V.M. Popov

ON THE LOGICS RELATED TO A. ARRUDA'S SYSTEM V1

Four logics $\mathbf{I}_{\mathbf{0}}, \mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}$, and $\mathbf{I}_{\mathbf{3}}$ related to A. Arruda's system $\mathbf{V} \mathbf{1}$ are considered. For each of them the semantics of descriptions of states in the style of E. K. Vojshvillo [2] is constructed, the question of characterizability by means of finite logical matrix is investigated and Gentzen-type sequent version is presented.

Definition 1. The language \mathcal{L} is standard propositional language with alphabet $\langle\mathcal{S}, \&, \vee, \supset, \neg),,(\rangle$, where $\mathcal{S}=\left\{S_{0}, S_{1}, S_{2}, \ldots\right\}$ is the set of all propositional letters of \mathcal{L}. Let \mathcal{F} be the set of all formulæ of \mathcal{L}.

Definition 2. Let $\mathbf{C l}_{\& v \supset}$ be the set of all classical tautologies from \mathcal{F} which do not contain negation \neg.

Definition 3. The logic $\mathbf{I}_{\mathbf{0}}$ is the smallest subset of \mathcal{F} closed on the modus ponens and the rule of substitution such that $\mathbf{C l}_{\& \vee \nu} \subseteq \mathbf{I}_{\mathbf{0}}$ and for $A, B \in \mathcal{F}$:
(1) $\neg\left(S_{0} \supset S_{0}\right) \supset A \in \mathbf{I}_{\mathbf{0}}$,
(2) if $A \notin \mathcal{S}$ then

$$
\left(A \supset \neg\left(S_{0} \supset S_{0}\right)\right) \supset \neg A \in \mathbf{I}_{\mathbf{0}} \text {, and }(A \supset B) \supset((B \supset \neg A) \supset \neg A) \in \mathbf{I}_{\mathbf{0}},
$$

(3) if $A \notin \mathcal{S}$ then

$$
\left(A \supset\left(\neg A \supset \neg\left(S_{0} \supset S_{0}\right)\right) \in \mathbf{I}_{\mathbf{0}} \text {, and }((B \supset A) \supset A) \supset(\neg A \supset B) \in \mathbf{I}_{\mathbf{0}} .\right.
$$

[^0]The definition of $\mathbf{I}_{\mathbf{1}}$ (resp. $\mathbf{I}_{\mathbf{2}}$) is obtained from the definition of $\mathbf{I}_{\mathbf{0}}$ simply by avoiding the restriction on A in the clause (2) (resp. in the clause (3)) and replacing $\mathbf{I}_{\mathbf{0}}$ by $\mathbf{I}_{\mathbf{1}}$ (resp. by $\mathbf{I}_{\mathbf{2}}$).

Note that \mathbf{I}_{1} is a set of all provable in V1 formulae which do not contain any occurences of "classical propositional letters" (in terms of [1]) provided that \mathcal{S} is a set of all "Vasiljjev's propositional letters" in V1 (in terms of [1]).

To obtain the definition of $\mathbf{I}_{\mathbf{3}}$ add to the definition of $\mathbf{I}_{\mathbf{0}}$ (and then replace $\mathbf{I}_{\mathbf{0}}$ by $\mathbf{I}_{\mathbf{3}}$) the clause:
(4) $A \supset(\neg A \supset((B \supset \neg B) \supset \neg B)) \in \mathbf{I}_{\mathbf{3}}$.

Definition 4. A description of state is a mapping of the set $\left\{S_{0}, \neg S_{0}, S_{1}\right.$, $\left.\neg S_{1}, S_{2}, \neg S_{2}, \ldots\right\}$ into the set $\{0,1\}$. Let DS be the set of all descriptions of state.

Definition 5. Let $v \in \mathrm{DS}$. Then
v is complete iff for each $i \in \mathbb{N}: v\left(S_{i}\right)=1$ or $v\left(\neg S_{i}\right)=1$.
v is consistent iff for each $i \in \mathbb{N}: v\left(S_{i}\right)=0$ or $v\left(\neg S_{i}\right)=0$.
v is quasi-complete iff either $v\left(S_{i}\right)=0$ and $v\left(\neg S_{i}\right)=0$ for each $i \in \mathbb{N}$, or $v\left(S_{i}\right)=1$ or $v\left(\neg S_{i}\right)=1$ for each $i \in \mathbb{N}$.

Definition 6. For each $v \in \mathrm{DS}$, a mapping $\left|\left.\right|_{v}: \mathcal{F} \rightarrow\{0,1\}\right.$ is specified as follows:
(a) for each $i \in \mathbb{N}:\left|S_{i}\right|_{v}=v\left(S_{i}\right)$ and $\left|\neg S_{i}\right|_{v}=v\left(\neg S_{i}\right)$;
(b) for each $A \notin \mathcal{S}:|\neg A|_{v}=1$ iff $|A|_{v}=0$;
(c) for each $A, B \in \mathcal{F}$:

$$
\begin{array}{lll}
|A \& B|_{v}=1 & \text { iff } & |A|_{v}=1 \text { and }|B|_{v}=1 ; \\
|A \vee B|_{v}=1 & \text { iff } & |A|_{v}=1 \text { or }|B|_{v}=1 ; \\
|A \supset B|_{v}=1 & \text { iff } & |A|_{v}=0 \text { or }|B|_{v}=1 .
\end{array}
$$

It is known that a formula is classical tautology iff $|A|_{v}=1$ for every complete and consistent v in DS. Similar propositions can be proved for the systems under consideration.

Theorem 1. $A \in \mathbf{I}_{\mathbf{0}}$ iff for each $v \in \mathrm{DS}:|A|_{v}=1$.
Theorem 2. $A \in \mathbf{I}_{1} \quad$ iff for each complete $v \in \mathrm{DS}:|A|_{v}=1$.
Theorem 3. $A \in \mathbf{I}_{2}$ iff for each consistent $v \in \mathrm{DS}:|A|_{v}=1$.

Theorem 4. $A \in \mathbf{I}_{\mathbf{3}} \quad$ iff for each quasi-complete $v \in \mathrm{DS}:|A|_{v}=1$.
Definition 7. Let $\mathfrak{M}_{0}=\left\langle\{0,1, \mathrm{t}, \mathrm{f}\},\{1\}, \&^{0}, \vee^{0}, \supset^{0}, \neg^{0}\right\rangle$ is logical matrix operations of which are defined by the following tableaux:

$x \&^{0} y$	1	0	t	f
1	1	0	1	0
0	0	0	0	0
t	1	0	1	0
f	0	0	0	0

$x \vee^{0} y$	1	0	t	f
1	1	1	1	1
0	1	0	1	0
t	1	1	1	1
f	1	0	1	0

$x \supset^{0} y$	1	0	t	f
1	1	0	1	0
0	1	1	1	1
t	1	0	1	0
f	1	1	1	1

x	$\neg^{0} x$
1	0
0	1
t	1
f	0

Let $\mathfrak{M}_{1}=\left\langle\{0,1, \mathrm{t}\},\{1\}, \&^{1}, \vee^{1}, \supset^{1}, \neg^{1}\right\rangle$ and $\mathfrak{M}_{2}=\left\langle\{0,1, \mathrm{f}\},\{1\}, \&^{2}, \vee^{2}\right.$, $\left.\supset^{2}, \neg^{2}\right\rangle$ are submatrices of \mathfrak{M}_{0} (where $\&^{1}$ and $\&^{2}$ are the results of corresponding narrowing of $\&^{0}$; similarly for all other operations in \mathfrak{M}_{1} and \mathfrak{M}_{2}).

Definition 8. An evaluation of \mathcal{F} in the matrix \mathfrak{M}_{i} (for $i=0,1,2$) is a mapping v from \mathcal{F} into a carrier of the matrix \mathfrak{M}_{i} such that $v(\neg A)=\neg^{i} v(A)$ and $v(A \circ B)=v(A) \circ^{i} v(B)$ where $\circ \in\{\&, \vee, \supset\}$.

Definition 9. An evaluation v of \mathcal{F} in $\mathfrak{M}_{i}(i=0,1,2)$ is quasi-complete iff either $v\left(S_{i}\right) \neq \mathrm{t}$ for every $i \in \mathbb{N}$, or $v\left(S_{i}\right) \neq \mathrm{f}$ for every $i \in \mathbb{N}$.

Then the following theorems can be proved by means of the modification of Henkin's method.

Theorem 5. For $i=0,1,2$:
$A \in \mathbf{I}_{\boldsymbol{i}} \quad$ iff \quad for each evaluation v of \mathcal{F} in $\mathfrak{M}_{i}:|A|_{v}=1$.
Theorem 6. $A \in \mathbf{I}_{3} \quad$ iff \quad for each quasi-complete evaluation v of \mathcal{F} in \mathfrak{M}_{0} : $|A|_{v}=1$.

Sequent calculus $\mathbf{G I}_{\mathbf{0}}$ can be obtained from Gentzen's $\mathbf{L K}$ (see [3]) simply by avoiding the rules for quantifiers (with corresponding modification of language) and replacing the rules

$$
\frac{A, \Gamma \rightarrow \Theta}{\Gamma \rightarrow \Theta, \neg A} \text { NES } \quad \frac{\Gamma \rightarrow \Theta, A}{\neg A, \Gamma \rightarrow \Theta} \text { NEA }
$$

by the rules

$$
\frac{A, \Gamma \rightarrow \Theta}{\Gamma \rightarrow \Theta, \neg A} \text { NES }^{\prime} \quad \frac{\Gamma \rightarrow \Theta, A}{\neg A, \Gamma \rightarrow \Theta} \text { NEA }^{\prime} \quad \text { where } A \notin \mathcal{S}
$$

respectively (with corresponding modification of the definition of deduction). The calculus $\mathbf{G I}_{\mathbf{1}}$ (respectively $\mathbf{G I}_{\mathbf{2}}$) is obtained from $\mathbf{G I}_{\mathbf{0}}$ when $\mathrm{NES}{ }^{\prime}$ is replaced by NES (respectively NEA' is replaced by NEA) with corresponding modification of the definition of deduction. $\mathbf{G I}_{\mathbf{3}}$ is $\mathbf{G I}_{\mathbf{0}}$ extended by a set of basic sequent of the form $S_{n}, \neg S_{n} \rightarrow S_{m}, \neg S_{m}$ where $S_{n}, S_{m} \in \mathcal{S}$ (with corresponding modification of the definition of deduction).

Cut-elimination theorem can be proved for each $\mathbf{G I}_{\boldsymbol{i}}(i \in\{0,1,2,3\})$ using the method presented in [3].

Theorem 7. For $i=0,1,2,3$:
$A \in \mathbf{I}_{\boldsymbol{i}} \quad$ iff \quad the sequent $\rightarrow A$ is deducible in $\mathbf{G I}_{\boldsymbol{i}}$.

References

[1] Arruda, A.I., "On the imaginary logic of N. A. Vasilev", in Proceedings of Fourth Latin-American Symposium on Mathematical Logic, North-Holland, 1979.
[2] Vojshvillo, E. K., Philosophical and Methodological Aspects of Relevant Logic, Moscow, 1988 (in Russian).
[3] Gentzen, G., Investigations in Logical Deductions. Mathematical Theory of Logical Deduction, Moscow, 1967 (in Russian).

V. M. Popov
Institute of Philosophy
the Russian Academy of Sciences
Volkhonka 14
Moscow 119842, Russia
smi@aha.ru

[^0]: * This work is supported by INTAS grant 95-0365.

