Logic and Logical Philosophy Volume 7 (1999), 87–90

V.M. Popov

ON THE LOGICS RELATED TO A. ARRUDA'S SYSTEM V1

Four logics I_0 , I_1 , I_2 , and I_3 related to A. Arruda's system V1 are considered. For each of them the semantics of descriptions of states in the style of E. K. Vojshvillo [2] is constructed, the question of characterizability by means of finite logical matrix is investigated and Gentzen-type sequent version is presented.

DEFINITION 1. The language \mathcal{L} is standard propositional language with alphabet $\langle \mathcal{S}, \&, \lor, \supset, \neg, \rangle, (\rangle$, where $\mathcal{S} = \{S_0, S_1, S_2, \ldots\}$ is the set of all propositional letters of \mathcal{L} . Let \mathcal{F} be the set of all formulæ of \mathcal{L} .

DEFINITION 2. Let $\mathbf{Cl}_{\&\vee\supset}$ be the set of all classical tautologies from \mathcal{F} which do not contain negation \neg .

DEFINITION 3. The logic \mathbf{I}_0 is the smallest subset of \mathcal{F} closed on the *modus* ponens and the rule of substitution such that $\mathbf{Cl}_{\&\vee\supset} \subseteq \mathbf{I}_0$ and for $A, B \in \mathcal{F}$:

- (1) $\neg (S_0 \supset S_0) \supset A \in \mathbf{I_0},$
- (2) if $A \notin \mathcal{S}$ then $(A \supset \neg(S_0 \supset S_0)) \supset \neg A \in \mathbf{I_0}$, and $(A \supset B) \supset ((B \supset \neg A) \supset \neg A) \in \mathbf{I_0}$,
- (3) if $A \notin S$ then $(A \supset (\neg A \supset \neg(S_0 \supset S_0)) \in \mathbf{I_0}$, and $((B \supset A) \supset A) \supset (\neg A \supset B) \in \mathbf{I_0}$.

^{*} This work is supported by INTAS grant 95-0365.

V.M. Popov

The definition of $\mathbf{I_1}$ (resp. $\mathbf{I_2}$) is obtained from the definition of $\mathbf{I_0}$ simply by avoiding the restriction on A in the clause (2) (resp. in the clause (3)) and replacing $\mathbf{I_0}$ by $\mathbf{I_1}$ (resp. by $\mathbf{I_2}$).

Note that I_1 is a set of all provable in V1 formulae which do not contain any occurences of "classical propositional letters" (in terms of [1]) provided that S is a set of all "Vasil'jev's propositional letters" in V1 (in terms of [1]).

To obtain the definition of I_3 add to the definition of I_0 (and then replace I_0 by I_3) the clause:

$$(4) \ A \supset (\neg A \supset ((B \supset \neg B) \supset \neg B)) \in \mathbf{I_3}.$$

DEFINITION 4. A description of state is a mapping of the set $\{S_0, \neg S_0, S_1, \neg S_1, S_2, \neg S_2, \ldots\}$ into the set $\{0, 1\}$. Let DS be the set of all descriptions of state.

DEFINITION 5. Let $v \in DS$. Then

v is complete	iff	for each $i \in \mathbb{N}$: $v(S_i) = 1$ or $v(\neg S_i) = 1$.
v is consistent	iff	for each $i \in \mathbb{N}$: $v(S_i) = 0$ or $v(\neg S_i) = 0$.
v is quasi-complete	iff	either $v(S_i) = 0$ and $v(\neg S_i) = 0$ for each $i \in \mathbb{N}$,
		or $v(S_i) = 1$ or $v(\neg S_i) = 1$ for each $i \in \mathbb{N}$.

DEFINITION 6. For each $v \in DS$, a mapping $| v : \mathcal{F} \to \{0, 1\}$ is specified as follows:

- (a) for each $i \in \mathbb{N}$: $|S_i|_v = v(S_i)$ and $|\neg S_i|_v = v(\neg S_i)$;
- (b) for each $A \notin \mathcal{S}$: $|\neg A|_v = 1$ iff $|A|_v = 0$;
- (c) for each $A, B \in \mathcal{F}$:

 $|A \& B|_v = 1 \quad \text{iff} \quad |A|_v = 1 \text{ and } |B|_v = 1;$ $|A \lor B|_v = 1 \quad \text{iff} \quad |A|_v = 1 \text{ or } |B|_v = 1;$ $|A \supset B|_v = 1 \quad \text{iff} \quad |A|_v = 0 \text{ or } |B|_v = 1.$

It is known that a formula is classical tautology iff $|A|_v = 1$ for every complete and consistent v in DS. Similar propositions can be proved for the systems under consideration.

THEOREM 1. $A \in \mathbf{I_0}$ iff for each $v \in \mathrm{DS}$: $|A|_v = 1$. THEOREM 2. $A \in \mathbf{I_1}$ iff for each complete $v \in \mathrm{DS}$: $|A|_v = 1$. THEOREM 3. $A \in \mathbf{I_2}$ iff for each consistent $v \in \mathrm{DS}$: $|A|_v = 1$.

89

THEOREM 4. $A \in \mathbf{I_3}$ iff for each quasi-complete $v \in \mathrm{DS}$: $|A|_v = 1$.

DEFINITION 7. Let $\mathfrak{M}_0 = \langle \{0, 1, t, f\}, \{1\}, \&^0, \lor^0, \supset^0, \neg^0 \rangle$ is logical matrix operations of which are defined by the following tableaux:

$x \&^0 y$	1	0	\mathbf{t}	f	$x\vee^0 y$	1	0	\mathbf{t}	f
1	1	0	1	0	1 0 t f	1	1	1	1
0	0	0	0	0	0	1	0	1	0
\mathbf{t}	1	0	1	0	\mathbf{t}	1	1	1	1
0 t f	0	0	0	0	f	1	0	1	0
	_								
$x \supset^0 y$					x	$\neg^0 x$		_	
1 0	1	0	1	0	1	0 1 1 0			
0	1	1	1	1	0		1		
t f	1	0	1	0	\mathbf{t}		1		
f	1	1	1	1	f		0		

Let $\mathfrak{M}_1 = \langle \{0, 1, t\}, \{1\}, \&^1, \lor^1, \supset^1, \neg^1 \rangle$ and $\mathfrak{M}_2 = \langle \{0, 1, f\}, \{1\}, \&^2, \lor^2, \supset^2, \neg^2 \rangle$ are submatrices of \mathfrak{M}_0 (where $\&^1$ and $\&^2$ are the results of corresponding narrowing of $\&^0$; similarly for all other operations in \mathfrak{M}_1 and \mathfrak{M}_2).

DEFINITION 8. An evaluation of \mathcal{F} in the matrix \mathfrak{M}_i (for i = 0, 1, 2) is a mapping v from \mathcal{F} into a carrier of the matrix \mathfrak{M}_i such that $v(\neg A) = \neg^i v(A)$ and $v(A \circ B) = v(A) \circ^i v(B)$ where $\circ \in \{\&, \lor, \supset\}$.

DEFINITION 9. An evaluation v of \mathcal{F} in \mathfrak{M}_i (i = 0, 1, 2) is quasi-complete iff either $v(S_i) \neq t$ for every $i \in \mathbb{N}$, or $v(S_i) \neq f$ for every $i \in \mathbb{N}$.

Then the following theorems can be proved by means of the modification of Henkin's method.

THEOREM 5. For i = 0, 1, 2:

 $A \in \mathbf{I}_i$ iff for each evaluation v of \mathcal{F} in \mathfrak{M}_i : $|A|_v = 1$.

THEOREM 6. $A \in \mathbf{I}_3$ iff for each quasi-complete evaluation v of \mathcal{F} in \mathfrak{M}_0 : $|A|_v = 1$.

V.M. Popov

Sequent calculus GI_0 can be obtained from Gentzen's LK (see [3]) simply by avoiding the rules for quantifiers (with corresponding modification of language) and replacing the rules

$$\frac{A, \Gamma \to \Theta}{\Gamma \to \Theta, \neg A} \text{ NES } \qquad \frac{\Gamma \to \Theta, A}{\neg A, \Gamma \to \Theta} \text{ NEA}$$

by the rules

$$\frac{A, \Gamma \to \Theta}{\Gamma \to \Theta, \neg A} \text{ NES'} \qquad \qquad \frac{\Gamma \to \Theta, A}{\neg A, \Gamma \to \Theta} \text{ NEA'} \qquad \text{where } A \notin \mathcal{S}$$

respectively (with corresponding modification of the definition of deduction). The calculus **GI**₁ (respectively **GI**₂) is obtained from **GI**₀ when NES' is replaced by NES (respectively NEA' is replaced by NEA) with corresponding modification of the definition of deduction. **GI**₃ is **GI**₀ extended by a set of basic sequent of the form $S_n, \neg S_n \rightarrow S_m, \neg S_m$ where $S_n, S_m \in \mathcal{S}$ (with corresponding modification of the definition of deduction).

Cut-elimination theorem can be proved for each \mathbf{GI}_i $(i \in \{0, 1, 2, 3\})$ using the method presented in [3].

THEOREM 7. For i = 0, 1, 2, 3: $A \in \mathbf{I}_i$ iff the sequent $\rightarrow A$ is deducible in \mathbf{GI}_i .

References

- [1] Arruda, A.I., "On the imaginary logic of N. A. Vasil'ev", in *Proceedings of Fourth Latin-American Symposium on Mathematical Logic*, North-Holland, 1979.
- [2] Vojshvillo, E.K., Philosophical and Methodological Aspects of Relevant Logic, Moscow, 1988 (in Russian).
- [3] Gentzen, G., Investigations in Logical Deductions. Mathematical Theory of Logical Deduction, Moscow, 1967 (in Russian).

V. M. POPOV Institute of Philosophy the Russian Academy of Sciences Volkhonka 14 Moscow 119842, Russia smi@aha.ru

90