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ANNOTATED LOGIC PROGRAMS

AND DEFEASIBLE THEORIES

Abstract. In this paper, we propose an annotated logic program called a
VALPSN (Vector Annotated Logic Program with Strong Negation) to deal
with defeasible reasoning. We propose a translation from Billington’s defea-
sible theory into VALPSN and clarify the relation between them based on
the translation.
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1. Introduction and motivation

We have proposed ALPSN (Annotated Logic Program with Strong Nega-
tion) and shown that it can provide the declarative semantics for default
reasoning and a non-monotonic ATMS [7, 8]. However, ALPSN is not so
appropriate for dealing with defeasible reasoning or decision making. In this
paper, we propose a new version of ALPSN called VALPSN(Vector Anno-
tated Logic Program with Strong Negation) to deal with defeasible reasoning
in a framework of annotated logic programming. In order to clarify the rela-
tion between VALPSN and defeasible reasoning, we also provide translation
rules from Billington’s defeasible theory [2] into VALPSN and show that
there is a correspondence between them as shown in Figure 2.

Annotated logics are a family of paraconsistent logics that were proposed
by da Costa et al. [4, 11] and developed by Blair and Subrahmanian [3] from
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Figure 1. The Lattices T and Tv

the viewpoint of logic programming. We extended the annotated logic pro-
gram to ALPSN aiming for treating nonmonotonic reasoning and showed that
ALPSN has stable model semantics [5]. Generally, each annotated atomic
formula has a truth value called an annotation and the set of annotations
constitutes a complete lattice. One of the most basic complete lattices of
annotations is

T = {⊥ (unknown), f (false), t (true), ⊤ (inconsistent) }

shown in Figure 1 and called Lattice-4.
Generally, annotated logics have two kinds of negations, an epistemic one

and an ontological one. The epistemic negation (¬) for an annotated atom
is defined as a unary function from an annotation to an annotation. For
example, the epistemic negation over T is defined as:

¬(p :f) = p :¬(f) = p :t , ¬(p :t) = p :¬(t) = p :f ,

¬(p :⊥) = p :¬(⊥) = p :⊥ , ¬(p :⊤) = p :¬(⊤) = p :⊤ .

On the other hand, the ontological negation (∼) is a strong negation similar
to classical ones.

We compare ALPSN, VALPSN and Billington’s defeasible logic [2] with
taking a well-known example called Nixon Diamond.

[Nixon Diamond] We have two facts and two normal default rules.

F1 “Nixon is a Quaker” { q(n) },

F2 “Nixon is a Republican” { r(n) },

R1 “If Nixon is a Quaker, then he is a Pacifist” { q(n) :p(n)/p(n) },

R2 “If Nixon is a Republican, then he is not a Pacifist”
{ r(n) :¬p(n)/¬p(n) }.
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Then, they are translated into an ALPSN

P = { q(n) :t, q(n) :t ∧∼ p(n) :f → p(n) :t,

r(n) :t, r(n) :t ∧ ∼ p(n) :t→ p(n) :f },

and the ALPSN P has two stable models, I1 = { q(n) : t, r(n) : t, p(n) : t }
and I2 = { q(n) : t, r(n) : t, ¬p(n) : t }. Intuitively, I1 shows that “Nixon is
a Pacifist” and I2 shows that “Nixon is not a Pacifist”. Clearly, they show
that Nixon Diamond contains a conflict { p(n), ¬p(n) } that may not be
resolved. However, if we introduce a superiority relation between the rules
R1 and R2, the conflict can be resolved. For example, if we assume that
the rule R2 is more convincible than the rule R1 , then we would be able
to obtain a more convincible conclusion, “Nixon is not a Pacifist”. This
kind of inference can be formalized in defeasible logic. The defeasible Nixon
Diamond is called d-Nixon Diamond. It is difficult to formalize d-Nixon
Diamond in ALPSN. In order to overcome such difficulty in the framework
of annotated logic programming, we propose VALPSN, a new version of
ALPSN. The primary difference between ALPSN and VALPSN is in their
annotations. Each annotated literal in VALPSN has a 2-dimensional vector
annotation called a vector annotation. Generally, each component of a vector
annotation is a non-negative integer, and the first component expresses the
strength of true and the second one expresses the strength of false. In this
paper, we assume that the non-negative integer is less than or equal to 2
to formulate Billington’s defeasible theories in VALPSN. Therefore, we need
the following complete lattice Tv of vector annotations shown in Figure 1:

Tv = { (i, j) | 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i and j are non-negative integers }.

For example, a vector annotated literal p : (2, 1) can be informally interpreted
as “p is known to be true of strength 2 and false of strength 1”. Then,
if we consider that “true of strength 2” preempts “false of strength 1”, the
literal p may be intuitively interpreted as relatively true. The ordering �
on the complete lattice Tv of vector annotations is defined as: let #�v 1 =
(x1, y1),

#�v 2 = (x2, y2), and #�v 1,
#�v 2 ∈ Tv,

#�v 1 �
#�v 2 iff x1 ≤ x2 and y1 ≤ y2 .

The epistemic negation (¬) in VALPSN is also defined as a unary function
from a vector annotation to a vector annotation such that ¬p : (i, j) = p : (j, i)
and the strong negation is defined as well as ALPSN. d-Nixon Diamond can
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be formulated as a VALPSN

P = { q(n) :(2, 0), r(n) :(2, 0),

q(n) :(1, 0) ∧ ∼ r(n) :(1, 0) ∧ ∼ p(n) :(0, 1) → p(n) :(1, 0),

r(n) :(1, 0) ∧ ∼ p(n) :(1, 0) → p(n) :(0, 1) }.

VALPSN also has the stable semantics as well as ALPSN and the VALPSN
P has only one stable model, I = { q(n) : (2, 0), r(n) : (2, 0), ¬p(n) : (1, 0) }.
This stable model I can be interpreted that “Nixon is a Quaker” and “Nixon
is a Republican” are facts (q(n) :(2, 0), r(n) :(2, 0)), and “Nixon might not be
a Pacifist” (¬p(n) :(1, 0)).

Defeasible logics are known as nonmonotonic formalisms that can deal
with defeasible reasoning. A defeasible logic was first published by Nute [9].
Since then, some systems of the same kind of defeasible logics have been
developed [1, 2, 10]. We introduce Billington’s defeasible logic in [2], The
defeasible logic has facts and three kinds of rules, a strict rule (A → q), a
defeasible rule (A⇒ q) and a defeater (A q), and a superiority relation >
between those rules to carry out defeasible reasoning. There are two kinds of
provability, definite(strict) provability and defeasible provability, the first one
is the derivability based on facts and strict rules, and the second one is that
based on defeasible reasoning. Let us take d-Nixon Diamond as an example
for Billington’s defeasible theories. It has two facts, F1 and F2, and two
defeasible rules, R1 and R2. It also has a superiority relation, R2 > R1.

F1 q(n), F2 r(n),

R1 q(n)⇒ p(n), R2 r(n)⇒ ¬p(n).

We show an informal interpretation for the defeasible theory d-Nixon Dia-
mond. Since the antecedents q(n) and r(n) of the defeasible rules R1 and
R2 are facts, there is the conflict {p(n),¬p(n)} between the consequents of
those rules. However, as there is the superiority relation R2 > R1 and there
does not exist the fact p(n), the consequent ¬p(n) of the rule R2 can be
derived. We can formalize defeasible reasoning in VALPSN. Rules and facts
are expressed in VALPSN clauses, and superiority relations between rules are
represented by vector annotations. Since the notion of definite provability
can be regarded as having stronger evidence than that of defeasible provabil-
ity, we assume the following correspondence between those provabilities and
the satisfiability for vector annotated literal p.

p is definitely provable ⇐⇒ � p : (2, 0)

p is defeasibly provable ⇐⇒ � p : (1, 0).
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Defeasible Theory
translation

=⇒ VALPSN P

+∆q definitely
provable

� - I � q : (2, 0)

+∂q defeasibly
provable

� - I � q : (1, 0)

I is any stable model of P

Figure 2. The Relation Between Defeasible Theory and VALPSN

Then, we have the relation between Billington’s defeasible theory and
VALPSN based on the translation as shown in Figure 2.

This paper organized as follows. In section 2, we define VALPSN. In
section 3, we review Billington’s defeasible logic in [2]. In section 4, we
provide translation rules from Billington’s defeasible theory into VALPSN.
Then, we prove that there is a correspondence between the provability of the
defeasible logic and the stable model satisfiability for VALPSN.

2. Vector annotated logic program with
strong negation (VALPSN)

In this section, we define the syntax and the stable model semantics for
VALPSN. We assume that the reader is familiar with the usual notions of
ordinary first order logics and logic programming in Lloyd[6].

2.1. Syntax for VALPSN

Generally, the set Tv of vector annotations has an arbitrary, but fixed, com-
plete lattice structure. Throughout this paper we assume that

Tv = { (x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, x and y are integers }.

The ordering on the lattice Tv is denoted by a symbol �.

Definition 2.1. Let #�v 1 = (x1, y1) and #�v 2 = (x2, y2),

#�v 1 �
#�v 2 iff x1 ≤ x2 and y1 ≤ y2 .

VALPSN has two kinds of negation, an epistemic negation (¬) and an onto-

logical negation (∼). The epistemic negation is a unary function from a vector
annotation to a vector annotation and defined as the exchange of each compo-
nent of the vector. Let p be a literal and x, y integers, ¬(p : (x, y)) = p : (y, x).
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Definition 2.2. If A is a literal, then, A : #�v is called a vector annotated lit-

eral, where #�v ∈ Tv and the #�v is called a vector annotation. Vector annotated
formulas are defined recursively.

(1) Any vector annotated literal is a vector annotated formula,

(2) If F1, F2, and F are vector annotated formulas and x is an arbitrary
variable, then, ¬F , F1 ∨F2, F1 ∧F2, F1 → F2, ∀xF , and ∃xF are vector
annotated formulas.

Note. Let p be a literal and #�v a vector annotation. ¬p : #�v means ¬(p : #�v )
rather than (¬p) : #�v and ¬p : #�v is interpreted as p : (¬ #�v ). For instance,
¬p : (2, 1) = p :¬(2, 1) = p : (1, 2). Therefore, we can eliminate all epistemic
negations in VALPSN.

We call shortly the vector annotated formulas as just formulas if it does
not cause confusion in the rest of this paper. The ontological negation is a
strong negation similar to classical ones and defined.

Definition 2.3 (Strong Negation [4]).

∼F
def
= F → ((F → F ) ∧ ¬(F → F )),

where F is an arbitrary formula. ∼ is called strong negation.

Note. The epistemic negation followed by F → F is not interpreted as a
mapping between vector annotations. It is interpreted as a classical negation.

Definition 2.4. Let p be an ordinary literal. p : (m, 0) is called a well vector

annotated literal, where m is a non-negative integer. If L0, . . . , Ln are well
vector annotated literals,

L1 ∧ · · · ∧ Li ∧ ∼Li+1 ∧ · · · ∧ ∼Ln → L0

is called a vector annotated clause with strong negation (vasn-clause, for
short). A finite set of vasn-clauses is called a vector annotated logic program

with strong negation (VALPSN).

We give intuitive interpretations for vector annotated literals before ad-
dressing the formal semantics for VALPSN. Usually, vector annotated literals
can be interpreted epistemically. A vector annotated literal A : (i, j) is in-
terpreted as “A is known to be true of strength i and false of strength j”.
A : (0, 0) is interpreted as “A is known to have no information to support A”.
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2.2. Semantics for VALPSN

We assume that all interpretations of a VALPSN P have a Herbrand base
BP (the set of all variable-free atoms) under consideration as their domain of
interpretation. A Herbrand interpretation can be considered to be a mapping
I : BP → Tv. Usually, I is denoted by the set {p :

⊔
#�v i | I � p : #�v 1 ∧ · · · ∧ p :

#�v n}, where
⊔

#�v i is the least upper bound of { #�v 1, . . . ,
#�v n}. The ordering �

on Tv is extended to interpretations in the natural way. Let I1 and I2 be any
interpretations, and A be an atom.

I1 � I2
def
⇐⇒ (∀A ∈ BP )(I1(A) � I2(A)).

Definition 2.5 (Satisfaction [3]). An interpretation I is said to satisfy

(1) a vector annotated formula F iff it satisfies every closed instance of F ,

(2) a vector annotated atom A : #�v iff I(A) � #�v ,

(3) a vector annotated literal ¬A : #�v iff I(A) � ¬( #�v ),

(4) a vector annotated formula ¬F iff I does not satisfy F , where F is a
compound formula,

(5) the satisfaction of the other formulas, F1 ∧ F2, F1 ∨ F2, F1 → F2, ∀xF ,
and ∃xF are the same as classical logics.

In order to provide the stable model semantics for VALPSN, we define
a function TP from a Herbrand interpretation to a Herbrand interpretation
associated with every VALPSN P over Tv:

TP (I)(A) =
⊔
{ #�v | B1 ∧ · · · ∧Bm ∧ ∼C1 ∧ · · · ∧ ∼Cn → A : #�v

is a ground instance of a vasn-clause in P and

I � B1 ∧ · · · ∧Bm ∧∼C1 ∧ · · · ∧ ∼Cn },

where the notation
⊔

denotes the least upper bound. The least upper bound
always exists, since Tv is a complete lattice under the ordering �. We define
a special interpretation ∆ to be an interpretation that assigns the truth
value (0, 0) to all members of BP . Then, the upward iteration TP ↑ λ of the
operator TP is defined as:

TP ↑ 0 = ∆, TP ↑ λ =
⊔

α<λ TP (TP ↑ α) for any ordinals α, λ.

The following well-known results in terms of VALP (with no strong negation)
P and the operator TP hold [3].
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Proposition 2.1. If P is an VALP without strong negation,

• TP is a monotonic function,

• P has a least model that is identical to the least fixed point of TP ,

• TP ↑ ω is identical to the least fixed point of TP .

We extend the stable model semantics that was proposed in [5] for gen-
eral logic program to VALPSN. In the rest of this paper, we assume that a
VALPSN P is a set of ground clauses. There is no loss of generality in making
this assumption, since any logic program in the sense of [6] may be viewed as
such a set of clauses by instantiating all variables occurring in clauses. First,
we describe the Gelfond-Lifschitz transformation for VALPSN.

Definition 2.6 (Gelfond-Lifschitz transformation [5]). Let I be any inter-
pretation and P a VALPSN. P I , the Gelfond-Lifschitz transformation of the
VALPSN P with respect to I, is the VALP obtained from P by deleting

• each clause that has a strongly negated vector annotated literal ∼(C : #�v )
in its body with I � (C : #�v ),

• all strongly negated vector annotated literals in the bodies of the remaining
clauses.

Since P I contains no strong negation, it has the unique least model that is
given as TP I ↑ ω by Proposition 2.1.

Definition 2.7 (Stable Model [5]). If I is a Herbrand interpretation of a
VALPSN P , I is called a stable model of P iff I = TP I ↑ ω.

Example 2.1. Let p, q, and r be literals and a VALPSN

P = { q : (2, 0), q : (1, 0) ∧ ∼ p : (0, 2)→ p : (1, 0),

r : (2, 0), r : (1, 0) ∧ ∼ p : (2, 0) → p : (0, 1) }.

If I = {q : (2, 0), r : (2, 0), p : (1, 1)}, then,

P I = {q : (2, 0), q : (1, 0) → p : (1, 0), r : (2, 0), r : (1, 0) → p : (0, 1)}

and TP I ↑ ω = I. Thus, I is the only one stable model of the VALPSN P .
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3. Defeasible logic

In this section, we introduce Billington’s defeasible logic in [2]. The defeasible
logic contains three kinds of rules, strict rules, defeasible rules and defeaters.
Conflicts between defeasible rules with incompatible consequents are resolved
by using an explicit superiority relation on rules. The defeasible logic is
defined as a set of conditions on nodes of proof trees.

3.1. basic notation and terminology

We begin by introducing the basic notations and terminology for the defea-
sible logic briefly.

Definition 3.1. The set of all integers is denoted by Z, the set of positive
integers by P, and the set of non-negative integers by N. If m and n are
integers then [m..n] = { i ∈ Z | m ≤ i ≤ n}. The cardinality of any
set S is denoted by |S|. The length of a sequence P is denoted by |P |.
Let P = (P (1), P (2), . . . , P (|P |)) be a finite sequence. If i ∈ [1..|P |], then
P (1..i) = (P (1), . . . , P (i)); otherwise P (1..i) is undefined. The notation
x ∈ P means that there exists j ∈ [1..|P |] such that x = P (j).

Definition 3.2. The alphabet A is the union of the following four pairwise
disjoint sets of symbols: a nonempty countable set of proposition symbols;
the set {¬,→,⇒, } of connectives; the set {+,−,∆, ∂ } of positive, neg-
ative, definite, and defeasible proof symbols; the set of punctuation marks
consisting of the comma, braces and parentheses.

If q is any literal, the complement ¬q of the q is denoted by q̄. The
positive proof symbol + indicates that the following literal has been proved.
The negative proof symbol − indicates that the following literal has been
proved to be unprovable. The definite proof symbol ∆ indicates that the
proof of the following literal can not be defeated by more information. The
defeasible proof symbol ∂ indicates that the proof of the following literal can
be defeated by more information.

A rule has three parts: a finite set of literals on the left, an arrow in
the middle, and a literal on the right. The set on the left of the arrow is
called the antecedent of the rule, and the literal on the right of the arrow is
called the consequent of the rule. A rule containing the strict arrow →, for
example, A → q, is called a strict rule. The intuition is that whenever all
the literals in A are accepted then q must be accepted. A rule containing
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the defeasible arrow ⇒, for example A⇒ q, is called a defeasible rule. If all
the literals in A are accepted then q is accepted provided that there is an
insufficient evidence against q. A rule containing the defeater arrow  , for
example, A  q̄, is called a defeating rule or a defeater. If all the literals
in A are accepted then A → q̄ is an evidence against q, but not for q̄. It
should be noted that the antecedent of a rule can be empty set. Such a rule
is called a presumption. For example, if p is a presumption then it is written
as { } ⇒ p.

Definition 3.3. Let R be any set of rules. The set of strict rules in R
denoted by Rs, and the union of Rs and the set of defeasible rules in R by
Rsd. The antecedent of any rule r is denoted by A(r), and its consequent
is denoted by C(r). The set of consequents of rules in R is denoted by

C(R) = {C(r) | r ∈ R}. R[q]
def
= {r | r ∈ R and q = C(r)}. A superiority

relation on R is any asymmetric binary relation > on R.

All sets of conflicting literals are collected into a single conflict set denoted
by C. For each literal q, clearly {q, q̄} is a set of conflicting literals and
{q, q̄} ∈ C.

Definition 3.4. C is a conflict set iff C is a set such that: if C ∈ C, then C
is a non-empty set of literals; if C ∈ C, S ⊆ C, and S 6= C, then S /∈ C; and
if q is a literal, then at least one subset of {q, q̄} is an element of C.

We assume the conflict set indicates the set C = {{q,¬q} | q is a literal}}
hereafter, if we do not address particularly.

Definition 3.5. A defeasible theory over C is a quadruple (F, C, R,>) such
that: F is a set of literals, often referred to as facts; C is a conflict set; R is
a set of rules; > is a superiority relation on R.

A defeasible theory together with a suitable deducibility relation ⊢ is
called a defeasible logic. In the defeasible logic, notions “to be proved defi-
nitely” and “to be proved defeasibly” should be distinguished. In order to do
so, a tagged literal is defined to be a tag followed by a literal.

Definition 3.6. A tag consists of two symbols; the first symbol is either +
or −, and the second symbol is either ∆ or ∂.

Definition 3.7. A finite sequence P = (P (1), . . . , P (|P |)) of tagged literals
is called a proof in (F, C, R,>) iff for each i ∈ [0..|P | − 1] the four inference
conditions +∆, −∆, +∂ and −∂ all hold. If C = {{q, q̄} | q is a literal}, the
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four conditions are;
+∆) if P (i + 1) = +∆q, for some literal q, then either

.1) q ∈ F ; or

.2) ∃r ∈ Rs[q] ∀a ∈ A(r), +∆a ∈ P (1..i)
−∆) if P (i + 1) = −∆q, for some literal q, then

.1) q /∈ F , and

.2) ∀r ∈ Rs[q] ∃a ∈ A(r), −∆a ∈ P (1..i)
+∂) if P (i + 1) = +∂q, for some literal q, then either

.1) +∆q ∈ P (1..i); or

.2) All three of the following conditions hold.
.1) ∃r ∈ Rsd[q] ∀a ∈ A(r), +∂a ∈ P (1..i), and
.2) −∆q̄ ∈ P (1..i), and
.3) ∀s ∈ R[q̄] either

.1) ∃a ∈ A(s), −∂a ∈ P (1..i); or

.2) ∃t ∈ Rsd[q] such that
.1) ∀a ∈ A(t), +∂a ∈ P (1..i), and
.2) t > s

−∂) if P (i + 1) = −∂q, for some literal q, then either
.1) −∆q ∈ P (1..i); and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r), −∂a ∈ P (1..i), or

.2) +∆q̄ ∈ P (1..i), or

.3) ∃s ∈ R[q̄] such that
.1) ∀a ∈ A(s), +∂a ∈ P (1..i); and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t), −∂a ∈ P (1..i), or

.2) not (t > s).
An element of a proof is called a line of the proof.

Let q be a literal. In a proof, +∆q indicates that q is proved definitely,
−∆q indicates that it is proved that q can not be proved definitely, +∂q
indicates that q is proved defeasibly, and −∂q indicates that it is proved that
q can not be proved defeasibly.

Definition 3.8 ([2]). Let T = (F, C, R,>) be a defeasible theory. If tq

is a tagged literal, then T ⊢ tq iff tq is a line in a proof in T , where t ∈
{+∆,−∆,+∂,−∂}.

Example 3.1 (Genetically Altered Penguin [2]). Those are known that pen-
guins (p) are definitely birds (b), that defeasibly birds fly (f), and that defea-
sibly penguins do not fly (¬f). Suppose a penguin that has large wings and
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flight muscles. Such a genetically altered penguin (gap) might fly. Suppose
that Opus (o) is a genetically altered penguin. Then, a defeasible theory T
capturing this situation is as below.

F1 gap(o), R1 gap(o)→ p(o), R2 p(o)→ b(o),

R3 b(o)⇒ f(o), R4 p(o)⇒ ¬f(o), R5 gap(o) f(o).

Let T = (F, C, R,> ), where F = {F1}, R = {R1,R2,R3,R4 }, and > is
defined by R5 > R4 and R4 > R3. We show an intuitive derivation. The
formal one can be found in [2]. From F1, we have +∆ gap(o). From F1

and R1, we have +∆p(o). From R2 and +∆p(o), we have +∆b(o). Since
R4 > R3, the consequent f(o) of R3 is defeated by the consequent ¬f(o)
of R4. Thus, +∂f(o) can not be derived. Since R5 > R4, the consequent
¬f(o) of R4 is defeated by the defeater R5. Thus, +∂¬f(o) can not be
derived from R4. In the defeasible logic, defeaters can not be used to derive
its consequent. Therefore, we have neither +∂f(o) nor +∂¬f(o) in the
defeasible theory T .

4. From defeasible theory into VALPSN

In this section, we provide the translation from the defeasible logic into
VALPSN. Strict rules, defeasible rules, defeaters and facts in the defeasible
logic are translated into vasn-clauses. Furthermore, we show the relation be-
tween definite or defeasible provabilities in the defeasible logic and VALPSN
stable model satisfiability based on the translation as shown in Figure 2.

4.1. Translation

The basic idea of the translation is as follows. We want to express the two
kinds of provabilities, “definite” one and “defeasible” one, based on vector
annotations. We consider that if a literal is definitely provable, the literal
has stronger information to support it than the case of “defeasibly provable”.
We use three levels, 0, 1 and 2, to express the strength of information. There-
fore, “a literal q is definitely provable (+∆q)” may be expressed by “a vector
annotated literal q : (2, 0) is derivable” and “a literal q is defeasibly provable
(+∂q)” may be expressed by “a vector annotated literal q : (1, 0) is deriv-
able”. Moreover, the defeasible logic is nonmonotonic and we represent the
nonmonotonicity by the strong negation in VALPSN. Generally, a VALPSN
may have more than two stable models or no stable model. We consider
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the correspondence between the provability of the defeasible logic and the
satisfiability of VALPSN. Let us remind the example Nixon Diamond for
default reasoning. If we regard Nixon Diamond as a default theory, it can
be translated into a VALPSN

P = { F1 q(n) :(1, 0), R1 q(n) :(1, 0) ∧∼ p(n) :(0, 1) → p(n) :(1, 0)

F2 r(n) :(1, 0), R2 r(n) :(1, 0) ∧ ∼ p(n) :(1, 0)→ p(n) :(0, 1) }

as well as the translation from default theory into ALPSN in [7]. Then, the
VALPSN P has two stable models,

I1 = { q(n) :(1, 0), r(n) :(1, 0), p(n) :(1, 0) },

I2 = { q(n) :(1, 0), r(n) :(1, 0), p(n) :(0, 1) }.

The stable model I1 satisfies p(n) : (1, 0) and the stable model I2 satisfies
p(n) :(0, 1), and they show only that there exist two conflicting worlds inde-
pendently. On the other hand, if we formulate the example Nixon Diamond
as a defeasible theory, we obtain a defeasible theory T = (F, C, R,>), where
F = {q(n), r(n)}, R = { {q(n)} ⇒ p(n), {r(n)} ⇒ ¬p(n) } and no superi-
ority relation. Then, neither p(n) nor ¬p(n) are defeasibly provable in the
defeasible theory T . The difference says that; if we translate defeasible the-
ories into VALPSNs, we have to bring skeptical view into the satisfiability
of VALPSN stable model semantics, that is to say, we have to regard the
intersection of all the stable models as the model of the original defeasible
theory.

We assume that there is a correspondence between the provability of the
defeasible logic and the satisfiability of VALPSN stable model semantics.

[Assumption]
Let q be a literal, T a defeasible theory, I an interpretation of a VALPSN P ,
and MP the set of all stable models for the VALPSN P . Then,

T ⊢ +∆q ⇐⇒ ∀I ∈MP , I � q : (2, 0),

T ⊢ +∂q ⇐⇒ ∀I ∈MP , I � q : (1, 0),

T ⊢ −∆q ⇐⇒ ∃I ∈MP , I 2 q : (2, 0),

T ⊢ −∂q ⇐⇒ ∃I ∈MP , I 2 q : (1, 0).

Now we propose 6 translation rules TR1–TR6 from facts and the three
kinds of rules into vasn-clauses based on the four inference conditions, {+∆,
−∆,+∂,−∂}. Let q be a literal, T = (F, C, R,> ) a defeasible theory.
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[Fact] A fact q can be used to derive +∆q. According to the inference
condition +∆.1, if there is a literal q ∈ F , P (i + 1) = +∆q. Thus, we have;

Translation Rule 1 (TR1)

the fact q is translated into a vasn-clause q : (2, 0).

[Strict Rule] Let A→ q be a strict rule, where A = {a1, . . . , ak} and each
aj (1 ≤ j ≤ k) is a literal. The strict rule can be used to derive both +∆q
and +∂q. Therefore, we have to take into account the following two cases.

[Case 1] If the inference condition +∆.2 is satisfied, there is a strict rule
such that its antecedent is definitely provable and the consequent of the strict
rule is definitely provable. Therefore, we have the following translation rule.

Translation Rule 2 (TR2)

the strict rule { a1, . . . , ak } → q is translated into a vasn-clause
a1 : (2, 0) ∧ · · · ∧ ak : (2, 0) → q : (2, 0).

The strict rule also can be used to derive +∂q when the antecedent of the
strict rule is defeasibly provable. Thus, we have to consider the inference
condition +∂.2 as deriving +∂q by the strict rule A→ q.

[Case 2] If the inference condition +∂.2 is satisfied;

(1) each ai ∈ A (1 ≤ i ≤ k) must be defeasibly provable by +∂.2.1;

(2) the complement q̄ must not be definitely provable by +∂.2.2; and

(3) for each rule s ∈ R[q̄], either the antecedent of the rule s must not be
defeasibly provable, or there must be a rule t ∈ Rsd[q] whose antecedent
is defeasibly provable and the rule t is superior to the rule s, by +∂.2.3.

Basically, the defeasible reasoning is performed based on the superiority re-
lation and if we reinterpret the above three conditions (1)–(3), we have to
consider the following two cases [I] and [II] as deriving +∂q based on the
superiority relation.

[I] Suppose that the strict rule A → q has no superiority relation; or
there are a rule r ∈ Rsd[q̄], a superiority relation A→ q > r and no defeater
superior to the strict rule A→ q; then, in order to derive +∂q by the strict
rule A→ q,

(I-1) the antecedent A must be defeasibly provable,

(I-2) the conflicting literal q̄ must not be defeasibly provable by other con-
flicting rules and

(I-3) the conflicting literal q̄ must not be definitely provable.
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Note. The item (I-2) is represented by a strongly negated vector annotated
literal ∼ q : (0, 1) and the item (I-3) is represented by a strongly negated
vector annotated literal ∼ q : (0, 2) independently, and “the conflicting literal
q̄ must be neither defeasibly nor definitely provable” is also represented as
the strongly negated vector annotated literal ∼ q : (0, 1).

[II] Suppose that there are a rule r ∈ R[q̄] and a superiority relation
r > A→ q; then, in order to derive +∂q by the strict rule A→ q,

(II-1) the antecedent A must be defesibly provable,

(II-2) the antecedent of the rule r must not be defeasibly provable,

(II-3) the conflicting literal q̄ must not be defeasibly provable by other rules
than the rule r and

(II-4) the conflicting literal q̄ must not be definitely provable.

We formulate these two cases as the following translation rule.

Translation Rule 3 (TR3)

Suppose that the strict rule A → q has no superiority relation; or there
are a rule r ∈ R[q̄], a superiority relation A→ q > r and no defeater superior
to the strict rule A→ q. Then, the strict rule {a1, . . . , ak} → q is translated
into a vasn-clause

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) ∧ ∼ q : (0, 1)→ q : (1, 0).

Translation Rule 4 (TR4)
Suppose that there is a superiority relation B ◦ q̄ > A → q, ◦ ∈ {→,

⇒, }, B = {b1, . . . , bl} and each bi (1 ≤ i ≤ l) is a literal. Then, the strict
rule {a1, . . . , ak} → q is translated into vasn-clauses

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) ∧∼ b1 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) ∧∼ b2 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

...

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) ∧∼ bl : (1, 0) ∧ ∼q : (0, 1) → q : (1, 0).

[Defeasible Rule] Let A ⇒ q be a defeasible rule, where A = {a1, . . . , ak}
and each aj (1 ≤ j ≤ k) is a literal. Since the defeasible rule can be used to
derive only +∂q, it is translated into vasn-clauses similarly to the [Case 2] of
[Strict Rule].
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Translation Rule 5 (TR5)

Suppose that the defeasible rule A ⇒ q has no superiority relation; or
there are a rule r ∈ R[q̄], a superiority relation A ⇒ q > r and no de-
feater superior to the defeasible rule A ⇒ q. Then, the defeasible rule
{a1, . . . , ak} ⇒ q is translated into a vasn-clause

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) ∧ ∼q : (0, 1) → q : (1, 0).

Translation Rule 6 (TR6)

Suppose that there is a superiority relation B ◦ q̄ > A ⇒ q, ◦ ∈ {→,
⇒, }, B = {b1, . . . , bl} and each bi (1 ≤ i ≤ l) is a literal. Then, the
defeasible rule {a1, . . . , ak} ⇒ q is translated into vasn-clauses

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ b1 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ b2 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

...

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ bl : (1, 0) ∧ ∼q : (0, 1) → q : (1, 0).

[Defeater] The consequent of a defeater can not be derived by the inference
conditions +∆ or +∂. The role of a defeater is not to derive its consequent
but to prevent from deriving the conflicting literal by the rule inferior to
the defeater. Therefore, a defeater itself does not have to be translated into
vasn-clauses.

Definition 4.1 (VALPSN-translation tr). Let T = (F, C, R,>) be a defea-
sible theory. Then, the VALPSN-translation tr (T ) of the defeasible theory
T is defined as tr(T ) = tr(F )∪ tr (R). where tr (F ) is a VALPSN-translation
of the set F of facts and tr(R) is a VALPSN-translation of the set R of rules.

Example 4.1. Let a defeasible theory T = (F, C, R,> ), the set of facts F =
{a}, the set of rules R = {R1 {a} ⇒ q, R2 {b1, b2} → ¬q, R3 {c}  ¬q},
and a superiority relation R3 > R1. Then, by the translation rule TR1,
the fact a is translated into

(1) a : (2, 0).

By the translation rule TR6, the defeasible rule R1 is translated into

(2) a : (1, 0) ∧ ∼ c : (1, 0) ∧ ∼ q : (0, 1)→ q : (1, 0).
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By the translation rules TR2 and TR3, the strict rule R2 is respectively
translated into

b1 : (2, 0) ∧ b2 : (2, 0) → q : (0, 2),(3)

b1 : (1, 0) ∧ b2 : (1, 0) ∧∼ q : (1, 0) → q : (0, 1).(4)

The defeater R3 does not have to be translated into any vasn-clause. There-
fore, we have the VALPSN tr(T ) = { (1), (2), (3), (4) }.

The following example shows the relation in Figure 2 between the two
kinds of provability of the defeasible logic and VALPSN stable model satis-
fiability.

Example 4.2. Let a defeasible theory T = (F, C, R,>), the set of rules
R = {R1{ a } ⇒ q, R2{ b } ⇒ ¬q, R3{ c } ⇒ q, R4{ d }  ¬q }, and
superiority relations, R1 > R2 and R4 > R3. By the translation rule
TR5, the defeasible rule R1 is translated into

(1) a : (1, 0) ∧ ∼ q : (0, 1)→ q : (1, 0).

By the translation rule TR6, the defeasible rules R2 and R3 are respectively
translated into

b : (1, 0) ∧ ∼ a : (1, 0) ∧ ∼ q : (1, 0) → q : (0, 1)(2)

c : (1, 0) ∧ ∼ d : (1, 0) ∧ ∼ q : (0, 1) → q : (1, 0).(3)

The defeater R4 is not translated into vasn-clauses.

1. Suppose that F = {a, b}. Then, we have T ⊢ +∂q and T ⊢ −∂¬q by the
inference conditions +∂.2.3.2, −∂.1 and −∂.2.3. Then, the defeasible theory
T is translated into a VALPSN tr (T ) = { a : (2, 0), b : (2, 0), (1), (2), (3) },
which has only one stable model

I = { a : (2, 0), b : (2, 0), c : (0, 0), d : (0, 0), q : (1, 0) }.

Therefore, I � q : (1, 0) and I 2 q : (0, 1).

2. Suppose that F = { a, b, c, d, }. Then, in the defeasible logic, we have T ⊢
+∂q by the inference condition +∂.2.3. The defeasible theory T is translated
into a VALPSN tr(T ) = { a : (2, 0), b : (2, 0), c : (2, 0), d : (2, 0), (1), (2), (3) },
which has only one stable model

I = { a : (2, 0), b : (2, 0), c : (2, 0), d : (2, 0), q : (1, 0) }.

Therefore, I � q : (1, 0).
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3. Suppose that F = { a, b, c, d } and let R4 be a defeasible rule {d} ⇒ ¬q
instead of the defeater { d } ¬q. Then, we have T ⊢ −∂q and T ⊢ −∂¬q by
the inference condition −∂.2.3. By the translation rule TR5, the defeasible
rule R4 is translated into

(4) d : (1, 0) ∧∼ q : (0, 1) → q : (1, 0).

Then, the defeasible theory T is translated into a VALPSN tr(T ) = { a :
(2, 0), b : (2, 0), c : (2, 0), d : (2, 0), (1), (2), (3), (4) }, which has two stable
models,

I1 = { a : (2, 0), b : (2, 0), c : (2, 0), d : (2, 0), q : (1, 0) },

I2 = { a : (2, 0), b : (2, 0), c : (2, 0), d : (2, 0), q : (0, 1) }.

Neither q : (1, 0) nor q : (0, 1) can be satisfied by both the stable models I1

and I2.

4. Suppose that F = {a, b} and there is no superiority relation between R1

and R2. Then, we have T ⊢ −∂q and T ⊢ −∂¬q by the inference condition
−∂.2.3. By the translation rule TR5, the defeasible rules R1 and R2 are
respectively translated into

a : (1, 0) ∧∼ q : (0, 1) → q : (1, 0)(5)

b : (1, 0) ∧∼ q : (1, 0) → q : (0, 1).(6)

Then, the defeasible theory T is translated into a VALPSN tr(T ) = { a :
(2, 0), b : (2, 0), (3), (5), (6) }, which has two stable models,

I1 = { a : (2, 0), b : (2, 0), c : (0, 0), d : (0, 0), q : (1, 0) },

I2 = { a : (2, 0), b : (2, 0), c : (0, 0), d : (0, 0), q : (0, 1) }.

Neither q : (1, 0) nor q : (0, 1) can be satisfied by both the stable models I1

and I2.

Let us take one more example. We describe how the defeasible theory in
Example 3.1 is translated into a VALPSN.

Example 4.3. Let us remind Genetically Altered Penguin (GAP).
F1 gap(o) is translated by the translation rule TR1 into

(1) gap(o) :(2, 0).
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R1 gap(o)→ p(o) is translated by the translation rules TR2 and TR3 into

gap(o) :(2, 0) → p(o) :(2, 0),(2)

gap(o) :(1, 0) ∧ ∼ p(o) :(0, 1) → p(o) :(1, 0).(3)

R2 p(o)→ b(o) is translated by the translation rules TR2 and TR3 into

p(o) :(2, 0) → b(o) :(2, 0),(4)

p(o) :(1, 0) ∧ ∼ b(o) :(0, 1) → b(o) :(1, 0).(5)

R3 b(o)⇒ f(o) is translated by the translation rule TR6 into

(6) b(o) :(1, 0) ∧ ∼ p(o) :(1, 0) ∧ ∼ f(o) :(0, 1) → f(o) :(1, 0).

R4 p(o)⇒ ¬f(o) is translated by the translation rule TR6 into

(7) p(o) :(1, 0) ∧ ∼ gap(o) :(1, 0) ∧ ∼ f(o) :(1, 0) → f(o) :(0, 1).

Then, we have a VALPSN P = {(1), . . . , (7)} as the VALPSN-translation of
GAP, which has only one stable model

I1 = { gap(o) :(2, 0), p(o) :(2, 0), b(o) :(2, 0), f(o) :(0, 0) }.

Since I1 2 f(o) : (1, 0) and I1 2 f(o) : (0, 1), I1 shows that +∆ gap(o),
+∆p(o), +∆b(o) − ∂f(o) and −∂¬f(o).

4.2. The relation between defeasible theory and VALPSN

We provide proofs for the relation described in Figure 2, i.e., a literal q is
definitely or defeasibly provable in a defeasible theory T if and only if for
any stable model of the VALPSN tr(T ) satisfies vector annotated literals
q : (2, 0) or q : (1, 0), respectively.

Let T = (F, C, R,> ) be a defeasible theory, P = tr (T ) the VALPSN-
translation of the defeasible theory T , P I the Gelfond-Lifschitz transforma-
tion of the VALPSN P based on an interpretation I, q a literal, and MP the
set of all stable models of the VALPSN P . First, we define an interpretation
TP I ↑ 0 to be a special interpretation that assigns the truth value (0, 0) to all
members of BP I , and an interpretation TP I ↑ 1 to be a special interpretation
that assigns the truth value (0, 0) to all members of BP I \ {q} and the truth
value (2, 0) to any literal q ∈ F . Moreover, let

TP I ↑ n = TP I (TP I ↑ (n− 1))

for any integer n ≥ 2 (refer to Definition 2.9 of TP I ). Then, we have the
following theorems.
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Theorem 4.1. T ⊢ +∆q ⇐⇒ ∀I ∈MP ;TP I ↑ ω � q : (2, 0).

Proof. By induction on the number of lines in a proof of +∆q and an
integer i (i ≥ 1) such that TP I ↑ i � q : (2, 0).

Basis. (⇒ part) Suppose that P(1) = +∆q. From the inference condition
+∆.1, there exists a fact q ∈ F . Then, there also exists a vasn-clause q :
(2, 0) ∈ P as the translation of the fact q by the translation rule TR1.
Moreover, for any stable model I of the VALPSN P , q : (2, 0) ∈ P I . Thus,
by the definition of the interpretation TP I ↑ 1,

TP I ↑ 1 � q : (2, 0).

(⇐ part) Conversely, suppose that for any stable model I of the VALPSN
P , TP I ↑ 1 � q : (2, 0). Then, by the definition of TP I ↑ 1, there exists a unit
vasn-clause q : (2, 0) ∈ P . Then, there exists a literal q ∈ F as the inverse
translation of the unit vasn-clause q : (2, 0). Thus, by the inference condition
+∆.1,

P(1) = +∆q

Induction Hypothesis. There is an integer i ≥ 1 such that, for any literal q,
for any stable model I of the VALPSN P ,

+∆q ∈ P(1..i) ⇐⇒ ∀I ∈MP ;TP I ↑ i � q : (2, 0),

Induction Step. (⇒ part) Suppose that P(i+1) = +∆q (i > 1). We
consider the following two cases.

Case 1. If +∆q is derived by the inference condition +∆.1, it has been
proved in the Basis.

Case 2. If +∆q is derived by the inference condition +∆.2, there exists a
strict rule {a1, . . . , ak} → q ∈ R such that for each integer j (1 ≤ j ≤ k),
+∆aj ∈ P(1..i). Then, there exists a vasn-clause a1 : (2, 0)∧· · ·∧ak : (2, 0) →
q : (2, 0) ∈ P as the translation of the strict rule {a1, . . . , ak} → q ∈ R by
the translation rule TR2. By the Induction Hypothesis, for each integer j
(1 ≤ j ≤ k), TP I ↑ i � aj : (2, 0). Thus, by the definition of TP I ↑ (i + 1),

TP I ↑ (i + 1) � q : (2, 0).

(⇐ part) Conversely, suppose that TP I ↑ (i + 1) � q : (2, 0). Then, there
exists a vasn-clause a1 : (2, 0) ∧ · · · ∧ ak : (2, 0) → q : (2, 0) ∈ P I as the
translation of a strict rule {a1, . . . , ak} → q ∈ R, and for each integer j
(1 ≤ j ≤ k), TP I ↑ i � aj : (2, 0). Then, by the Induction Hypothesis, for
each j (1 ≤ j ≤ k), +∆aj. Thus, we have P(i+1) = +∆q.

© 2001 by Nicolaus Copernicus University



On the relation between . . . 201

Theorem 4.2. T ⊢ −∆q ⇐⇒ ∃I ∈MP ;TP I ↑ ω � ∼ q : (2, 0).

Proof. First of all, we refer to Theorem 3.3 in Billington [2]: Let T1 =
(F, C, R,>) be a defeasible theory. Suppose d ∈ {∆, ∂}. If q is a literal, then
it is not the case that both T1 ⊢ +dq and T1 ⊢ −dq.

(⇒ part) Suppose that T ⊢ −∆q. From Theorem 3.3, we have T 0 +∆q
and from Theorem 4.1, we have T 0 +∆q ⇐⇒ ∃I ∈MP ; TP I ↑ ω 2 q : (2, 0).
Thus, we have there exists a stable model I such that TP I ↑ ω 2 q : (2, 0).

(⇐ part) Conversely, suppose that there exists a stable model I of the
VALPSN P such that TP I ↑ ω 2 q : (2, 0). Then, we can trace back easily
the above (⇒ part) proof to the conclusion T ⊢ −∆q.

Theorem 4.3. T ⊢ +∂q ⇐⇒ ∀I ∈MP ;TP I ↑ ω � q : (1, 0).

Proof. By induction on the number of lines in a proof of +∂q and an integer
i(i ≥ 1) such that TP I ↑ i � q : (1, 0).

Basis. (⇒ part) It is apparent that there can not exist P(1) = +∂q
by the inference conditions +∂.1 and +∂.2. Therefore, we suppose that
P(2) = +∂q. Then, only the inference condition +∂.1 can be applied to
the derivation of +∂q and there exists +∆q ∈ P(1). From the Basis in
Theorem 4.1, for any stable model I of the VALPSN P , TP I ↑ 1 � q : (2, 0).
Since (1, 0) � (2, 0), TP I ↑ 1 � q : (2, 0) implies TP I ↑ 2 � q : (1, 0). Thus, we
have

TP I ↑ 2 � q : (1, 0).

(⇐ part) Conversely, suppose that for any interpretation I that can be a
stable model of the VALPSN P , TP I ↑ 2 � q : (1, 0). Then, by the definition
of TP I ↑ 1 and the translation rule TR1, there exists a unit vasn-clause
q : (2, 0) ∈ P I . Therefore, q ∈ F , P(1) = +∆q and P(2) = +∂q. Hence,

P(2) = +∂q ⇐⇒ TP I ↑ 1 � q : (1, 0).

Induction Hypothesis. There is an integer i ≥ 2 such that, for any literal q,

+∂q ∈ P(1..i) ⇐⇒ TP I ↑ i � q : (1, 0).

Induction Step. We have to take the following three cases Case 1–3 into
account to prove this induction step with respect to the inference conditions
+∂ and the translation rules TR1–6. Suppose that P(i+1)=+∂q.

Case 1. In this case, +∆q ∈ P(1..i) and P(i+1) = +∂q. Then, by Theo-
rem 4.1, for some integer m (1 ≤ m ≤ i), TP I ↑ m � q : (2, 0), and it implies,
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TP I ↑ (i + 1) � q : (2, 0) and TP I ↑ (i + 1) � q : (1, 0), by the monotonicity of
the operator TP I .

Case 2. In this case, there are a rule A ◦ q that has no superiority relation;
or a superiority relation A ◦ q > B • q̄ and no defeater superior to the rule
A ◦ q, where ◦, • ∈ {→,⇒}. Suppose that +∂q is derived based on the rule
A◦q, where A = {a1, . . . , ak}. Then, the antecedent A is defeasibly provable
and +∂q̄ /∈ P(1..i). Therefore, by the translation rules TR3 or TR5, there
is a vasn-clause clause

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧ ∼q : (0, 1) → q : (1, 0) ∈ P.

Moreover, there is a vasn-clause

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) → q : (1, 0) ∈ P I

such that for each j (1 ≤ j ≤ k), TP I ↑ i � aj : (1, 0) and TP I ↑ i 2 q : (0, 1)
by the Induction Hypothesis. Thus, by the definition of the operator TP I ,
we have

TP I ↑ (i + 1) � q : (1, 0)

Case 3. In this case, there is a superiority relation B • q̄ > A ◦ q, where
◦, • ∈ {→,⇒}; A = {a1, . . . , ak} and B = {b1, . . . , bl}. Moreover, +∂q
is derived based on the rule A ◦ q. Then, the antecedent A is defeasibly
provable and the literal q̄ cannot be derived by other rules, i.e., the literal
q̄ is neither definitely nor defeasibly provable and the antecedent B is not
defeasibly provable. Therefore, by the translation rules TR4 or TR6, there
are vasn-clauses

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ b1 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ b2 : (1, 0) ∧ ∼q : (0, 1)→ q : (1, 0),

...

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) ∧∼ bl : (1, 0) ∧ ∼q : (0, 1) → q : (1, 0)

in the VALPSN P . Moreover, there exists a vasn-clause

a1 : (1, 0) ∧ . . . ∧ ak : (1, 0) → q : (1, 0) ∈ P I

such that for each j (1 ≤ j ≤ k), TP I ↑ i � aj : (1, 0), for some integer
m ∈ {1, . . . , l}, TP I ↑ i 2 bm : (1, 0), and TP I ↑ i 2 q : (0, 1) by the Induction
Hypothesis. Thus, by the definition of the operator TP I , we have

TP I ↑ (i + 1) � q : (1, 0)
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Conversely, suppose that for any stable model I of the VALPSN P ,

TP I ↑ (i + 1) � q : (1, 0).

We consider the following three cases Case 4–6.

Case 4. In this case, TP I ↑ i � q : (2, 0). Then, by Theorem 4.1, +∆q ∈
P(1..i). Therefore, by the inference condition +∂.1, we have

P(i+1) = +∂q.

Case 5. In this case, the vector annotated literal q : (1, 0) is the head of a
vasn-clause that is translated by the translation rules TR3 or TR5. Then,
there is a vasn-clause

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) → q : (1, 0) ∈ P I

such that for each integer j(1 ≤ j ≤ k), TP I ↑ i � aj : (1, 0), and TP I ↑ i 2

q : (0, 1). Then, by the Induction Hypothesis, for each integer j (1 ≤ j ≤ k),
+∂aj ∈ P(1..i), and −∂¬q ∈ P(1..i). Therefore, by the inference condition
+∂.2,

P(i+1) = +∂q.

Case 6. In this case, the vector annotated literal q : (1, 0) is the head of a
vasn-clause that is translated by the translation rules TR4 or TR6. Then,
there is a vasn-clause

a1 : (1, 0) ∧ · · · ∧ ak : (1, 0) → q : (1, 0) ∈ P I

such that for each integer j(1 ≤ j ≤ k), TP I ↑ i � aj : (1, 0), and TP I ↑ i 2

q : (0, 1). Then, by the Induction Hypothesis, for each integer j (1 ≤ j ≤ k),
+∂aj ∈ P(1..i) and −∂¬q ∈ P(1..i). Therefore, by the inference condition
+∂.2,

P(i+1) = +∂q.

Theorem 4.4. T ⊢ −∂q ⇐⇒ TP I ↑ ω � ∼ q : (1, 0).

Proof. Suppose that T ⊢ −∂q. From Theorem 3.3, we have T 0 +∂q.
From Theorem 4.3, we also have T 0 +∆q ←→ TP I ↑ ω 2 q : (1, 0). Thus,

TP I ↑ ω 2 q : (1, 0), (i.e., TP I ↑ ω � ∼ q : (1, 0) ).

Conversely, suppose that TP I ↑ ω 2 q : (1, 0). We can trace the above
proof back to T ⊢ −∂q.
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5. Conclusion

In this paper, we have proposed VALPSN that can deal with defeasible rea-
soning. We have clarified the relation between VALPSN and Billington’s
defeasible logic. First, we proposed the translation from the defeasible logic
into VALPSN, and proved that there is a correspondence between the defea-
sible logic provability and the VALPSN stable model satisfiability based on
the translation. This correspondence shows that the defeasible logic deriva-
tion can be replaced by the stable model computation of the corresponding
VALPSN, and that VALPSN can provide a semantics for the defeasible logic.
However, if we replace the defeasible theory derivation by the VALPSN sta-
ble model computation, some problems in terms of computational complexity
arise. Since each defeasible or strict rule in the defeasible logics are trans-
lated into more than one VALPSN clauses, there may be a case which has too
many VALPSN clauses in the stable model computation. Basically, the sta-
ble model computation takes so long time when the VALPSN contains many
clauses, even if it is implemented in a powerful workstation. If we want to
implement a VALPSN stable model computing system, some strategies are
required to speed up the computation.
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