equivalent to (3A → 3B) → ((3C → 3B) →
(3(A ∨ C) → 3B)), while by regularity (t3 on p. 23) it is equivalent to the
substitution of: (A → B) → ((C → B) → (A ∨ C → B)).

Ad Axd10. ⊢S5 3[3((3A → B) ∧ 3(3B → A)) → (3A → B)]. By
lemmas 23 and 24 this formula is equivalent to: ((3A → 3B) ∧ (3B →
3A)) → (3A → 3B), which is a substitution of the law of the absorption
for conjunction.

Ad Axd11. ⊢S5 3[3((3A → B) ∧ 3(3B → A)) → (3B → A)]. The
reason is the same as above.

Ad Axd12. ⊢S5 3[3(3A → B) → (3(3B → A) → ((3A → B) ∧
3(3A → B)))]. This formula is equivalent to the substitution of the law of
adjunction: (3A → 3B) → [(3B → 3A) → ((3A → 3B)∧ (3A → 3B))].

Ad Axd13. ⊢S5 3(3(3A → ∼A) → ∼A). By Lemma 23 and condition
(1) from page 22 of inter-definability of ‘2’ and ‘3’ it is equivalent to (3A →
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∼2A) → ∼2A, and by the disjunctive syllogism it is equivalent to the
schema (∼3A ∨ ∼2A) → ∼2A. The last one is a theorem of the logic
S5 by the contraposition of the axiom D: ∼3A → ∼2A. (MP) and the
substitution of (A → B) → (A ∨ B → B).

As a consequence of the last theorem and Proposition 2 we obtain:

Corollary 4. The logic CLuN is contained in D2.

However, the analogous observation does not hold for adaptive logics built
on CLuN as the lower limit logic:

Proposition 5. The adaptive logics ACLuN1 and ACLuN2 are crossing
with D2.

Proof. Since for any set of formulas X and a formula A holds X ⊢CLuN

A ⇒ X ⊢ACLuN1 A ⇒ X ⊢CL A, X ⊢CLuN A ⇒ X ⊢ACLuN2 A ⇒ X ⊢CL A
(see [2, 3]) and simultaneously, if X is a consistent set, then X ⊢ACLuN1

A ⇔ X ⊢ACLuN2 A ⇔ X ⊢CL A, therefore {p,∼ p ∨ q} ⊢ACLuN1 q and
{p,∼ p ∨ q} ⊢ACLuN2 q. It is easy to see, that {p,∼ p ∨ q} 0D2

q. Indeed
{3p,3∼ p ∨ 3q} 0S5 3q since {3p,3∼ p ∨ 3q} 6|=S5 3q:

jj�* RY

w1 w2

v(p) = 1
v(q) = 0

v(3∼ p) = 1
v(3p) = 1
v(3q) = 0

v(3∼ p ∨ 3q) = 1

v(p) = 0
v(q) = 0

v(3p) = 1
v(3∼ p) = 1

v(∼ p) = 1
v(3q) = 0

v(3∼ p ∨ 3q) = 1

On the other hand, one can observe that {p,∼ p} 0ACluN2 ∼(p ∧ ∼ p).
Indeed, minimally inconsistent CLuN-models of our premises do not validate
the formula ∼(p∧∼ p) (the formula {p∧∼ p} is a CLuN consequence of the set
of our premises and there is no CLuN-model of our premises which would val-
idate fewer inconsistencies). Since in general X ⊢ACLuN1 A ⇒ X ⊢ACLuN2,
the same observation holds for the ACLuN1 consequence: {p,∼ p} 0ACLuN1

∼(p ∧ ∼ p). Of course {p,∼ p} ⊢D2
∼(p ∧ ∼ p). In fact, 3∼(p ∧ 3∼ p) is

equivalent to formula 3(p → 2p), which belongs to S5.
Let us notice that {p∧∼ p, p∨∼(p∧∼ p)} 0ACLuN1 ∼(p∧∼ p). Since on

the basis of the premises one can unconditionally derive p ∧ ∼ p, while only
assuming consistent behavior of p one can derive ∼(p ∧ ∼ p).
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Lemma 6. Let KD
∗
T

∗ is the normal modal logic arising by extension of the
logic K with the axioms:

(T∗) 233A → 3A, equivalently 3(33A → A)

(D∗) 23A → 3A, equivalently 3(3A → A)

In KD
∗
T

∗ the following formulas are provable:

2A → 3A(D)

3(23(A ∨ B) → (23A ∨ 23B))(DN1)

3[3(3A → B) → (3(3C → B) → (3(A ∨ C) → B))](DN2)

2A → 32(2A ∧ A)(DN3)

23(2A ∨ A) → 3A(DN4)

Proof. Ad (D)

1. (3A → A) → (A → A) (MP), the law of identity, and
(A → A) → ((3A → A) → (A → A))

2. 3(3A → A) → 3(A → A) 1 and the monotonicity rule
3. 3(A → A) (MP), 2 and (D∗)

Ad (DN1)

1. 23(A ∨ B) → 23A ∨ 33B t3, monotonicity, and t4
2. 23A ∨ 33B → 33B ∨ 23A commutativity of ‘∨’
3. 23(A ∨ B) → 33B ∨ 23A the law of syllogism, 1 and 2
4. 223(A ∨ B) → 233B ∨ 323A 3, monotonicity rule and t4
5. 233B ∨ 323A → 323A ∨ 233B commutativity of ‘∨’
6. 223(A ∨ B) → 323A ∨ 233B the law of syllogism, 4 and 5
7. 233B → 32233B the substitution to the version of (T∗): A/(33B)
8. 32233B → 323B the axiom (T∗) and monotonicity rules
9. 233B → 323B the law of syllogism, 7 and 8
10. 323A ∨ 233B → 323A ∨ 323B

the substitution of (A → B) → ((C ∨ A) → (C ∨ B)), (MP) and 9
11. 223(A ∨ B) → 323A ∨ 323B the law of syllogism, 6 and 10
12. 323A ∨ 323B → 3(23A ∨ 23B) t3
13. 223(A ∨ B) → 3(23A ∨ 23B) the law of syllogism, 11 and 12
14. 3(23(A ∨ B) → (23A ∨ 23B)) 13 and t5
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Ad (DN2)

1. (23A → 3B) → {(23C → 3B) → [(23(A ∨ C) → (23A ∨ 23C)) →
→ (23(A ∨ C) → 3B)]} the substitution of

(A → B) → {[(C → B) → ((D → A ∨ C) → (D → B))}
2. 23(3A → B) → 3(3A → B) the axiom (D∗): A/(3A → B)
3. 2(23A → 3B) → (23A → 3B) 2 and t5
4. 23(3C → B) → 3(3C → B) the axiom (D∗): A/(3C → B)
5. 2(23C → 3B) → (23C → 3B) 4 and t5
6. 2(23A → 3B) → {2(23C → 3B) →

→ [(23(A ∨ C) → (23A ∨ 23C)) → (23(A ∨ C) → 3B)]}
the commutativity rule, the law of syllogism, 5, 3 and 1

7. (23(A ∨ C) → (23A ∨ 23C)) →
→ {2(23A → 3B) → [2(23C → 3B) → (23(A ∨ C) → 3B)]}

the commutativity rule and 6
8. 3(23(A ∨ C) → (23A ∨ 23C)) →

→ 3{2(23A → 3B) → [2(23C → 3B) → (23(A ∨ C) → 3B)]}
monotonicity rule and 7

9. 3{2(23A → 3B) → [2(23C → 3B) → (23(A ∨ C) → 3B)]}
(MP), 8 and (DN1)

10. 3[23(3A → B) → [23(3C → B) → 3(3(A ∨ C) → B)]]
9, laws of extensionality and t5

11. 33[3(3A → B) → [3(3C → B) → (3(A ∨ C) → B)]]
10, extensionality and t5

12. 233[3(3A → B) → [3(3C → B) → (3(A ∨ C) → B)]]
11 and (RG)

13. 3[3(3A → B) → [3(3C → B) → (3(A ∨ C) → B)]]
the axiom (T∗), 12 and (MP)

Ad (DN3) We will prove an auxiliary theorem:

(DN3′) 23(3A ∨ A) → 3A

1. 3[3(33A → A) → (3(3A → A) → (3(3A ∨ A) → A))]
the substitution of (DN2): A/3A, B/A and C/A

2. 2(233A → 3A) → [2(23A → 3A) → (23(3A ∨ A) → 3A)]
1, extensionality and t5

3. 2(233A → 3A) (T∗) and (RG)
4. 2(23A → 3A) (D∗) and (RG)
5. 23(3A ∨ A) → 3A (MP), 2, 3 and 4
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Using the rule of contraposition to (DN3′), where ∼A is substituted for A
we get: ∼3∼A → ∼23(3∼A ∨ ∼A). (DN3) is arising by the condition
(1), via de Morgan’s law:

6. 23(3¬A ∨ ¬A) → 3¬A contraposition of the substitution of (DN3′)
7. 2A → 32(2A ∧ A) 6, contraposition, de Morgan’s law and (1)

Ad (DN4)

1. (2A ∨ A) → (3A ∨ A) the axiom D and addition of a new
disjunct to arguments of an implication

2. 23(2A ∨ A) → 23(3A ∨ A) 1 and the monotonicity rules
3. 23(3A ∨ A) → 3A (DN3′)
4. 23(2A ∨ A) → 3A the law of syllogism, 2 and 3

Theorem 7. The minimal normal logic, which contains axioms 3(Ax1)d–
3(Ax13)d, closed with respect to the rule:

3A 3(3A → B)

3B

is the logic KD
∗
T

∗, i.e., KD
∗
T

∗ = J(CLuN)

Proof. Firstly, we will show that each of axioms Axd1–Axd13 is provable
in KD

∗
T

∗.
Ad Axd1.

1. 23A → 3A (D∗)
2. 23B → (23A → 3A) 1 and the classical logic
3. 23A → (23B → 3A) 2 and the commutativity law
4. 3(3A → (3B → A)) 3, t5 and extensionality rule

Ad Axd2. Let us start with the observation, that in the considered logic
the following theorem is provable:

(DN4′) 23(23A ∨ A) → 3A

Indeed:

1. 23A → 3A (D∗)
2. 23A ∨ A → 3A ∨ A 1 and the addition of a new

disjunct to arguments of an implication
3. 23(23A ∨ A) → 23(3A ∨ A) 2, monotonicity rules
4. 23(3A ∨ A) → 3A (DN3′)
5. 23(23A ∨ A) → 3A 3, 4 and the law of syllogism
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Using (DN4′) we prove Axd2.

1. ((23A ∧ ∼3B) ∨ A) → (23A ∨ A) the law of absorption and the
addition of a new disjunct to arguments of an implication

2. 23((23A ∧ ∼3B) ∨ A) → 23(23A ∨ A) 1 and monotonicity rules
3. 23((23A ∧ ∼3B) ∨ A) → 3A 2, (DN4′)

and the law of the syllogism
4. 3[3((23A ∧ ∼3B) ∨ A) → A] 3 and t5
5. 3[3(∼(23A ∧ ∼3B) → A) → A] 4, extensionality

and the disjunctive syllogism
6. 3[3((23A → 3B) → A) → A] 5, extensionality

and the law of negation of ‘→’
7. 3[3(3(3A → B) → A) → A] 6 and t5

Ad Axd3.

1. (23A ∧ 2∼C) → 2(3A ∧ ∼C) the regularity condition t2
2. (2(23A → 3B) ∧ (23A ∧ 2∼C)) → (2(23A → 3B) ∧ 2(3A ∧∼C))

1 and the the addition of a new conjunct to arguments of an implication
3. (2(23A → 3B) ∧ 2(3A ∧ ∼C)) → 2((23A → 3B) ∧ (3A ∧∼C))

t2
4. (2(23A → 3B) ∧ (23A ∧ 2∼C)) →

→ 2((23A → 3B) ∧ (3A ∧ ∼C)) the law of syllogism, 2. and 3.
5. 2((23A → 3B) ∧ (3A ∧ ∼C)) → 32[2((23A → 3B) ∧ (3A ∧ ∼C))

∧ ((23A → 3B) ∧ (3A ∧ ∼C))]
(DN3): A/[(23A → 3B) ∧ (3A ∧ ∼C)]

6. 2((23A → 3B) ∧ (3A ∧ ∼C)) → 23A the absorption law
and the monotonicity rule

7. [2((23A → 3B) ∧ (3A ∧ ∼C)) ∧ ((23A → 3B) ∧ (3A ∧∼C))] →
→ [23A ∧ ((23A → 3B) ∧ (3A ∧∼C))] 6 and the the addition

of a new conjunct to arguments of an implication
8. 32[2((23A → 3B) ∧ (3A ∧ ∼C)) ∧ ((23A → 3B) ∧ (3A ∧∼C))]→

→ 32[23A ∧ ((23A → 3B) ∧ (3A ∧∼C))]
7 and the monotonicity rules

9. 23A ∧ (23A → 3B) → 3B the substitution
of the principle of detachment

10. [23A ∧ ((23A → 3B) ∧ (3A ∧ ∼C))] → (3A ∧ (3B ∧ ∼C))
9 and the the addition of a new conjunct to arguments of an

implication, and laws of associativity and commutativity of conjunction
11. 32[23A ∧ ((23A → 3B) ∧ (3A ∧ ∼C))] → 32[3A ∧ (3B ∧ ∼C)]
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10 and the monotonicity rules
12. 32[3A ∧ (3B ∧∼C)] → 3[23A ∧ (23B ∧ 2∼C)]

extensionality and regularity
13. (2(23A → 3B) ∧ (23A ∧ 2∼C)) → 3(23A ∧ (23B ∧ 2∼C))

the law of syllogism 4, 5, 8, 11 and 12
14. ∼3(23A ∧ (23B ∧ 2∼C)) → ∼[2(23A → 3B) ∧ (23A ∧ 2∼C)]

13, contraposition
15. 2[23A → (23B → 3C)] → [2(23A → 3B) → (23A → 3C)]

14, the law of negation of ‘→’
and condition (1)

16. 2[23A → 3(3B → C)] → [23(3A → B) → 3(3A → C)]
15 and t5

17. 3[3(3A → (3B → C)) → (3(3A → B) → (3A → C))]
16 and t5

Ad Axd4.

1. A ∧ 3B → A the absorption law
2. 23(A ∧ 3B) → 23A 1 and monotonicity rules
3. 23A → 3A (D∗)
4. 23(A ∧ 3B) → 3A the law of syllogism, 2 and 3
5. 3(3(A ∧ 3B) → A) 4 and t5

Ad Axd5.

1. A ∧ 3B → 3B the absorption law
2. 23(A ∧ 3B) → 233B 1 and monotonicity rules
3. 233B → 3B (T∗)
4. 23(A ∧ 3B) → 3B the law of syllogism, 2 and 3
5. 3(3(A ∧ 3B) → B) 4 and t5

Ad Axd6.

1. A → (3B → A ∧ 3B) the law of adjunction
2. 3A → 3(3B → A ∧ 3B) 1 and the monotonicity rule
3. 23A → 3A (D∗)
4. 23A → 3(3B → A ∧ 3B) the law of syllogism, 3 and 2
5. 3(3A → (3B → A ∧ 3B)) 4 and t5

Ad Axd7.

1. 3A → 3(A ∨ B) the absorption law and the monotonicity rule
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2. 23A → 3A (D∗)
3. 23A → 3(A ∨ B) the law of syllogism, 2 and 1
4. 3(3A → A ∨ B) 3 and t5

Ad Axd8. I.e., 3(3B → A ∨ B). The proof is analogous.
Ad Axd9. I.e., 3[3(3A → B) → (3(3C → B) → (3(A ∨ C) → B))].

This is just the formula (DN2) from Lemma DN1.

Ad Axd10.

1. 3[3((3A → B) ∧ 3(3B → A)) → (3A → B)]
Axd4, A/(3A → B), B/(3B → A)

Ad Axd11.

1. 3[3((3A → B) ∧ 3(3B → A)) → (3B → A)]
Axd5, A/(3A → B), B/(3B → A)

Ad Axd12.

1. 3[3(3A → B) → [3(3B → A) → ((3A → B) ∧ 3(3B → A))]]
Axd6, A/(3A → B), B/(3B → A)

Ad Axd13.

1. 23(2∼A ∨∼A) → 3∼A (DN4): A/∼A
2. 23(∼2∼A → ∼A) → 3∼A the disjunctive syllogism

and the extensionality
3. 3(3(3A → ∼A) → ∼A) t5 and the condition (1)

Let us assume that 3A ∈ KD
∗
T

∗ and 3(3A → A) ∈ KD
∗
T

∗. By (RG)
and t5 we have that 23A ∈ KD

∗
T

∗ and 23A → 3A ∈ KD
∗
T

∗. So, by
(MP) we have 3A ∈ KD

∗
T

∗.
In the opposite direction, it is easy to see that axioms (D∗) and (T∗)

cannot be omitted by postulated minimality — indeed these axioms are just
appropriate substitutions of some the axioms Axd1–Axd13:

Ad T∗.

1. 3(3(3A ∧ 3A) → A) the substitution of Axd5: A/3A and B/A
2. 3(33A → A) 1, idempotency and extensionality
3. 233A → 3A 2 and t5

Ad D∗.

1. 3(3A → (3A → A)) the substitution of Axd1: B/A
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2. 3(3A → A) 1, the substitution of (A → (A → B)) ↔ (A → B)
and extensionality

3. 23A → 3A 2 and t5

Lemma 8. The axiom (T∗) is equivalent to the formula 2A → 322A.

Proof. obvious: contraposition of the substitution of (T∗): A/∼A and the
condition (1).

Lemma 9. The axiom (D∗) is equivalent to the formula 2A → 32A.

Proof. is analogous to the previous one.

Let us recall:

Theorem 10 (Furmanowski [7]). 3S4 = 3S5.

The following logic is formulated by Perzanowski ([14]).

Definition 11. S5M is the normal logic defined with the help of following
axioms:

2A → 3A(D)

32(32A → 2A)(M5)

32(2A → A)(MT)

with the additional rule

(RT∗)
33A

3A

Theorem 10 follows from the stronger theorem:

Theorem 12 (Perzanowski [14]). S5M is the minimal normal logic for which
the set of all its theorems which start with ‘3’ is equal to 3S5.

We’ll prove this theorem, simplifying Perzanowski’s axioms. Let us notice
that in [14] Perzanowski gave the general method of axiomatization of M -
fragments of normal logics, not only of S5.

Firstly we show that Perzanowski’s system is equivalent the system in-
troduced in Lemma 6. The theorem by Dziobiak is presented here with the
full proof:

Theorem 13 (Dziobiak [4]). S5M = KD
∗
T

∗
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Proof. We show that using given axiomatization one can prove specific
axioms and the rule of the logic S5M. Let us notice that:

Ad (MT)

1. ∼32(2A → A) → 23(2A ∧ ∼A)
the law of negation of ‘→’ and the condition (1)

2. 3(2A ∧ ∼A) → 32A ∧ 3∼A t6: A/2A,B/∼A
3. 23(2A ∧∼A) → 2(32A ∧ 3∼A) 2 and the monotonicity rule
4. 2(32A ∧ 3∼A) → ∼3(32A → 2A) the law of negation of ‘→’

and condition (1)
5. ∼32(2A → A) → ∼3(32A → 2A) the law of syllogism

and 1, 3 and 4
6. 3(32A → 2A) → 32(2A → A the contraposition of 5
7. 232A → 32A (D∗): A/2A
8. (232A → 32A) → 3(32A → 2A) t5
9. 32(2A → A) 2 × (MP), 7, 8 and 6

Ad (M5)

1. ∼332(32A → 2A) → 223(32A ∧ ∼2A) the law of negation
of ‘→’ and condition (1)

2. 223(32A ∧∼2A) → (22332A ∧∼3322A) t6: A/(32A),
B/(∼2A), the monotonicity rule and condition (1)

3. (22332A ∧∼3322A) → ∼(22332A → 3322A)
the law of negation of ‘→’

4. ∼332(32A → 2A) → ∼(22332A → 3322A) the law
of syllogism, 1, 2 and 3

5 (∼332(32A → 2A) → ∼(22332A → 3322A)) →
→ ((22332A → 3322A) → 332(32A → 2A))

the law of contraposition
6. (22332A → 3322A) → 332(32A → 2A) (MP), 4 and 5
7. 2332A → 32A (T∗): A/2A
8. 22332A → 232A 7 and the monotonicity rule
9. 232A → 32A D∗: A/2A
10. 22332A → 32A the law of syllogism, 8 and 9
11. 2A → 322A the equivalent version of (T∗)
12. 32A → 3322A 11 and monotonicity rule
13. 22332A → 3322A the law of syllogism, 10 and 12
14. 332(32A → 2A) (MP), 13 and 6
15. 2332(32A → 2A) 14 and Gödel’s rule
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16 Marek Nasieniewski

16. 2332(32A → 2A) → 32(32A → 2A) (T∗): A/(2(32A → 2A))
17. 32(32A → 2A) (MP), 15 and 16

It is easy to see that the rule (RT∗) is provable:

1. 33A assumption
2. 233A Gödel’s rule
3. 233A → 3A (T∗)
4. 3A (MP), 2 and 3

In the opposite direction we show that the formulas (T∗) and (D∗) belong
to S5M. Indeed we have:

1. 2(23A → 3A) → 3(23A → 3A) (D): A/(23A → 3A)
2. 32(23A → 3A) → 33(23A → 3A) the monotonicity rule and 1
3. 32(23A → 3A) (MT): A/3A
4. 33(23A → 3A) (MP), 2 and 3
5. 3(23A → 3A) (RT∗) and 4
6. 3(23A → 3A) → 33(3A → A) t5 and monotonicity rule
7. 33(3A → A) (MP), 5 and 6
8. 3(3A → A) (RT∗) and 7
9. 3(3A → A) → (23A → 3A) t5
10. 23A → 3A (MP), 8 and 9

In the proof of the schema (T∗) we use the schema (D∗).

1. 233A → 33A (D∗): A/3A
2. 2233A → 233A the monotonicity rule and 1
3. 2233A → 33A the law of syllogism, 2 and 1
4. (2233A → 33A) → 3(233A → 3A) t5
5. 3(233A → 3A) → 33(33A → A) t5 and the monotonicity rule
6. 33(33A → A) 2 × (MP), 3, 4 and 5
7. 3(33A → A) the rule (RT∗) and 6
8. 3(33A → A) → (233A → 3A) t5
9. 233A → 3A (MP), 7 and 8

Proof of Theorem 12. Let 3A ∈ S5. There exists a S5-proof: D1, . . . ,
Dn = 3A. Let us consider a sequence of formulas 32D1,. . . , 32Dn =
323A. We show the construction of the S5M-proof of the formula 323A.
The proof goes by induction on 1 6 i 6 n. By the induction hypothesis, for
each k < i there exists in the sense of the logic S5M a proof of the formula
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32Dk. We show how to construct an analogous sequence for 32Di. If in
the given sequence the formula Di is either the axiom (T) or (5), then in
both cases 32Di is also provable as an axiom of the logic S5M. If on the
other hand Di is either the axiom (K) or a classical theorem, then 32Di can
be easily also proved in the sense of S5M: we use Gödel’s rule twice with Di

obtaining in this way the antecedent of the substitution of the axiom (D):
22Di → 32Di. The consequent of this substitution is the required formula.
If, however, Di is of the form 2Dj , for some j < i, then by the induction
hypothesis for j there exists in S5M a proof of formula 32Dj . By Lemma 8
and the monotonicity rule the given be the induction hypothesis sequence
we can extend with steps k + 1–k + 4:

k. ⊢S5M
32Dj by the induction hypothesis

k+1. 2Dn → 322Dj the version of T ∗: A/(Dj) – Lemma 8
k+2. 32Dj → 3322Dj k+1 and the monotonicity rule
k+3. 23322Dj (MP), k, k+2 and (RG)
k+4. 322Dj (T∗): A/(22Dj), (MP) and k+3

Let us consider the case that in the initial proof Di arises by the rule
(MP), i.e., ∃m,j<iDm = Dj → Di, therefore by the induction hypothesis we
have ⊢S5M

32Dj and ⊢S5M
32(Dj → Di). We associate the appropriate

sequences, adding the following steps:

l. ⊢S5M
32Dj by the induction hypothesis

l+k. ⊢S5M
32(Dj → Di) by the induction hypothesis

l+k+1. 2(Dj → Di) → 322(Dj → Di)
the version of (T∗): A/(Dj → Di)

l+k+2. 32(Dj → Di) → 3322(Dj → Di)
l+k+1 and the monotonicity rule

l+k+3. 3322(Dj → Di) (MP), l+k and l+k+2
l+k+4. 2232Dj → 3332Di the axiom (K) and t1, t5
l+k+5. 2232Dj 2 × (RG) and l.
l+k+6. 3332Di (MP) and l+k+4, l+k+5
l+k+7. 23332Di (RG) and l+k+6
l+k+8. 23332Di → 332Di the axiom (T∗): A/(32Di)
l+k+9. 332Di (MP), l+k+7 and l+k+8
l+k+10. 2332Di (RG) and l+k+9
l+k+11. 2332Di → 32Di the axiom (T∗): A/(2Di)
l+k+12. 32Di (MP), l+k+10 and l+k+11
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18 Marek Nasieniewski

which ends the inductive proof. So, for i = n we have ⊢S5M
323A. By

the axiom (D∗), the provable in S5M rule of monotonicity and (MP) we
have: ⊢S5M

33A, while by Gödel’s rule, with the help of the axiom (T∗) we
conclude that ⊢S5M

3A. Since all our axioms belongs to the M -fragment of
S5, so the postulated minimality S5M is stated.

3.1. Semantics of the logic S5M

Now we give conditions for frames which establish the completeness result
for the logic under consideration. We’ll use Theorem 13 and the following
observations semantically characterizing logic KD

∗
T

∗.

Theorem 14. A formula is valid in all frames satisfying the condition

(>) ∀w∃w(wRw ∧ ∀w′(wRw′ → wRw′))

iff it is provable in the logic K extended with (D∗), i.e., in K[D∗] (= D
∗).

Proof. “⇐” Using the standard procedure, via Lemma 34 from p. 26 it is
enough to show that the axiom (D∗) is valid in each frame satisfying the
given condition. We assume to the contrary, that there is a frame satisfying
the condition (>), where the formula (D∗) is not valid, so there is a world w
and some valuation v, that w 6|=v (D∗), i.e., w |=v 23p and w 6|=v 3p. By
the definition of the notion of the truth at a world for ‘3’ we have w 6|=v p
for all worlds w, where wRw; in particular, we have w′ 6|=v p for the world
w′ postulated in the condition (>). By the assumption and the definition of
truth for ‘2’, we see that w′ |=v 3p, thus there is w′′, that w′Rw′′ and w′′ |=v

p, however by (>) we obtain wRw′′, i.e., w |=v 3p which is a contradiction.
“⇒” Let us consider the canonical model of the logic D

∗.
Firstly we show that for each world w, the set {A : 2A ∈ w} ∪ {2A :

2A ∈ w} is consistent with respect to D
∗. Assume otherwise, i.e., there are

formulas 2A1, . . . ,2An,2A′

1
, . . . ,2A′

m,∈ w that ⊢D∗ ¬(A1∧· · ·∧An∧2A′

1
∧

· · · ∧2A′

m). By classical logic we have ⊢D∗ A1 ∧ · · · ∧An ∧A′

1
∧ · · · ∧A′

m →
A1∧· · ·∧An, and on the basis of the logic K using t2 and obvious induction we
get ⊢D∗ 2(A1∧· · ·∧An∧A′

1
∧· · ·∧A′

m) → (2A1∧· · ·∧2An∧2A′

1
∧· · ·∧2A′

m),
while using the absorption law for conjunction we obtain ⊢D∗ 2(A1∧· · ·∧An∧
A′

1
∧· · ·∧A′

m) → (2A′

1
∧· · ·∧2A′

m). Let us denote A1∧· · ·∧An∧A′

1
∧· · ·∧A′

m

as A. Our observations can be written as follows: ⊢D∗ A → A1 ∧ · · · ∧ An

and ⊢D∗ 2A → (2A′

1
∧ · · · ∧ 2A′

m).
Apparently 2A ∈ w; by the law of adjunction of implications we have:

⊢D∗ A ∧ 2A → A1 ∧ · · · ∧ An ∧ (2A′

1
∧ · · · ∧ 2A′

m), and via the law of
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contraposition ⊢D∗ ¬[A1 ∧ · · · ∧ An ∧ (2A′

1
∧ · · · ∧ 2A′

m)] → ¬(A ∧ 2A).
Therefore, by the assumption and Modus Ponens, we have: ⊢D∗ ¬(A∧2A),
equivalently ⊢D∗ 2A → ¬A. By Gödel’s rule and t1 we conclude ⊢D∗

32A → ¬2A. Using Lemma 9 and the law of syllogism we get ⊢D∗ 2A →
¬2A, i.e., ¬2A ∈ w, therefore 2A 6∈ w. However 2A ∈ w, which is a
contradiction.

We are ready to prove that the accessibility relation R of the canonical
model fulfills the condition (>). Since the set W = {A : 2A ∈ w} ∪ {2A :
2A ∈ w} is consistent with respect to D

∗, there is thus a maximally consis-
tent set w′ containing W, by the definition of the accessibility relation in the
canonical model we state that wRw′. Indeed, if 2A ∈ w, then A ∈ W ⊆ w′.
Let w′′ be any set that w′Rw′′. We prove that wRw′′. Let us assume that
2B ∈ w. By the definition of w′ clearly 2B ∈ w′, but since w′Rw′′, so
B ∈ w′′.

Thus the canonical model of the logic D
∗ belongs to the class of models

fulfilling (>), then if some formula is valid in all frames satisfying the con-
dition (>), it is also valid in the canonical model, but by Lemma 36 each
formula valid in the canonical model, is provable in D

∗.

Theorem 15. A formula is valid in all frames fulfilling the condition

(⊛) ∀w∃w(wRw ∧ ∀w′∀w′′(wRw′ ∧ w′Rw′′ → wRw′′))

iff it is provable in the logic K with the axiom T ∗, i.e., in K[T∗] (= T
∗).

Proof. “⇐” We prove the the axiom T ∗ is valid in each frame fulfilling the
given condition.

Assume to the contrary that there exists a frame fulfilling the condition
(⊛), in which the formula T ∗ is refuted. Then there is a world w and valuation
v, that w 6|=v T ∗, i.e., w |=v 233p and w 6|=v 3p. The last condition via

the definition of truth says that w 6|=v p for all possible worlds w, such that
wRw, i.e., we also have w 6|=v p for w, which is postulated by (⊛). By the
assumption w |=v 233p and the conditions of truth for ‘2’ for ‘3’ there are
worlds w′ and w′′, that wRw′, w′Rw′′ and w′′ |=v p, then by the condition
(⊛) we get wRw′′, i.e., w |=v 3p which is a contradiction.

“⇒” We follow the proof of the previous theorem. Let us consider the
canonical model of the logic T

∗. We prove the canonical frame satisfies (⊛).
Let us start with the observation that for each possible world w, the set
of formulas {A : 2A ∈ w} ∪ {22A : 2A ∈ w} is T

∗-consistent. Assume
otherwise, i.e., there are formulas 2A1, . . . ,2An,2A′

1
, . . . ,2A′

m ∈ w that
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⊢T∗ ¬(A1 ∧ · · · ∧ An ∧ 22A′

1
∧ · · · ∧ 22A′

m). By the law of absorption
we have ⊢T∗ A1 ∧ · · · ∧ An ∧ A′

1
∧ · · · ∧ A′

m → A1 ∧ · · · ∧ An, while on
the basis of K, and via t2 we get 22(A1 ∧ · · · ∧ An ∧ A′

1
∧ · · · ∧ A′

m) →
(22A1∧· · ·∧22An∧22A′

1
∧· · ·∧22A′

m), thus once more using the law of
absorption for conjunction we see that ⊢K 22(A1∧· · ·∧An∧A′

1
∧· · ·∧A′

m) →
(22A′

1
∧· · ·∧22A′

m). If we denote the formula A1∧· · ·∧An∧A′

1
∧· · ·∧A′

m

by A, then the above observations can be written: ⊢T∗ A → A1 ∧ · · · ∧
An and ⊢T∗ 22A → (22A′

1
∧ · · · ∧ 22A′

m). Clearly 2A ∈ w, indeed
since 2A1, . . . ,2An,2A′

1
, . . . ,2A′

m ∈ w, thus via the law of adjunction also
2A1 ∧ · · · ∧ 2An ∧ 2A′

1
∧ · · · ∧ 2A′

m ∈ w. In K we have 2A1 ∧ · · · ∧ 2An ∧
2A′

1
∧ · · · ∧ 2A′

m → 2(A1 ∧ · · · ∧An ∧A′

1
∧ · · · ∧A′

m), so 2(A1 ∧ · · · ∧An ∧
A′

1
∧ · · · ∧ A′

m) ∈ w; and using the law of addition of implications we state:
A∧22A → A1∧· · ·∧An∧(22A′

1
∧· · ·∧22A′

m), by the contraposition law and
the assumption we have: ⊢T∗ ¬(A ∧ 22A), equivalently ⊢T∗ 22A → ¬A.
By Gödel’s rule and t1 we deduce that ⊢T∗ 322A → ¬2A. By Lemma 8 we
have ⊢T∗ 2A → 322A, and by the law of syllogism we get ⊢T∗ 2A → ¬2A,
i.e., ¬2A ∈ w, contrary to the earlier observation.

We show that canonical frame of the logic T
∗ satisfies the condition (⊛).

The set {A : 2A ∈ w} ∪ {22A : 2A ∈ w} is consistent with respect to T
∗,

so it is contained in a maximally consistent set. Let us denote it by w. By
the definition of the accessibility relation in the canonical frame we get wRw.
Let w′, w′′ be any possible world such that wRw′ and w′Rw′′. We show that
wRw′′. Let us assume that 2B ∈ w, by the definition of the world w we see
that 22B ∈ w, by via the assumption about w′ and w′′ we get 2B ∈ w′

and B ∈ w′′, since B was any formula, we have wRw′′. The rest of the proof
follows in the standard way, as in the previous theorem.

The above semantical conditions express a kind of weaker version of the
condition of transitivity of the relation R. Therefore obviously these theo-
rems can be generalized:

Theorem 16. A formula is valid in all frames fulfilling the condition

∀w∃w(wRw ∧ ∀w1
∀w2

(wRw1 ∧ w1Rw2 ∧ . . . wn−1Rwn → wRwn))

iff it is provable in logic K with the axiom 23 . . . 3
︸ ︷︷ ︸

n

A → 3A.

Proof. It is analogous.

There follows an easily-provable corollary:
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Corollary 17. Formulas (T∗) and (D∗) are independent on the basis of K.

Proof. We point out a model whose frame fulfills (>) but does not fulfill
the condition (⊛).

W := {w,w1, w2, w3}, the relation R between possible worlds is indicated
with arrows, which ends in the second argument of an ordered pair. One can
easily see that in the world w formula 233p → 3p is not satisfied, while
formula D∗ is true in the model.

RY RY RYjjj R

v(233p → 3p) = 0
v(233p) = 1
v(3p) = 0
v(23p) = 0

w w1 w2 w3

v(p) = 0
v(3p) = 0

v(33p) = 1
v(23p) = 0

v(p) = 0
v(3p) = 1
v(33p) = 1

v(p) = 1
v(3p) = 1

Now let us consider a model which for which the condition (⊛) is satisfied,
and the condition (>) is not satisfied. Let W = {w,w1, w2, w3}. In each
world the formula (T∗) is satisfied, while the formula D∗ is not satisfied in
the world w.

R R R
w w1 w2 w3

v(23p → 3p) = 0
v(23p) = 1
v(3p) = 0
v(233p) = 0

v(p) = 0
v(3p) = 1

v(33p) = 0

v(p) = 1
v(3p) = 0
v(233p) = 0

v(p) = 0
v(3p) = 1

v(33p) = 0

R
I
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Appendix: Preliminaries in modal logic

Syntax

By a logic we mean any set of formulas, which is closed under the substitution
rule and the consequence relation.

We recall standard notions concerning modal logics. The language of a
modal logic arises by enriching the standard propositional language with the
unary logical constant ‘3’ (so called possibility) or ‘2’ (necessity), which are
inter-definable by the following condition:

(1) 3A ↔ ∼2∼A.

We say that ‘3’ and ‘2’ are dual connectives.
By the logic K we mean the smallest modal logic containing the classical

logic, the Kripke axiom

(K) 2(A → B) → (2A → 2B),

closed under rules of Modus Ponens (MP) and the Gödel’s rule:

(RG)
A

2A

A normal modal logic is a set of formulas which contains K and is closed
under the same as K rules.

By the logic D we mean the minimal normal logic which contains the
axiom3:

(D) 2A → 3A

The logic T is the normal modal logic obtained by adding to K, the
axiom:

(T) 2A → A or equivalently A → 3A

The logic S4 is the normal modal logic defined by adding to T, the axiom

(4) 33A → 3A or equivalently 2A → 22A.

The logic S5 is the normal modal logic defined by adding to T, the axiom

(5) 32A → 2A or equivalently 3A → 23A.

3 We say that this normal logic is defined by adding to K the axiom (D∗).
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The logic Triv is the normal modal logic defined by adding to D, the
axiom

(Triv) A → 2A or equivalently 3A → A.

For each of those logics one can define a consequence relation allowing (MP)
to be the only rule of inference. For example we have:

Definition 18. We say that a given formula A is S5-provable on the basis
of X (notation: X ⊢S5 A) iff there is a sequence of formulas C1, . . . , Cn = A,
where for each 1 6 i 6 n: Ci ∈ X either Ci is a theorem of S5, or arises by
(MP) from earlier formulas in the that sequence,4

Let us recall some well-known theorems and rules provable in normal
modal logics which will be needed in the sequel.

Lemma 19. The following rule are provable in all normal logics

1. The monotonicity rule:
A → B

2A → 2B
,

2. The dual form of the monotonicity rule: :
A → B

3A → 3B
,

3. The extensionality:
A ↔ B

2A ↔ 2B
,

4. The dual form of extensionality:
A ↔ B

3A ↔ 3B
.

Lemma 20. The following formulas are theorems in all normal logics

2(A → B) → (3A → 3B),(t1)

Regularity: 2(A ∧ B) ↔ (2A ∧ 2B),(t2)

The dual form of the regularity: 3(A ∨ B) ↔ (3A ∨ 3B)(t3)

2(A ∨ B) → (2A ∨ 3B),2(A ∨ B) → (3A ∨ 2B),(t4)

3(A → B) ↔ (2A → 3B),(t5)

3(A ∧ B) → (3A ∧ 3B),(t6)

3A ∧ 2B → 3(A ∧ B),(t7)

2A ↔ ¬3¬A(t8)

⊥ can be defined as the abbreviation of: p ∧ ∼ p (or any other contr-
tautology).

4 Notice that we do not use Gödel’s rule here.

© 2001 by Nicolaus Copernicus University



24 Marek Nasieniewski

Lemma 21. ⊢K 3⊥ ↔ ⊥

Proof.

1. ⊥ → 3⊥ by the classical logic ⊥ → A
2. ∼⊥ by the classical logic
3. 2∼⊥ 2 and (RG)
4. ∼⊥ → 2∼⊥ 3 and weakening
5. ∼2∼⊥ → ∼∼⊥ 4 and the law of contraposition
6. 3⊥ → ⊥ 5, (1) and the law of double negation

Lemma 22. ⊢S5 33A → 3A, i.e., (S5) ⊢ (4).

Proof.

1. 3A → 23A the equivalent version of 5
2. 33A → 323A Lemma 2
3. 323A → 23A the substitution of the axiom (5): A/3A
4. 23A → 3A the instance of (T): A/3A
5. 33A → 3A the law of syllogism and 2, 3, 4

Lemma 23. ⊢S5 3(3A → B) ↔ (3A → 3B)

Proof. follows from two above theorems: ⊢K 3(3A → B) ↔ (23A →
3B) and ⊢S5 (23A → 3B) ↔ (3A → 3B).

Lemma 24. ⊢S5 3(A ∧ 3B) ↔ (3A ∧ 3B).

Proof. “⇒” By t6 we have ⊢K 3(A ∧ 3B) → 3A ∧ 33B. And by
Lemma 22 we obtain ⊢S5 3A ∧ 33B → 3A ∧ 3B.

“⇐” Using classical logic and S5 we have ⊢S5 (3A∧3B) → (3A∧23B),
and substituting 3B for B in the formula t7 we see that ⊢K 3A ∧ 23B →
3(A ∧ 3B).

Let us introduce the following notation:

For any modal logic P , we define the set 3P := {3A : 3A ∈ P } which
is called the M -fragment of the logic P .

For any modal logic P , let M(P) := {A ∈ Form : 3A ∈ P }, where Form

is the set of all modal formulas. The set M(P ) is called M-analogon of the
logic P .
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Semantics

In this section we present the Kripke semantics for modal logics. Once more
we start with some standard definitions, which will be used later.

Definition 25. A relational frame (in shortage a frame) is a pair 〈W,R〉
consisting of nonempty set W , and a binary relation R on W . Elements of
the set W we call the points of the frame, while R is the accessibility relation.

Definition 26. A valuation is any function v : Var −→ 2W .

Definition 27. A model is a triple 〈W,R, v〉, where 〈W,R〉 is a frame and
v is a valuation. We say that 〈W,R, v〉 is based on the frame 〈W,R〉.

Definition 28. A formula A is true in the point w ∈ W under the valuation
v (notation: w |=v A) iff

1. if A is a propositional letter p, then:

w |=v p ⇔ w ∈ v(p).

2. if A is of the form ¬B, for some formula B, then:

w |=v ¬B ⇔ it is not the case that w |=v B (as abbreviation we use
w 6|=v B).

3. if A is of the form B ∧ C, for some formulas B and C, then

w |=v B ∧ C ⇔ w |=v B and w |=v C.

4. if A is of the form B ∨ C, for some formulas B and C, then

w |=v B ∨ C ⇔ w |=v B or w |=v C.

5. if A is of the form B → C, for some formulas B and C, then

w |=v B → C ⇔ w 6|=v B or w |=v C.

6. if A is of the form B ↔ C, for some formulas B and C, then

w |=v B ↔ C ⇔ (w |=v B and w |=v C) or (w 6|=v B and w 6|=v C).

7. if A is of the form 3B, for a formula B, then

w |=v 3B ⇔ ∃w′∈W (wRw′ ∧ w′ |=v B).

8. if A is of the form 2B, for a formula B, then

w |=v 2B ⇔ ∀w′∈W (wRw′ ⇒ w′ |=v B).
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Definition 29. A formula A is true in a model M = 〈W,R, v〉 (notation
M |= A) iff w |=v A for each w ∈ W .

Definition 30. A formula A is valid in frame 〈W,R〉 iff it is true in all
models based on 〈W,R〉.

Definition 31. 1. Logic P is complete with respect to the class of frames
C iff (a formula A is a theorem of P iff A is valid in each frame from C.
In that case we say that frames of the class C are P -frames.

2. Any frame in which all theorems of a given modal logic P are valid we
call a frame for P .

Definition 32. A is a S5-consequence of the set X (notation: X |=S5 A)
iff for any model 〈W,R, v〉 with equivalence accessibility-relation and for any
w ∈ W if w |=v X then w |=v A.

Lemma 33. 1. S5-frames are frames with the equivalence accessability-
relation.

2. X ⊢S5 A iff X |=S5 A.

Let us recall the classical:

Lemma 34. (a) The axiom K is valid in any frame.

(b) All classical tautologies are valid in each frame.

(c) The set of all formulas valid in a given frame is closed under Gödel’s
rule, (MP) and substitution.

Definition 35. The set X of formulas is inconsistent with respect to the

modal logic P (or shortly P -inconsistent) iff there are formulas A1, . . . .An ∈
X, such that ⊢P ¬(A1 ∧ · · · ∧ An). The set X is consistent with respect to

the modal logic P (or shortly P -consistent) iff it not P -inconsistent.

We have also:

Lemma 36. All maximally consistent sets with respect to the modal logic
P contain P and are closed under (MP).

Finally let us recall the definition of a compact logic:

Definition 37. A logic P is compact iff for every P -consistent set of for-
mulas X, there is a world w in some model M based on a frame for P , such
that all the formulas in X are true in that world in M .
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Canonical models

Definition 38. Let P be any modal logic.

1. Let W be a class of all maximally consistent sets with respect to P , and
R be a binary relation on W defined as follows: wRw′ ⇔ ∀A(2A ∈ w ⇒
A ∈ w). The canonical frame of the logic P is the pair 〈W,R〉.

2. A canonical model of the logic P is the model 〈W,R, v〉, where 〈W,R〉 is
the canonical frame of the logic P and the following condition is satisfied
for any variable pi:

v(pi) = {w ∈ W : pi ∈ w}.

i.e., w |=v pi ⇔ pi ∈ w.

We have:

Lemma 39. Let 〈W,R, v〉 be a canonical model of the logic P .

(a) For each formula A and w ∈ W the following holds: w |=v A ⇔ A ∈ w.

(b) A formula is true in 〈W,R, v〉 iff it is a theorem of P .

Let us stress that if the notion of truth in the canonical frame instead of
truth in the canonical model were used, the point (b) of the above theorem
would not hold in general. This is why the important notion of canonical
logic is often formulated:

Definition 40. A logic P is canonical iff all theorems of P are valid in the
canonical frame of P , i.e., if the canonical frame of P is a frame for P .
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