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OF MINIMALITY

Abstract. Operators which map subsets of a given set to the set of their min-
imal elements with respect to some relation R form the basis of a semantic
approach in non-monotonic logic, belief revision, conditional logic and up-
dating. In this paper we investigate operators of this type from an algebraic
viewpoint. A representation theorem is proved and various properties of the
resulting algebras are investigated. It is shown that they behave quite differ-
ently from known algebras related to logics, e.g. modal algebras and Heyting
algebras.
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In “Five Faces of Minimality” D. Makinson [12] has surveyed the use of
operators mR which — when applied to a set X — form the set of minimal
elements mRX in X with respect to some relation R in non-monotonic logic,
belief revision, conditional logic, updating, and conditional deontic logic. By
now it is generally accepted that operators of this type form the basis of a
semantic approach in all those areas.
In this paper we shall abstract from specific applications and investigate

the behaviour of minimality operators from an algebraic perspective. Switch-
ing from the intended semantics for a language (e.g., models for first order
logics, Kripke frames for modal logics) to algebras is a well understood and
rather useful move, see e.g. Henkin et al. [11], Blok [1], and Goldblatt [7].
It enables us to use techniques from universal algebra to solve problems
formulated in terms of the underlying logic. There is, however, at least one
more motivation to investigate algebras induced by minimality operators:
non-monotonic logic as well as logics involving conditionals are known to be-
have quite differently from standard logics like classical propositional logic,
intuitionistic logic, or modal logics. This difference should be reflected (and
at least partially explained) by means of the algebraic properties of the
algebras induced by the minimality operator. For example, members of va-
rieties (equationally definable classes) of algebras related to logics mostly
have rather well behaved congruences (e.g. equationally definable principal
congruences or at least first order definable congruences, see e.g. Blok and
Pigozzi [2] and [3]). Properties of the congruences often reflect interesting
properties of the associated logic. If it is true that there is an essential differ-
ence between non-monotonic and monotonic logics, then we should expect
congruences to show some unusual features which do not appear in, say,
Boolean algebras, Heyting algebras, or Modal algebras.
In order to explain the objective of our investigation more precisely,

some notation is required. Form for any relational structure F = 〈W,R〉 the
boolean algebra with an operator F+ = 〈2W ,∩,−,mR, ∅,W 〉, where

mRX = {y ∈ X : (∀x ∈W )(yRx⇒ x 6∈ X)}.

Interpreting the elements of W as worlds and the relation R as a preference
relation (or normality relation) between worlds, then — following the basic
idea of Kraus, Lehmann and Magidor [10] — a defeasible inference relation
X ⊢ Y between propositions X and Y holds iff Y is true in every world that
is minimally abnormal among those satisfying X. That is to say, X ⊢ Y
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The Algebraic Face of Minimality 227

iff mRX ⊆ Y . We have a reduction of ⊢ to the minimality operator mR.
The situation is a bit more complex in the other areas mentioned above (cf.
[12]), but still the minimality operator is the basic operation to which the
inference relation is reduced.
Above we moved from the relational structure F to the algebra F+. By

omitting also the reference to the setW we obtain the varietyM of algebras
A = 〈A,∧,¬, f, 0, 1〉 generated by the algebras of the form F+.M will turn
out to coincide with the class of representable algebras; that is to say, A ∈M

iff A is isomorphic to a subalgebra of an algebra of the form 〈W,R〉+.1 The
members of M are called min-algebras.
In this paper we are going to address the following problems:

• Axiomatize the variety of min-algebras. That is to say, characterize in al-
gebraic terms the algebras for which f can be interpreted as a minimality
operator.

• Axiomatize the varieties generated by interesting classes of relational
structures, e.g., transitive structures, linear structures, and noetherian
structures.

• Which properties of the relational structure 〈W,R〉 can be described by
means of algebraic properties of 〈W,R〉+?

• Develop duality theory for min-algebras and relational structures.

• Investigate the min-algebras from an algebraic point of view. Here we
shall consider only the congruences of min-algebras. They turn out to
be not first order definable and behave differently from known varieties
related to logics.

• Finally we briefly study splittings of lattices of subvarieties of the va-
riety of min-algebras. This concept enables us to give rather intuitive
axiomatizations of various varieties of min-algebras.

We close the introduction with a remark about the relation between modal
algebras and min-algebras. Min-algebras are ordinary Boolean algebras with
an operator. However, from this class of algebras only those with an oper-
ator f validating the equation fx ∧ fy = f(x ∧ y) have been investigated
intensively, see e.g. [7] and [4]. This equality does not hold for min-algebras.
Moreover, the operator f in min-algebras is not monotonic (i.e., we do not

1 In this paper we consider boolean algebras with the minimality operator. Of course,
it would be of interest to consider algebras with less structure, e.g., distributive lattice
or Heyting algebras with the minimality operator. We decided to take Boolean algebras
because we should like to concentrate on the minimality operator and therefore want the
simplest underlying algebra for the remaining operations.
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228 Frank Wolter

have x ≤ y ⇒ fx ≤ fy) and it is this property which enables us to model
non-monotonic reasoning: the inference relation ⊢ defined by putting x ⊢ y
iff fx ≤ y is non-monotonic iff f is not monotonic.
To keep the paper reasonably short we assume basic knowledge of al-

gebraic notions and duality between boolean algebras and Stone spaces (or
modal algebras and descriptive frames) see e.g. [8] and [7].

Acknowledgement. The author is grateful to Michael Zakharyaschev for var-
ious discussions on the paper.

1. Axiomatization

We are first going to axiomatize the variety of min-algebras and show that
it coincides with the class of representable algebras. To this end we require
the following set of equations Ax:

(sub) fx ≤ x,

(dis) f(x ∨ y) ≤ f(x) ∨ f(y) and fx ∧ fy ≤ f(x ∨ y),

(ex) y ∧ f(x ∨ y) ≤ fy.

We shall prove that Ax (together with a set of equations axiomatizing the
variety of Boolean algebras) axiomatizes the variety M . Observe first the
easily proved

Proposition 1.1. (Soundness) For all relational structures 〈W,R〉 the al-
gebra 〈W,R〉+ validates all equations in Ax.

Lemma 1.2. If A = 〈A,∧,¬, f, 0, 1〉 is a boolean algebra with an operator
which validates all equations in Ax, then the following holds for all a, b1,
. . . , bn in A:

fb1 ∧ . . . ∧ fbn ∧ a ∧ ¬fa > 0 implies ¬b1 ∧ . . . ∧ ¬bn ∧ a > 0.

Proof. Suppose that ¬b1∧. . .∧¬bn∧a = 0. Then a∨b1∨. . .∨bn = b1∨. . .∨bn.
Now we derive

fb1 ∧ . . . ∧ fbn ∧ a ∧ ¬fa ≤ f(b1 ∨ . . . ∨ bn) ∧ a ∧ ¬fa

= f(b1 ∨ . . . ∨ bn ∨ a) ∧ a ∧ ¬fa

≤ fa ∧ ¬fa

= 0 2

To prove completeness we extend the notion of a relational structure
to the notion of generalized min-structures. This will also be useful in the
section on duality.
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A generalized min-structure is a tuple G = 〈W,R,P〉 such that 〈W,R〉 is
a structure and P is a set of subsets of W containing W and closed under
intersection, complement, and the operation mR. It follows from Proposi-
tion 1.1 that the algebra G+ = 〈P,∩,−,mR, ∅,W 〉 is a min-algebra whenever
G is a generalized min-structure. A structure 〈W,R〉 is identified with the
generalized min-structure 〈W,R, 2W 〉.
Conversely, define for an algebra A validating all equations in Ax the

structure Amax = 〈W,R,P〉 as follows:

• W is the set of all ultrafilters in the boolean reduct of A.

• uRv iff (∀a ∈ A)(fa ∈ u⇒ a 6∈ v).

• P = {β(a) : a ∈ A}, where β(a) = {u ∈W : a ∈ u}.

Consider now an ultrafilter u ∈ W such that ¬fa ∈ u, for all a ∈ A. Then
uRv for all v ∈ W . This follows from the definition of R. We have fx ≤ x,
for all x ∈ A, and so the following conditions are equivalent (in Amax) for
any u ∈W :

• uRu,

• ¬fa ∈ u, for all a ∈ A

• uRv, for all v ∈W .

Sometimes it will turn out to be useful to omit some of the arrows starting
at a reflexive u. Define Amin = 〈W,S,P〉 in such way that W and P are
defined as before but uSv iff uRv & not uRu or u = v and uRv. Certainly
S ⊆ R and Amin = Amax whenever there is no reflexive point in Amax.
A dual min-structur is any 〈W,R′,P〉 such that S ⊆ R′ ⊆ R. Observe

mRX = mSX = mR′X,

for any R′ with S ⊆ R′ ⊆ R and any X ⊆ W . In conclusion there exists a
dual min-structure of A which is a generalized min-structure iff all dual min-
structures of A are generalized min-structures. This turns out to be the case:

Theorem 1.3. For any algebra A validating all equations in Ax any dual
min-structure A+ = 〈W,R

′,P〉 of A is a generalized min-structure and the
mapping β:A→ (A+)

+ is an isomorphism.

Proof. Most parts of the proof are standard, see e.g. Goldblatt [7]. So we
only show β(fa) = mR′β(a), for all a ∈ A and leave the rest to the reader.
Since mRX = mR′X whenever R is the relation in Amax and X ⊆ W , it
suffices to show

β(fa) = mRβ(a), for all a ∈ A.
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230 Frank Wolter

Let a ∈ A. We have

u ∈ β(fa) ⇒ fa ∈ u

⇒ a ∈ u and (∀v)(uRv ⇒ a 6∈ v)

⇒ u ∈ β(a) and (∀v)(uRv ⇒ v 6∈ β(a))

⇒ u ∈ mRβ(a).

For the converse direction assume u 6∈ β(fa). Then fa 6∈ u. If a 6∈ u, then
u 6∈ mRβ(a). Assume a ∈ u. We show that there exists v ∈ W with a ∈ v
and uRv. To this end we prove the finite meet property of

F = {¬b : fb ∈ u} ∪ {a}.

But suppose there are bi with fbi ∈ u (i = 1, . . . , n) such that ¬b1 ∧ . . . ∧
¬bn ∧ a = 0. Then, by Lemma 1.2, fb1 ∧ . . . ∧ fbn ∧ a ∧ ¬fa = 0 which is
impossible. Any ultrafilter v containing F is as required. 2

Theorem 1.4. (Completeness) Let A = 〈A,∧,¬, f, 0, 1〉 be a boolean alge-
bra with an operator f . The following conditions are equivalent:
(1) A validates all equations in Ax;
(2) there exists 〈W,R〉 such that A is a subalgebra of 〈W,R〉+;
(3) A is a min-algebra.

Proof. (1) implies (2). Suppose that A |= Ax. Let Amin = 〈W,R,P〉. Then,
by the previous theorem, 〈W,R,P〉+ is isomorphic to A and so A is isomor-
phic to a subalgebra of 〈W,R〉+.
(2) implies (3) is trivial.
(3) implies (1) follows from Proposition 1.1. 2

For a class of algebras A we denote by V(A ) the variety generated byA .
Put V(A) := V({A}), for any algebra A. For a class of relational structures
R we denote by V(R) the subvariety ofM generated by {F+ : F ∈ R}. One
of the most interesting subvarieties of M is of course the variety generated
by the class of transitive relational structures. Denote this variety by TR.
The class of transitive and linear structures is denoted by L and the class of
transitive and noetherian structures (i.e., structures without infinite strictly
ascending chains) is denoted by N .
In what follows we require some notation for valuations in an algebra.

A valuation γ in an algebra A is a homomorphism from the algebra of all
terms (over the signature ∧, ¬, f , 0, 1) into the algebra A. Let G = 〈W,R,P〉
be a generalized min-structure. A mapping from the algebra of terms into
P is called a valuation in G iff it is a valuation in G+. We axiomatize the
variety TR.
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The Algebraic Face of Minimality 231

Theorem 1.5. For any min-algebra A the following conditions are equiva-
lent:
(1) A |= ϕ, where ϕ = fx ≤ ¬((χ ∧ ¬fχ) ∧ ¬f(χ ∧ ¬fχ)) and χ = fy ∨ x;
(2) A ∈ TR.

Proof. We leave it to the reader to check that ϕ is valid in all duals of
transitive structures. Conversely, we show that Amin is transitive whenever
A |= ϕ. Assume that Amin is not transitive. We find ultrafilters u1, u2, and u3
such that u1Ru2Ru3 but ¬(u1Ru3). Notice that we took Amin and therefore
u1 and u2 are irreflexive. This means that we find a, b ∈ A with fa ∈ u1
but a ∈ u3 and fb ∈ u2. Define a valuation γ in A by putting γ(x) = a and
γ(y) = b. We show

γ(fx ∧ ((χ ∧ ¬fχ) ∧ ¬f(χ ∧ ¬fχ))) ∈ u1.

Clearly fa ∈ u1, fb ∨ a ∈ u1, and ¬f(fb ∨ a) ∈ u1 since fb ∨ a ∈ u2. It
remains to show

¬f((fb ∨ a) ∧ ¬f(fb∨ a)) ∈ u1.

To this end it suffices to show

(fb ∨ a) ∧ ¬f(fb ∨ a) ∈ u2.

Clearly fb ∨ a ∈ u2. Moreover, fb ∨ a ∈ u3 and so ¬f(fb ∨ a) ∈ u2. 2

In the proof above it is essential to take Amin since, for example, Amax is
mostly not transitive. We discuss this in more detail and thereby give a par-
tial answer to the question which properties of 〈W,R〉 can be characterized
by means of algebraic properties of 〈W,R〉+. For a generalized min-structure
G = 〈W,R,P〉 we can always form

Gmax = 〈W,Rmax,P〉,

where Rmax = R ∪ {〈u, v〉 ∈W ×W : uRu}, and

Gmin = 〈W,Rmin,P〉,

where Rmin = {〈u, u〉 ∈W×W : uRu}∪{〈u, v〉 ∈W×W : uRv & not uRu}.
Both Gmin as well as Gmax are generalized min-structures and

G+ = G+max = G
+

min
.

In other words, the algebraic language is not expressive enough to feel
whether arrows start from a reflexive point or not. It follows, for exam-
ple, that various natural classes of relational structures 〈W,R〉— like the
class of transitive structures and the class of linear structures — cannot be
characterized by means of algebraic conditions for 〈W,R〉+.
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232 Frank Wolter

2. Duality

In this section we shall develop some pieces of duality theory for generalized
min-structures and min-algebras. We are mainly interested in the relational
duals of algebraic homomorphisms. Given their characterization standard
duality theory between, say, modal algebras and Kripke-frames (see Gold-
blatt [7]) is easily translated into duality results between min-algebras and
generalized min-structures. We leave this to the interested reader. First we
characterize the relational dual of subalgebras.

Definition 2.1. Suppose that G = 〈W,R,P〉 and F = 〈V, S,Q〉 are general-
ized min-structures. A mapping g from W onto V is a p-morphism iff

uRminv ⇒ g(u)Smaxg(v),

g(u)Sminv ⇒ ∃w uRmaxw & g(w) = v,

X ∈ Q ⇒ g−1(X) ∈ P.

Modulo the difference between Rmin and Rmax this is the usual definition
of p-morphisms for Kripke-frames. It follows that again the main difference
between the modal language and the minimality operator is based upon
reflexive points.

Theorem 2.2. (1) If a min-algebra B is a subalgebra of a min-algebra A

then g:A+ → B+ defined by

g(u) = u ∩B, for all ultrafilters u in A,

is a p-morphism from A+ onto B+.

(2) If g is a p-morphism from G onto F , then the mapping g+:F+ → G+

defined by
g+(X) = g−1(X), for all X ∈ F+,

is an embedding of F+ into G+.

Proof. (1) Assume that A+ = 〈W,R,P〉 and B+ = 〈V, S,Q〉. Suppose
uRminv. We show g(u)Smaxg(v). To this end assume g(u) ∈ mSβa. Then
g(u) ∈ βfa and so u ∈ βfa. Hence fa ∈ u and so u ∈ mRβa and v 6∈ βa.
This holds for all a ∈ B and so g(u)Smaxg(v).
Now let g(u)Sminv. To construct w s.t. uRmaxw & g(w) = v, it suffices

to show that the set
{¬a : fa ∈ u} ∪ (v ∩B)
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has the finite meet property. Suppose otherwise. Then

¬a1 ∧ . . . ∧ ¬an ∧ b = 0

for some ai ∈ u and b ∈ v. Since g(u)Sv, we have ¬fb ∈ u.
Case 1: b ∈ u. Then fa1 ∧ . . . ∧ fan ∧ b ∧ ¬fb 6= 0 and we arrive at a

contradiction with Lemma 1.2.
Case 2: b 6∈ u. Then g(u) 6= v. Since g(u)Sminv, g(u) is irreflexive. So

there is c such that fc ∈ u ∩B. Then

fc ∧ fa1 ∧ . . . ∧ fan ∧ (c ∨ b) ∧ ¬f(c ∨ b) ∈ u.

So by Lemma 1.2 above,

¬c ∧ ¬a1 ∧ . . . ∧ ¬an ∧ (c ∨ b) > 0,

in contrast to our assumption.

(2) is easy and left to the reader. 2

Consider now the duals of homomorphisms.

Definition 2.3. Let F = 〈W,R,P〉 be a generalized min-structure. Let
V ⊆ W be Rmin-closed, i.e. v ∈ V whenever u ∈ V , v ∈ W and uRminv.
Then

G = 〈V,R ∩ (V × V ), {X ∩ V : X ∈ P}〉

is a generalized min-structure as well and we call it a generated subframe
of F .

Theorem 2.4. (1) If G = 〈V, S,Q〉 is a generated subframe of F = 〈W,R,P〉,
then the mapping g defined by

g(X) = X ∩ V, for X ∈ P,

is a homomorphism from F+ onto G+.

(2) If g is a homomorphism from a min-algebra A onto a min-algebra B,
then g+ defined by

g+(u) = g
−1(u), u an ultrafilter in B,

is an isomorphism from Bmin onto a generated subframe of Amin.
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Proof. The proof of (1) is easy and left to the reader. (2) Assume that
Amin = 〈W,Rmin,P〉 and Bmin = 〈V, Smin,Q〉. Now let V

′ denote the set
of ultrafilters u in W such that g−1(1) = {b ∈ A : g(b) = 1} ⊆ u. The
claim is shown if (a) V ′ is Rmin-closed, i.e., if g

−1(1) ⊆ u and uRminv,
then g−1(1) ⊆ v. (b) g+ is an isomorphism from Bmin onto the generated
subframe of Amin induced by V

′. (b) is proved in a straightforward manner.
(a) Suppose g−1(1) ⊆ u and uRminv. The claim is trivial for u = v. To
prove the claim for u 6= v observe that we find — because uRminv— an
a ∈ A with fa ∈ u. Let g(b) = 1. We are going to show b ∈ v. We have
g(f(a ∨ ¬b)) = g(fa). So g(fa ∧ ¬f(a ∨ ¬b)) = 0. Since fa ∈ u, we have
¬f(a ∨ ¬b) 6∈ u. Thus f(a ∨ ¬b) ∈ u and so b ∈ v. 2

3. Congruences

In this section we characterize the congruences in min-algebras and prove
some basic properties. In Boolean algebras we have a one-one correspondence
between ideals and congruences, see e.g. [8]. It does not come as a surprise
that the congruences of a min-algebra correspond to ideals of the boolean
reducts which satisfy one more condition.

Definition 3.1. Let A be a min-algebra. A subset I of A is called a min-ideal
iff the following holds:

• 0 ∈ I,

• if a, b ∈ I, then a ∨ b ∈ I,

• if a ∈ I and b ≤ a, then b ∈ I,

• if a ∈ I and b ∈ A, then fb ∧ ¬f(b ∨ a) ∈ I.

In what follows we sometime write a− b for a ∧ ¬b.

Theorem 3.2. Let A be a min-algebra. Let σ be a mapping from the lattice
of congruences of A to the lattice of min-ideals defined by

σΘ = {a : (a, 0) ∈ Θ}.

Then σ is a surjective isomorphism. The inverse mapping is given by

σ−1(I) = {(a, b) : (a− b) ∨ (b− a) ∈ I}.

Proof. Clearly σΘ is a min-ideal whenever Θ is a congruence. Conversely,
suppose that I is a min-ideal. We show σ−1(I) is a congruence. Modulo
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some boolean considerations the essential step is to prove for all a, b ∈ A that
(a, b) ∈ σ−1(I) implies (fa, fb) ∈ σ−1(I). To this end assume (a, b) ∈ σ−1(I).
It suffices to show fa− fb ∈ I. But

fa− fb ≤ (fa ∧ ¬f(a ∨ (b− a)) ∨ f(a− b)

can be checked easily using duality. We have f(a − b) ∈ I since a − b ∈ I.
Also fa ∧ ¬f(a ∨ (b− a)) ∈ I since b− a ∈ I and I is a min-ideal. 2

This characterization of congruences by means of min-ideals is rather
convenient. However, congruences in min-algebras do not behave as well as
congruences in standard varieties corresponding to logics. The main reason
is that principal ones are not first order definable even for the variety TR.
For a min-algebra A and an element b of A we denote by 〈b〉 the min-ideal
generated by b. (This corresponds to the congruence generated by (b, 0)).
We write A |= a ∈ 〈b〉 if a ∈ 〈b〉.

Theorem 3.3. There does not exist a first order formula χ(x, y) such that
for all A ∈ TR and all a, b ∈ A

A |= χ(a, b)⇔ A |= a ∈ 〈b〉.

Proof. Assume that there exists a formula χ(x, y) which defines principal
congruences. Let

An = 〈{0, 1, . . . , n}, <〉
+,

for n ∈ ω. Then An |= 1 ∈ 〈f1〉, as is easily checked. So An |= χ(1, f1), for
n ∈ ω. Take a non-principal ultrafilter U in 2ω and form the ultraproduct

A =
∏

U

〈An : n ∈ ω〉.

We have A |= χ(1, f1). But notice that the set

{c ≤
∨
〈fa : a ∈ X〉 : X ⊆ A finite }

is a min-ideal in A containing f1 which does not contain 1. This can be
checked by using well-known properties of ultraproducts, see e.g. [5]. Thus
A 6|= 1 ∈ 〈f1〉 and we have a contradiction. 2

We actually proved a stronger result. The algebras An are in V(N ∩
L ). Thus even for this variety the principal congruences are not first order
definable.
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The sequence An is of interest also for another reason: notice firstly that
it is easy to show that

V({An : n ∈ ω}) = V(L ∩N ).

Define 〈W,R,P〉 by putting:

• W = ω ∪ {∞}.

• uRv if u, v ∈ ω and u > v or u =∞.

• X ∈ P iff X is finite and ∞ 6∈ X or X is cofinite and ∞ ∈ X.

We have 〈W,R,P〉+ ∈ V(L ∩N ) and so 〈W,Rmin,P〉
+ ∈ V(L ∩N ).

{∞} is Rmin-closed. By duality, Theorem 2.4, 〈{∞}, 〈∞,∞〉〉
+ ∈ V(L ∩N ).

That is to say, the dual of the reflexive point is in the variety generated by
the class of duals of structures in N ∩ L . It follows that the classes N

and L ∩ N cannot be characterized by means of algebraic properties of
min-algebras. (Recall that both classes can be characterized by means of
algebraic properties of modal algebras, cf. [4]).
We close this section with a remark about subdirectly irreducible (s.i.)

min-algebras. Recall that an algebra A is s.i. iff there exists a smallest
non-trivial congruence Θ in A. For modal algebras there is a convenient
characterization of finite s.i. algebras by means of their duals. For a finite
structure 〈W,R〉 we call r ∈ W a root of 〈W,R〉 if rR∗u, for any u ∈ W .
Here R∗ is the transitive and reflexive closure of R. 〈W,R〉 is rooted iff it
has a root. A modal algebra A is s.i. iff its dual has a root, see e.g. [4]. In
the case of min-algebras we have to take care of reflexive points again:

Theorem 3.4. Let A be a finite min-algebra. The following conditions are
equivalent:
(1) A is subdirectly irreducible;
(2) Amin has a root.

The simple proof is left to the reader.

4. Splittings

The equation which axiomatizes TR is rather lengthy and certainly not
intuitive. This turns out to be the case for many interesting subvarieties of
M . In this section we (briefly) present an alternative geometrical way to
characterize varieties, namely by means of splittings or subframe splittings.
We shall not go into the details but sketch the main ideas. Since the varieties

© 1998 by Nicolaus Copernicus University



The Algebraic Face of Minimality 237

of interest are contained in TR we restrict the investigation to splittings in
the lattice of subvarieties of TR.

Definition 4.1. Let A ∈ TR be a finite and subdirectly irreducible algebra.
We say that A splits TR if there exists a largest variety V ⊆ TR such that
A 6∈ V . The variety V is then denoted by TR/A.

For information about splittings and their use for studying lattices of
logics we refer the reader to [13], [1], [9], and [14].
In contrast to the situation in modal logic not every finite s.i. algebra

splits TR. Let B = 〈{0}, {〈0, 0〉}〉+ . B is s.i. but does not split. For assume
that B splits and let V = TR/B. Then An ∈ V for all n ∈ ω, where the
algebras An are from the proof of Theorem 3.3. But we have shown already
that B ∈ V({An : n ∈ ω}) and so B ∈ V which is a contradiction.

B turns out to be the only finite s.i. algebra which does not split TR.
To sketch the proof we shall work with generalized min-structures instead of
algebras. We know, by Theorem 3.4, that a finite min-algebra A is s.i. iff Amin

has a root. Notice also that Amin is actually a relational structure. That is
to say, for Amin = 〈W,R,P〉 we have P = 2W . So, in order to study splittings
by finite s.i. algebras it suffices to study splitting by algebras 〈W,R〉+ such
that 〈W,Rmin〉 has a root.
Consider a finite structure G = 〈W,R〉 with root 0, take for any u ∈ W

a variable xu, and define the following terms:

• t1 =
∧
〈¬fxu : uRu〉

• t2 =
∧
〈xu → ¬f(xu ∨ xv) : uRv〉

• t3 =
∧
〈xu → f(xu ∨ xv) : ¬(uRv),¬(uRu)〉

• t4 =
∧
〈xu → ¬xv : u 6= v〉

• t5 =
∨
〈xu : u ∈W 〉

Put S(G) =
∧
〈ti : 1 ≤ i ≤ 5〉 and SP(G) = S(G) ∧ fx0 ∧ f(x0 ∨ ¬S(G)).

Theorem 4.2. Let G = 〈W,Rmin〉 be a finite and rooted transitive structure.
Then G+ splits TR iff the root of G is irreflexive (iff W is the irreflexive
point or has at least two points.)
Moreover, if G+ splits TR, then TR/G+ is axiomatized by adding the

equation SP(G) = 0 to the axiomatization of TR.

Proof. Let G have an irreflexive root. The Theorem follows immediately
from the following
Claim. For all A ∈ TR: A 6|= SP = 0 iff G+ ∈ V(A).
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The proof of the direction from right to left is easy: define a valuation
γ in G by putting γ(xu) = {u}, for all u ∈ W . Then γ(S(G)) = 1 and
therefore γ(SP(G)) = {0}. We have proved G+ 6|= SP(G) = 0. Now suppose
G+ ∈ V(A). Then any equation which is valid in A is also valid in G+ and
so A 6|= SP(G) = 0.
Conversely, suppose that A 6|= SP(G) = 0. Let A+ = 〈V, S,Q〉. We find a

valuation γ in A+ such that γ(SP(G)) 6= ∅. Take w ∈ γ(SP(G)) and consider

F = 〈V ′, S ∩ (V ′ × V ′), {V ′ ∩X : X ∈ P}〉

where V ′ = {w′ ∈ V : wS∗w′}. F is a generated substructure of A+. Let

γ∗(xu) = γ(xu) ∩ V
′, for u ∈W.

Clearly γ∗ is a valuation in F . Moreover, γ∗(S(G)) = V ′. Define a mapping
g from V ′ onto W by putting

g(w) = u iff w ∈ γ∗(xu).

Using the conjuncts t4 and t5 of S(G) it is readily checked that g is well
defined and onto. Using the conjuncts t2, t3, and t4 one can show that g
is a p-morphism from F onto 〈W,R〉. It follows that 〈W,R〉 is a p-morphic
image of a generated substructure of A+. By duality, Theorems 2.2 and 2.4,
G+ is a subalgebra of a homomorphic image of A, and so G+ ∈ V(A). 2

We easily obtain axiomatizations of various subvarieties of TR. For ex-
ample, the variety V({〈W,R〉 : ∀w∃v(wRv)}) coincides with TR/A, where
A = 〈{0}, ∅〉+.
However, to axiomatize V(N ) and V(L ) another form of splittings is

more useful.2We are alluding to the notion of subframe splittings introduced
for varieties of modal algebras in [6] and [14]: for a finite structure G = 〈W,R〉
let S′(G) =

∧
〈ti : 1 ≤ i ≤ 4〉 and

SP ′(G) = S′(G) ∧ fx0 ∧ f(x0 ∨ ¬S
′(G)).

The only difference between S(G) and S′(G) consists in the omission of the
conjunct t5. In other words, from u ∈ γ(SP

′(G)) it does not follow that
w ∈

⋃
{γ(xu) : u ∈ W} for all w with uS

∗w. We explain the meaning of

2 We note that it is possible to axiomatize the variety V(L ) by means of (iterated)
splittings, but that V(N ) is not axiomatizable in this manner.
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SP ′(G) by means of the notion of a substructure: Consider a generalized
min-structure F = 〈V, S,Q〉 and V ′ ∈ Q. Then the structure

〈V ′, S ∩ (V ′ × V ′), {X ∩ V ′ : X ∈ Q}〉

is a generalized min-structure as well and we call it a substructure of F .
Now one can easily show that for any finite transitive G = 〈W,Rmin〉 with
an irreflexive root and all transitive F = 〈V, S,Q〉 the following conditions
are equivalent:

• F+ 6|= SP ′(G) = 0,

• there exists a substructure F ′ of F such that G is a p-morphic image of
a generated subframe of F .

The following axiomatizations are easily proved with the help of this
observation:

Theorem 4.3. (1) Let G = 〈{0, 1}, {〈0, 1〉, 〈1, 1〉}〉. Then V(N ) is axioma-
tized by adding SP ′(G) = 0 to the axiomatization of TR.

(2) Let F = 〈{0, 1, 2}, {〈0, 1〉, 〈0, 2〉}〉. Then V(L ) is axiomatized by
adding SP ′(F) = 0 to the axiomatization of TR.

5. Conclusion

In this paper we have investigated basic properties of algebras induced by
minimality operators. It turned out that — when compared with standard
algebras related to logics — the resulting min-algebras show some unusual
and interesting features. However, from the algebraic perspective we cer-
tainly scratched the surface only and various questions remain. We mention
here the following problems:

• Investigate the lattice of subvarieties of M in more detail. Compare it
with the lattice of modal varieties.

• Characterize the definable relational structures. That is to say, classes of
structures of the form {〈W,R〉 : 〈W,R〉+ ∈ V }, for some variety V ⊆M .

In this paper we did not apply min-algebras to obtain directly new insight
into non-monotonic logics or conditional logics. However, we believe that the
algebraic perspective should form an interesting tool to understand those
logics and that the results presented here form a good basis to start such an
enterprise. But this claim remains to be justified.
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