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Abstract. In the paper n-valued paraconsistent matrices are defined by an

adaptation of the well-known Łukasiewicz’s matrices. An appropriate set of

axioms is presented and the 3-valued case is examined.
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In this paper we shall make an attempt to find a solution to a problem
concerned with finitely many-valued paraconsistent logics. The idea of de-
veloping them was one of the items on the list of open problems posed by
D’Ottaviano in [3] (for related aspects of many-valued paraconsistent logics,
see [2]).
We shall define n-valued matrices, for any natural number n > 2 un-

der which a theory may be both syntactically inconsistent and non-trivial.
The way the class of finitely many-valued logics (understood as sets of tau-
tologies) is obtained appears to be a simple and elegant modification of
Łukasiewicz’s well-known idea, which seems advantageous.

1. Definition

We define a paraconsistent matrix by simple adaptation of the well-known
n-valued Łukasiewicz matrix. Moreover, the n-valued Łukasiewicz matrix is
a submatrix of the matrix we define, which entails that all the tautologies
we obtain are n-valued tautologies.
The n-valued Łukasiewicz matrix is the following structure

Mn = 〈〈An, f
→, f&, f∨, f¬〉, {1}〉(1)

for any natural number n > 1, where

An = {k/(n − 1) : k = 0, 1, . . . , n − 1}.

1 is the designated element, and for x, y ∈ An, we define

f
→(x, y) = min{1− x+ y, 1},

f
&(x, y) = min{x, y},

f
∨(x, y) = max{x, y},

f
¬(x) = 1− x.

The present plan is to modify the n-valued matrix by supplementing
An, with an additional value p > 1; in this way we obtain an (n+1)-valued
matrix Mnp, still with one designated element 1. We define the matrix’s
domain

Anp = An ∪ {p}
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and extend the truth tables by setting for all x, y ∈ Anp:

f
→(x, y) =

{

y if x = p and y ∈ An

min{1 − x+ y, 1} otherwise

f
&(x, y) = min{min{x, y}, 1}

f
∨(x, y) = min{max{x, y}, 1}

f
¬(x) =

{

1 if x = p
1− x otherwise

The set of tautologies of Mnp turns out to be quite rich. Of the axioms
of n-valued Łukasiewicz logic, contraposition (¬B → ¬A)→ (A→ B) is the
only one that fails (whenever A takes the value p and B takes a value less
than 1). The intuitionistic law of double negation A → ¬¬A and the Law
of Overcompleteness A → (¬A → B) are not tautologous either (although
their variants can be tautologous, e.g. whenever A = α, for some compound
formula α). Formulas such as ¬(A & ¬A) and A ∨ ¬A fail, since they fail
already in the matrix Mn.

As we know, the formula A& ¬A is anti-tautologous in the matrix Mn;
that is, V (A& ¬A) = 1 for no valuation V . But it is contingent in Mnp, for
it takes the designated value 1 if A takes the value p.

At the same time the formula A → (¬A → B) (which is tautologous in
Mn) fails whenever A takes the value p and B takes a value less than 1. That
is to say, the matrix Mnp behaves paraconsistently at the level of p only.
That is, if the set of values we assign to the variables does not contain p,
then we obtain the n-valued Łukasiewicz calculus. For this reason it may be
preferable to treat Mnp as an n-valued matrix with a parameter p, rather
than as an (n+ 1)-valued matrix.

It has to be stressed that only atomic formulas can take the value p, and
this fact seems to be an important feature of the matrix Mnp. It denies the
possibility of having the formula α & ¬α satisfied for a more complex α.
For example, if we take α = A & ¬A, where A is an atomic formula, and
a valuation V that assigns the value p to A, then of course V (α) = 1, but
V (α & ¬α) = 0. This fact prevents the system determined by the matrix
Mnp from being trivial in a different sense: from the possibility of containing
infinitely many true contradictions (α, α & ¬α, (α & ¬α)&¬(α & ¬α), etc.)
generated by a single one (i.e. α).

So far, so good. Problems appear when we try to define the so-called ma-
trix consequence operation in a standard way (a formula is a consequence of
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the set of formulas X iff for any valuation V , if V (X) is included in a set of
designated values, then V (α) belongs to this set). Since there is only one des-
ignated value in our matrix, and negation is not an identity operator, we shall
have an arbitrary formula B as a (matrix) consequence of the set {A,¬A}
(A and ¬A cannot simultaneously take the designated value), which is not
desirable from the paraconsistency viewpoint. The other problem is that
the Modus Ponens rule is not “normal” in the matrixMnp; that is, for some
atomic formula β we can have both V (β) = p and V (α) = V (a → β) = 1.
Both these drawbacks, however, can be eliminated by extending the set of
designated values to {1, p}. The matrix obtained in this way still preserves
the most important properties: the n-valued matrix is its submatrix, and
the set of tautologies is exactly the same as in the case of one designated
value. Because the value p cannot be taken by compound formulas, no extra
tautologies can be produced in a matrix with two designated values.
Although the Modus Ponens rule is not normal in the matrix Mnp, it

is a “sound” (theorem preserving) rule of inference, i.e. if the premises are
tautologous, so is the conclusion. Thus we can prove the following.

Theorem 1. The Modus Ponens rule is sound in the matrix Mnp.

Proof. We have to show that if α and α→ β are tautologous inMnp, then β
is a tautology. Let us assume that β is not a tautology in this matrix. Since
we know that the Modus Ponens rule is sound in the matrix Mn, we need
to consider the case when β takes the value p only. In that case β has to be
an atomic formula, which entails that α and α → β cannot be tautologous
at the same time. 2

2. Axioms

The paraconsistent calculus obtained is the calculus generated by the matrix
Mnp, that is the set of all the tautologies of the matrix. Now we shall make
an attempt to axiomatize this matrix, i.e. to present a system of formulas,
from which all the tautologies of Mnp, can be derived by means of Modus
Ponens.
We shall use the standard notation: E(M) for the set of tautologies of

the matrix M, and Cn(X) for the set of consequences of X by means of
the Modus Ponens rule. We shall also use the abbreviations (A →n B) =
A → (A →n−1 B), where (A →0 B) = B, and A ↔ B instead of (A →
B) & (B → A). Let us consider the following set En of formulas:
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(A→ B)→ ((B → C)→ (A→ C))(A1)

A→ (B → A)(A2)

((A→ B)→ B)→ ((B → A)→ A)(A3)

(A→n B)→ (A→n−1 B)(A4)

A&B → A(A5)

A&B → B(A6)

(A→ B)→ ((A→ C)→ (A→ B & C))(A7)

A→ A ∨B(A8)

B → A ∨B(A9)

(A→ C)→ ((B → C)→ (A ∨B → C)(A10)

(A↔ (A→s−2 ¬A))→n−1 A(A11)

for any 2 ¬ s ¬ n− 1, such that s is not a divisor of n− 1

(¬A→ ¬B)→ (B → A)(A12)

(¬A→ ¬β)→ (β → A)(A12a)

(¬A→ β)→ (¬β → A)(A12b)

where β is any compound formula.

3. Theorems

In [4] we have proved that the set Ln = {(A1), . . . , (A12)} is an axiom
system for the n-valued Łukasiewicz logic, that is

Theorem 2. E(Mn) = Cn(Ln), for any n  2.

Now we shall formulate the soundness theorem for a paraconsistent sys-
tem defined above. Lnp stands for the set En \ {(A12)}.

Theorem 3. (soundness) All the consequences of the set of axioms Lnp are

tautologous in the matrix Mnp, i.e. for any n  2, Cn(Lnp) is included in
E(Mnp).

Proof. We have to show that all the formulas of Lnp are tautologous, and
that the Modus Ponens rule is sound in Mnp. We have already proved the
latter in Theorem 1; let us display, for example, a truth table test on one of
the axioms. Since the axioms are n-valued tautologies, it suffices to consider
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the cases when only the value p is taken. If we cannot compute the value of
some connectives, then we shall write the formulas of the same value under
them. We abbreviate V (A) = V (B) = p to V (A,B) = p.

Axiom 1. (A→ B) → ((B → C) → (A→ C))
1. V (A,B,C) = p 1 1 1 1 1
2. V (A,B) = p 1 1 C 1 1
3. V (A,C) = p B 1 1 1 1
4. V (B,C) = p 1 1 1 1 1
5. V (A) = p B 1 B → C C
6. V (B) = p 1 1 C 1 A→ C
7. V (C) = p A→ B 1 1 1 1

The value of the formula for the assignment of line 5 is obtained by means of
the n-valued tautologies A → A (i.e. its substitution instance (B → C) →
(B → C)) and (A → (B → C)) → (B → (A → C)). In line 6 we use
axiom 2.
The validity of the other axioms can be shown in a similar way. 2

As we know, the set L2 is the axiom system for Classical Logic, that is
E(M2) = Cn(L2). In order to obtain a paraconsistent system it suffices to
replace classical contraposition (A12) with some of its variants. If we replace
(A12) with (A12a,b) and take n = 2, we get a 3-valued paraconsistent logic.
There is an open question whether the completeness theorem (the converse
inclusion of Theorem 3) is true for all n  2. We have not managed to prove
it in general, but there is a result, due to A. Arruda (cf. [1]), that gives a
partial solution to the problem in its 3-valued case.
Arruda in [1] compiles the set of axiom schemas of the system she calls

V1, defines a 3-valued matrix M1, and proves the following completeness
theorem.

Theorem 4. Cn(V1) = E(M1).

But the truth functions of the matrix M1 are exactly the same as those
of the matrix M2p. Hence, both matrices have the same sets of tautologies.
A natural question arises, whether the axiom systems V1 and L2p lead to the
same sets of theorems. Since Modus Ponens is the sole rule of inference in
both systems and their axioms are interderivable, the answer to this question
is affirmative. It can be expressed as follows:

Theorem 5. Cn(V1) = Cn(L2p).
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Now we can go back to the completeness problem for the system Lnp,
and conclude that it is true for n = 2. That is,

Theorem 6. Cn(L2p) = E(M2p).

On the other hand, by Theorem 5 together with Theorem 6, we obtain
a new axiomatization of the matrix M2p.
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