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STRUCTURAL FEATURES IN ERNST
SCHRÖDER’S WORK. Part I

Abstract. In this paper articulated in two parts we propose a structural
interpretation of Schröder’s work, pointing out his insistence on the priority
of a whole in comparison with its parts. The examples are taken from the
diverse areas in which Schröder was active, with a particular interest in
his project of an absolute algebra. I am regretting for the bad quality of
my English, hoping that notwithstanding the reader can grasp at least the
fundamental tracts of my reasoning.∗
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1. Ouverture

Only the whole is real1

If one reads a Schröder’s text, he or she will note a typical way of
writing. Dual theorems are put side by side with a vertical stroke di-
viding them. If a theorem admits more than two forms, for example the
original, its dual, its conjugate and its dual-conjugate, the formulas are
arranged in the text to form a sort of square. In the top left corner lays
the original form, in the top right its dual, in the bottom left ist conju-
gate and in the bottom right ist dual conjugate, with a vertical stroke

∗ I thank very much prof. A. Pietruszczak and prof. M. Nasieniewski to have
accepted my paper in spite of my deep linguistic deficiencies. Their journal is in no
way responsible for my errors. Finally I thank an anonymous referee for his valuable
suggestions which brought me to reformulate my ideas.

1 [Heg07, p. 901]. All translations are mine, if not otherwise indicated.
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separating the right formulas from the left ones (see [Bon11b], [Bon11c]
and [Bon11a]). This is an example from Schröder’s third volume of the
Vorlesungen:2

R ◦ S ⊆ (R • S) • Di R ◦ (S • Id) ⊆ R • S

R ◦ S ⊆ Di ◦ (R • S) (Id • R) ◦ S ⊆ R • S

One could object that such arrangement is useless. Once we know how
to obtain from a theorem its dual and its conjugate, it makes no sense
repeating any time a new theorem is stated also its three other possible
forms. Notwithstanding the visual matter becomes important, if we aim
to stress the relationships among the elements of our theory. Schröder
had not an atomic vision of mathematics (or logic): a theory is not built
up grouping together various single concepts. On the contrary, at the
basis we have a structure,3 a totality in which and only in which any con-
cept acquires its meaning. In other words, the meaning of a concept is the
result of the relations obtaining amongs it and the other concepts. We
have a conceptual web in which the concepts are interwoven each other.

In fact, for Schröder the same symbolic language [Zeichensprache]
was susceptible of various interpretations. Today, we could say that
Schröder distinguished among a unique syntactical language and its
many possible semantics.4 In this situation, where the elements have
no meaning, only a theory in its totality can give sense to them.

2 [Sch66b, p. 524]. R and S are binary relations, ◦ stands for the relative com-

position, • for the relative sum, Id is the diagonal and Di the relation of diversity.
It is inessential that the reader grasps the meaning of the examples from Schröder’s
papers proposed in this text. It is not important their content, but their layout.

3 I use the word structure throughout this paper in a not technical way. A struc-
ture is simply an ordered whole; i.e. a whole whose elements are arranged according
to some law, relation, or set of relation. I refer the reader to the latin structura which
means, for example, an ordered disposition of the words in a sentence. This noun
derives from the verb struo, i.e. to put in order [copias struere 〈to put in order the
troops for the battle〉, Caesar], or also to build up a composite word. In any case, we
have not only a whole, but an ordered whole. This is what I mean for structure and this
is its commonest meaning. It makes no sense using our modern notion of [algebraic]
structure in a context in which this notion is still fuzzy. Our model-theoretic notion
of structure arises from Schröder’s investigations, but it is not present in Schröder’s
work in a precise and modern fashion. For this reason, I believe that in this paper
it is not possible digging in the philosophical facets of such concept. That I propose
is simply an interpretation of Schröder philosophy which be consistent and which
reflects Schröder’s investigations. The concept of structure which we will use is too
vague to permit a serious philosophical analysis.

4 See below at page 346 the excerpt from [Sch74b]. That Schröder was really
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We could say that there are not firstly the single concepts and then
a totality embracing them, but there is first a theory which step by
step enlarges itself in its entirety. A concept, a theorem say, derives
its meaning from the web of relations in which it is inserted and this
web enlarging continuously itself, enlarges in the same time also the
relational net; so the theorem with the time aquires new senses. This
way, the meaning of a concept is not fixed for ever, but its identity is
liquid, in a continuous metamorphosis resulting from its interaction with
other (new) concepts.

In the next section we put forth some examples which path the way to
a structural interpretation of mathematics. We will see that the context
in which a concept is embedded is fundamental in order to determine
its meaning. We exemplify this point of view pondering on the different
meanings of the so called δ-function and of the fixed point theorems.
Then we will show as this line of thought implies a step by step gener-
alization and abstraction from the context of the scientific results. The
formal statement of a scientific concept is necessary in order that it
embraces diverse possible meanings according to the various situations.
This effort of generalization will exemplified by Banach’s work on func-
tional analysis.

conscious of the distinction between syntax and semantics is a matter of fact. At
most, we can question if Schröder had in mind a formal and axiomatized system on
one side, and a model on the other. Of course this is to be denied. Schröder had no
a clear understanding of the meanings of axiom, definition or postulate. A theorem is
confused sometimes with a law of derivation. Schröder refers to its language always as
a Zeichensprache, a language by signs without a preassigned reference. For Schröder
the language is build up by ink signs on the paper which are susceptible of many
interpretations. For this reason, I don’t agree with Roger D. Maddux who adfirms:
I think Schröder had no syntax, no variables, no predicates, no connectives, and no

language. Specialists in PDEs talk about equations, of course, but they do not use or

need any formal language. Ditto for Schröder and Löwenheim [personal conversation].
I don’t understand Maddux’s position on this point, because elsewhere he writes: The

Peirce–Schröder calculus of relations may be defined as Boolean combination of equa-

tions between terms denoting relations [Mad10, p. 49]. The emboldening is mine. So
he is compelled to admit a difference between terms (syntax) and relations (seman-
tics). At any rate, such sort of confusion is present also in a recent review of John T.
Baldwin, where it is asserted: [. . . ] the source of confusion [in Löwenheim’s argument]
is that the distinction between syntax and semantics that is fundamental for the model

theoretical advances [. . . ] were not available to Löwenheim but arose in the context of

his work [Bal10, p. 182]. False. This distinction is crucial to understand Schröder’s
work. As we have seen, such distinction is present already in [Sch74b], forty years
before the publication of Löwenheim’ seminal paper [Löw15].
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Indeed this section is crucial to grasp Schröder’s naive philosophy,
because his work culminates in a formal theory in which the usual con-
cepts of mathematics and logic are recast in the most possible general
way, in order to receive different meanings in different situations and
in different branches of sciences. For this reason, we must read these
example always keeping in mind their rôle in understanding Schröder’s
philosophy.

Schröder’s philosophy arises from his work. There is no place in
Schröder’s literature in which we can find a precise statement of his
philosophy. Furthermore, no contemporary left a record on him. For
these grounds, in order to understand Schröder’s thought we must make
use of metaphors, comparisons and other rhetorical tools.

2. Background

2.1. Dirac’s δ-function

Paul M. Dirac introduced its celebrated function as a generalization of
Kronecker δ-operator [Dir58, p. 63]:

We can develop the theory on closely parallel lines for the discrete and
continuous case. For the discrete case we have [. . . ]:

∑

ξ′

|ξ′〉δξ′ξ′′ = |ξ′′〉,

the sum being taken over all eigenvalues. [. . . ] Similarly, for the con-
tinuous case we have [. . . ]:

∫

|ξ′〉dξ′δ(ξ′ − ξ′′) = |ξ′′〉.

Incidentally, Dirac was not much clear on the deep nature of this new
symbol. He wrote that:

δ(x) is not a function of x according to the usual mathematical defini-
tion of a function [. . . ] we may call [it] an improper function [. . . ].

[Dir58, p. 58]

Indeed, it is not a function but a functional:

Of course, also in Analysis there are linear Functionals; for example, the
integral is a linear Functional on the space of [a, b] Riemann-integrable
functions:

∫ b

a
: R([a, b]) → R, f 7→

∫ b

a
f.
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The Distributions (for example, the so called δ-function, which we men-
tioned previously, is not a function) are (continuous) functionals on
C∞

0 (R) [. . . ].5 [Rai09a, p. 426]

Compare the preceding quotation from [Dir58] with the following one in
which is introduced the same concept but from another point of view:

We denote by Lp(Ω) (1 ≤ p ≤ ∞) the space Lp(X, µ), where (X, µ) is
the Lebesgue measure space corresponding to an open set Ω in Rn. Let
u ∈ Lp(Ω), and define

(Jǫu)(x) = ǫ−n

∫

Ω

ρ

(

x − y

ǫ

)

u(y)dy (ǫ > 0).

We call Jǫu a mollifier of u [. . . ].6

1. Jǫu is in C∞(Rn).
2. If u vanishes outside a subset A of Ω, then Jǫu vanishes outside an

ǫ-neighbourhood of A [that is, outside the set {x; ρ(x, A) < ǫ}].7

3. If K is a closed subset of Ω with ρ(K, Rn − Ω) ≥ δ > 0, then

Jǫu = ǫ−n

∫

|y−x|<ǫ

ρ

(

x − y

ǫ

)

u(y)dy =

∫

|z|<1

ρ(z)u(x − ǫz)dz

for any x ∈ K, provided ǫ < δ. [Fri82, p. 103].

Where is the difference between Friedman’s approach and Dirac’s
one? While Dirac was interested in generalizing Kronecker δ-operator
to the case of continuum, Friedman was interested in the possibility
to smooth a function. That is, Friedman focused on the concept of
derivation. As a matter of fact, the function u under the action of the

5 The emboldening is mine. I observe (with fun, of course) that von Neumann’s
famous statement is so correct: The region of δ(q) [i.e. between the graph of δ(q) and
the abscissa] is indeed infinitely extended and infinitely high having in q = 0 a top of

area 1. This is almost the limit value of the function
√

a

π
e−aq

2

for a −→ +∞. In spite

of this, it [i.e. the function δ(q)] is impossible [vN96, p. 240, footnote 32]. In fact it is
not a function, but a functional (a function of functions). In any case, von Neumann
described rightly the behaviour of this strange mathematical object. He noted also
that it [i.e. δ(q)] is beyond the realm of the general and usual mathematical methods,

and we will describe the Quantum Theory with help of only these methods [vN96,
p. 15]. I give the pardon of the reader for not having used the English translation of
[vN96] by the Princeton University Press. Unfortunately, being only an independent
scholar without any sort of support, I am unable to buy all books which I need.

6 Please note that u is a function.
7 The square brackets are in the original text. I refer to the previous footnote.
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mollifier becomes infinitely differentiable and continue.8 So the same
mathematical object can be introduced with different accents. In the
first case, the context is provided by the continuity while in the second
case, the context is provided by the derivability.

Of course we can envisage other environments in which introducing
(and carving) the mollifier. We could be also interested in the relation
between the meta-linguistic mollifier and the function to which it is ap-
plied. This relation is a relation of convolution. In a paragraph entitled
Convolution and Physical Linear Systems Bramanti et al. state:

The answer of a linear system to an input whatever e(t) is a convolution
with the answer to a Dirac’s impulse. [BPS08, p. 312].

In this case the accent is on the relation of convolution between two
functions and on the physical interpretation of the δ-function. It is not
without reason that Bramanti et al. call the mollifier, Dirac impulse.

Continuity, derivability and convolution are three possible models
which give a precise meaning to the formal concept of mollifier. In these
example, there is no mollifier in itself and for itself, but a mollifier em-
bodied in a precise mathematical context. This means that the mollifier
has meaning only in relations to other mathematical concepts provided
by the context. In itself the mollifier has no meaning at all. It is a
simple string of signs which we can interpret differently according to
our purposes. As one can easily understand, we can grasp formally the
mollifier only by a process of abstraction, i.e. leaving aside its various
possible interpretations.

2.2. Fixed Point Theorems

Another example could be the search for the fixed points of a function.
This bring us to a theorem which states the conditions which a function
must fulfil in order to have a fixed point. This is the well known Picard-
Banach theorem:

Let A be a contraction mapping of a complete metric space M into
itself. Then A has a unique fixed point. [Shi96, p. 161]

This theorem is inserted by the Russian mathematician Shilov in a chap-
ter devoted to the solution of differential equations. In this sense, the
Picard-Banach is only a possible tool among others, useful to find a

8 Jǫ(u) ∈ C∞(Rn).
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unique solution for a system of differential equations. We could assert
that a similar theorem with the same result would have the same effect
in this context. The accent is on the solution of a system of differential
equation. The main goal is to solve this system; it is a secondary matter
if we attain this solution by a fixed point theorem or by another result.
Using Gianni Gilardi’s9 words:

From my point of view [. . . ] the results attained with fixed points
theorems [. . . ] are merely tools to investigate the PDEs.10

This opinion underpins that of Shilov, but, notwithstanding, there is an
important difference. The Picard-Banach Theorem is called by Gilardi
Theorem on the Contractions and is formulated in this way:

Be C a closed set belonging to Rn and f : C → C a mapping satisfying
the following condition: it exists an α ∈ [0, 1) such that

|f(x) − f(y)| ≤ α|x − y| for every x, y ∈ C.

Then, there is a unique x ∈ C such that f(x) = x. [Gil11, p. 67]

The theorem is inserted in a part of the book devoted to numerical series.
So, the focus is on the concept of Lipschtzean with on the background the
convergence of particular sequences. No word is made on the solution of
differential equations, also if this theorem is introduced for this purpose.
Furthermore, Shilov states the Picard-Banach Theorem in the context
of Banach (metric) spaces. If for Shilov the context for a fixed point
theorem is given by the Banach spaces, for Gilardi the context is that of
numerical series.

Let us go on. Take Rainer Wüst’s work on mathematical physics
[Rai09a]. At the beginning of the first volume he introduces the Lips-
chitzean in a similar situation to that in [Gil11]:

Be f a mapping, a ∈ D(f), γ a positive number. If there is a c > 0 such
that

|f(x) − f(a)| ≤ c|x − a| (x ∈ D(f) ∪ (a − γ, a + γ)),

then f is continuous at the point a. (The mapping f is at the point a

Lipschitz-continuous). [Rai09a, p. 80]

9 He is author of a nice book on the calculus [Gil11], most diffused in Italian
universities.

10 Personal conversation.
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Wüst has the necessary tools to prove a fixed point theorem, as Gilardi,
but he doesn’t it. Cleary, the interest in this precise point of the book
for Wüst doesn’t lay neither in the solution of differential equations, nor
in the sequences, but in the diverse concepts of continuity. So in this
case to be crucial is the concept of Lipschtzean. Let go further. If we
open the second volume [Rai09b] at page 1028, that is near the end, we
encounter this theorem:

Be 〈X, ‖ · ‖〉 a Banach space and T : X → X a mapping. If T is a
contraction, then T a unique fixed point. [Rai09b, p. 1028]

Why does Rainer Wüst state so late a fixed point theorem? Because
he will formulate it in terms of metric spaces and as a tool to solve
the Cauchy Problem. Now, the interest is shifted from the concept of
Lipschtzean to the solution of Cauchy Problems in a physical context.
Note also that Wüst occupies himself with the solution of differential
equations yet in the first volume and at the start of the second. But he
waits to formulate a fixed point theorem until he could define a Banach
space and a Cauchy Problem.

Let us change scenery. In a very introductory book, the Russian
mathematician N. Ya. Vilenkin formulates geometrically and informally a
fixed point theorem in a work devoted to the approximation of a solution.
He introduces the method of iterating a function and then, exploiting
this tool he arrives to a fixed point. The title of the chapter where there
is stated a fixed point theorem is The Geometric Interpretation of the
Method of Iteration (see [Vil64, p. 51 and ff.]). In this case, a fixed point
theorem is regarded under the study of functional iteration:

One of the most powerful methods of approximate solution of such
equations [i.e. differential equations] is [. . . ] the method of successive
approximation (iteration). [Vil64, p. 68]

The same argument applies for Shashkin [Sha91, p. 40]:

There is a number α, such that 0 < α < 1 and for any points x1 and
x2 of the closed interval [a, b] one has

|f(x1) − f(x2)| ≤ α|x1 − x2|.11

There is however a big difference with Vilenkin. For Vilenkin the context
is given by the method of approximation and by the functional iteration;

11 f is a contraction.
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for Shashkin the main context is given by Brouwer’s Fixed Point Theo-
rem and this result is only secondary. For Shashkin the accent is not on
the solution of differential equations but on the review of many results
on fixed points.

The next example introduces a very different background:

Let D be a topological space and assume that F is a self-mapping of
D, i.e., F (D) ⊆ D. [. . . ] A point z ∈ D is called a fixed point of the
mapping F if F (z) = z. [RS05, p. 107]

In this definition Reich and Shoikhet defines a fixed point in the context
of a topological space and in their book they formulates many fixed
points results in the milieu of the unitary disk in C. In particular, the
main fixed point theorem of the book is the following:

Let ∆ be the open unit disk in the complex plane C. If F ∈ Hol(∆)12

is not the identity and is not an automorphism of ∆ with exactly one
fixed point in ∆, then there is a unique point a in the closed unit disk
∆̄ such that the iterates {F n}∞

n=1 of F converge to a, uniformly on
compact subsets of ∆.13 [RS05, p. 119]

In this case we have again a fixed point theorem in the context of func-
tional iterations as in [Vil64] and [Sha91], but the vocabulary and the
mathematical environment is totally different. Reich and Shoikhet inves-
tigates fixed points theorems using different metric spaces (not only Ba-
nach spaces), different norms, different geometries (also non-euclidean)
and topological tools. This time the interest is not more on the utility of
a fixed point theorem to solve a problem, but on the fixed point theorems
themselves. It is a sort of theme and variations on the concept of fixed
point theorem.

We cannot not quote Schröder’s Fixed Point Theorem, now funda-
mental for Complex Dynamics [Sch70b, p. 322]:

If f(z) is a injective mapping in a neighbourhood of a point z, which
satisfies the conditions (13) [i.e. f(z) = z; f(z) has a fixed point z]
and (15) [i.e. |D1f(z)| < 1], then one can always choose an arbitrary
point z1 in the neighbourhood of z such that the equation (11) [i.e.
limn→∞ fn(z1) = z] is true; in other words, for any point z1 belong-

12 F ∈ Hol(∆) means that F is holomorphic on ∆.
13 This is the Denjoy–Wolff Fixed Point Theorem.
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ing to the neighbourhood of z, the n-iteration of the function f(z1)
converges to the root z of the equation f(z) = z as n −→ ∞.14

In other words, if a function f has a fixed point z and it is such that
the module of its first derivative is < 1,15 then we can choice a z1 in the
neighbourhood of z such that limn→∞ fn(z1) = z.16

Schröder is working in a functional analytical setting (although he
had not a precise definition of a functional space) using iterations of
mappings with value in ∆. The scope of [Sch70b] (and of [Sch70a]) is to
find an algorithm to solve any algebraic and transcendental equation:

The investigations [described in this text] refer not only to algebraic
equations, but also to transcendental ones with one variable.17

[Sch70b, p. 317]

Schröder Fixed Point Theorem acquires his meaning in the algebraic
perspective of the solution problem. As we will show, Schröder’s main
goal in [Sch73], in [Sch66a] and in [Sch66b] is to solve any equation of
the calculus in issue. Kolmogorov rightly speaks of Schröder’s contribute
to logic stressing the centrality of the solution problem:

Schröder, like other mathematicians in this discipline [i.e. the logic], re-
garded the solution of logical equations to be one of the central problem
of logical algebra. [KY01, p. 29]

The solution problem was a Leitmotiv in Schröder’s investigations. As
regard the matter of this section, the solution problem is the context in
which Schröder formulated his Fixed Point Theorem.

Summing up, the same concept of fixed point theorem acquires a di-
verse meaning according to the context: Shilov, Gilardi, Wüst, Vilenkin,
Shashkin, Reich and Shoikhet, and Schröder formulate a fixed point
theorem but with different nuances. This shows that a fixed point the-

14 This translation differs heavily from Alexander’s one [Ale94, p. 6].
15 The first derivative of f is strictly contained in the open disk ∆.
16 For lack of our modern topological tools, Schröder could not express adequately

the difference between an open set, a closed set and the closure of a set. Probably,
Schröder thought that a distinction between open and closed intervals could be trans-
lated in some manner to apply also to the unit disk. He couldn’t state, for example,
that D1f(z) ∈ ∂∆. In his theorem he limits himself to state that the first derivative
of f(z) cannot belong to the boundary, with boundary meant in a vague sense. For
Schröder the boundary could be only a sort of perimeter.

17 This paper is the first part of a work on functional iterations; the second part
is [Sch70a].
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orem has a meaning not in itself but only in a web of relations with
other entities. This theorem can be put in relation with the continuity
or with the differential calculus or with functional spaces or with other
similar theorems. In any case it is the structure, the totality in which
the theorem in issue is formulated, to found18 ontologically the theorem
and to give a meaning to it.

These examples show that a single mathematical concept can be in-
terpreted differently according to the structure in which it is inserted.
Now, the landscape can be seen also by another point of view: we have
different structures and we are in search of the things common to all
them. It is what Schröder did searching a theory which could unify
various mathematical and logical branches. By a process of generaliza-
tion he found a formal milieu in which putting the various objects of
mathematics and logic. This milieu was the Universal Algebra, called by
Schröder Absolute Algebra or sometimes Theory of Connections. Such
theory is formal because, without any context (a semantic), its elements
are spoiled of any meaning. It is a sort of skeleton made up by the
relations obtaining among its elements.

We have two procedures pointing to the same result: the first one
is a process of particularization of formal concepts which we have seen
at work in the previous examples; the second is a process of general-
ization, by which the mathematical or logical concepts are spoiled of
their meaning. In the first case, we end with a contextualization of the
scientific concepts in which they are in relation with other concepts. In
the second case, we terminate with a theory of purely formal elements
without meaning. In this theory to survive are only the relations, the
connections [Verknüpfungen] between the various elements. It is what
we do when we introduce, say, the distributivity law focusing on the
operations in issue and disregarding the nature of the involved objects.

I stress the fact that both in the first and in second case we contem-
plate a structure, a web of relations. In any of these cases the relational
web is given from the context. The next section exemplifies the ascent
to universal with Banach’s work on functional spaces.

18 For the concept of foundation I refer to Husserl’s Third Logical Investigation: If

a law of essence means that an A cannot as such exist except in a more comprehensive

unity which connects it with an M , we say that an A as such requires foundation by
an M or also that an A as such needs to be supplemented by an M [Hus70, p. 25]. I
refer a German reader to [Hus09, p. 267]. At any rate I will use the word foundation

with a certain degree of freedom.
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2.3. Stefan Banach

This process of progressive abstraction, from particular to universal (and
formal) could be exemplified by Banach’s seminal work in functional
analysis. Banach, introducing in his PhD-thesis the concept of Space B,
today called Banach Space, generalized the notion of functional space of
which the Hilbert space with operators was only a particular case. It
was a great step ahead, indeed:

Let us remember that during the final decades of the 19th century and
the beginnning of the 20th century, in Mathematics there appeared sets
that had as their elements sequences, series, functions and similar ob-
jects [. . . ]. Such sets, having distinguishable structures, had interesting
properties and were named function spaces. They were studied by Vito
Volterra, Hilbert, Frigyes, Riesz and others. But they looked at these
spaces one by one.19 What was missing was a general definition that
could accommodate all those function spaces as a single notion, in order
to investigate just one single space instead of what had hitherto been
many. And that was the task that Banach took up, introducing in his
doctoral thesis the notion of a type B space, which encompassed all the
known function spaces.20 [Dud10b, p. 42]

This path towards the generalization is witnessed by Banach’s own
words:

Aim of this work is to formulate some theorems valid in different func-
tional spaces which I am to define [. . . ] I consider in a general way the
sets of theorems and then I prove that the adopted postulates are true
for any particular functional space. [Ban20, p. 134]

Duda, in a first German version of his previous cited paper, quotes Köthe:

The functional analysis replaces the concept of number which is funda-
mental for the calculus with a more general concept, which one today
identifies in thousand contributes with the concept of point in a Ba-
nach Space. The generalization of mathematical analysis attained in
this way, which is called functional analysis, allows to deal with at first
sight independent and diverse problems of mathematical analysis in a
simple and unitary way, and to solve a lot of problems which harassed
before the mathematicians in vain.21 [Dud10a, p. 10]

19 The emboldening is mine.
20 This a new version of a paper by Duda published in the Jahresbericht der

Deutschen Mathematiker-Vereinigung [Dud10a].
21 The emboldening is mine.
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It was just what Schröder did, comparing the similar rôle of mathemati-
cal and logical objects in different contexts. His universal algebra allows
to embed various mathematical and logical concepts in a general theory
in which they could be tackled in an uniform manner. If for Banach the
matter was to unify many functional spaces, for Schröder was to isolate
the common tracts of various mathematical and logical disciplines and
to recast them in a theory of pure relations (the Universal Algebra).
This way Schröder could apply the same procedure in diverse contexts.
I think to his combinatorial approach and to the solution problem, which
was investigated in algebra, in functional analysis and in logic.

Schröder’s Theory of Relations. Albeit Schröder is mentioned often (and
only) for his work in logic, logic was for him only a possible semantics
for a formal and general theory. Obviously, as said above, in such formal
theory its elements have not a meaning; there is only a web of relations
which gives a structure to this totality of objects. Is this web of relation
to give a meaning to the objects putting them in a structured totality.
At this point the focus is on the relations among these formal elements
and not more on their meaning, because there is no particular context
to support the reference of them.

Logic becomes important at this stage because it permits to investi-
gate the concept of relation. We can agree that to survive in this formal
theory are only the relations, but what is precisely a relation? The third
volume of Schröder’s Vorlesungen is devoted just to this topic. It is
not only the conclusion of a more general work on logic but the apex of
Schröder’s logical investigations. It is functional to this idea that there is
a more general and structural theory than mathematics and logic. This
volume would be written in vain if not contextualized in the search for
a general theory.

Let us look more closely to the structure of [Sch66b]. The volume is
a set of twelve lectures on the calculus of binary relatives, which we can
group in five parts:

First part:















Lectures I–IV; introduction of the concept of relation,

of the operations between relations and of the

quantification

Second part:
{

Lectures V–VIII, XI; solution problem
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Third part:

{

Lecture IX: the Theory of Chains in the calculus of

relatives and the concept of number

Fourth part:
{

Lecture X: the concept of individuum

Fifth part:
{

Lecture XII: the concepts of function and set

Note that after the introduction of the main objects of the calculus of
relatives (first part), Schröder devotes a large space to the solution prob-
lem, then he analyses the concept of number, function and set. Because
Dedekind’s theory of chains allows the definition of a set of number,
Schröder introduce it to formulate the concept of number relying only
on a lattice22 of relations. The parts three, four and five embed some
mathematical objects in a larger structure (of relations). In this volume
we can also see that the logical concept of relation is an interpretation of
an abstract concept of connection. From this point of view, the context
of this book is the project of finding a theory of connections, i.e. to build
an universal algebra.

The dream of a structural theory arises also from Schröder’s appar-
ently pure logical investigations. This and the fact that the greater part
of [Sch66b] focuses on mathematical entities testifies Schröder’s mathe-
matical, and precisely, algebraic attitude. For this reason logic doesn’t
deserve a particular place in Schröder’s work, being only functional to
dig in the concept of relation, essential for a theory which pretends to
be abstract.

Furthermore, once formulated such structural theory, we need only
to formulate in its language at least the main concepts of logic and
mathematics. This explain the end of [Sch66b] and the successive papers.
In fact, Schröder’s last papers concern set-theory and well-ordening (see
below Subsection 4.7 (second part).23

22 I use this term in a non technical fashion.
23 I stress also that Dedekind’s work was useful in the context of [Sch66b] not only

for defining the concept of number, but also as a source of inspiration for Schröder’s
investigations on the concept of set, and function. Finally, Dedekind’s book on the the-
ory of chain [Ded96b] is present in the background in the Schröder-Cantor-Bernstein

Theorem with his definition of finite set [Ded96b, p. 806 and ff.].
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2.4. From Hegel to Leśniewski

At any rate, Schröder’s structural approach in mathematics and logic
has also a great philosophical tradition.24 As a matter of fact Schröder
belongs to the German–Austrian (and Polish) tradition of Mereology,
according to which the totality is more important than its elements. We
can think to Hegel, to Marx, etc. arriving to Husserl’s phenomenology
and to Gestaltpsychologie, not neglecting topology and Leśniewski’s own
Mereology. In all these cases, the whole has a sort of precedence over its
pieces. For example, Leśniewski in his paper of 1916, Foundations of the
General Theory of Sets [Leś92], in order to avoid Russel Paradox envis-
aged a theory alternative to ZF in which it is absent the set-theoretical
notion of belonging [∈]. On its place Leśniewski introduces the concept
of ingredient:

I use the expression ingredient of object P to denote the same object P

and every part of that object. [Leś92, p. 132]

In this situation we cannot speak of elements but of parts. An object is
not element of another greater object, but it is part of this object with the
possibility to coincide with it. A part is not something precise in a math-
ematical sense, but it is qualitative in its essence. It has not a definite
boundary. In any case, we note the at the basis of Leśnieski’s mereology
there is the concept of whole (object). An individual can be thought of
only as a limit entity. An individual is the result of the infinite splitting
up of a whole, an infinitesimal piece. Being the individual the conclu-
sion of an infinite process, the individual is only possible but de facto
unattainable. In nature we encounter never an individuum, but some-
thing greater, a neighbourhood say, an infinitesimal piece of space–time.

Henri Lebesgue. A way to illustrate this splitting up of a whole is the
definition of the Lebesgue set of measure 0. Such set is not empty, but
more empty than other possible set. In fact, in the definition we have a
tacit quantification over ǫ and ǫ is strictly greater than 0 [Rai09a, p. 340]:

Let A ⊂ R.
A is a Lebesgue set of measure zero
:⇔ for [any] ǫ > 0 there is a sequence {(ak, bk)}k∈N of open intervals

24 I speak of philosophy with care in this context, inasmuch Schröder had not a
sufficient philosophical background. His knowledge of the history of logic in 1877 is
limited to 60 pages about Leibiniz [Tre67, 1–63].
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such that
A ⊂

⋃

k∈N

(ak, bk) and
∑

k∈N

(bk − ak) < ǫ.

From this definition it is manifest that the rôle of Leśniewski’s concept
of object is here exemplified by that of an open interval.

Again on Leśniewski. Going back to Leśniewski’s mereology, a possible
rebuke towards such type of wholes is justified, if we desire that a totality
be something quantitative. Nevertheless, topology taught us that we
must not fear qualitative objects. That a totality can be qualitative in its
essence and notwithstanding be harmless we will prove with an example
from [vN96]. I insist on the fact that a totality can be qualitative and
be well structured at the same time. I think to the contexts exhibited
above. They have not definite boundaries. A theory is always a work
in progress, because the mathematicians or the logicians introduce new
concepts, dilating its boundary.

I note also that, albeit the truth of a sentence is not in discussion,
a theorem preserving its truth value for ever, the context in which is
formulated changes its meaning.

2.5. John von Neumann

In [WZ83], John von Neumann wrote:

[. . . ] we must always divide the world into two parts, the one being the
observed system, the other the observer. [. . . ] The boundary between
the two is arbitrary to a very large extent.25 [WZ83, p. 622]

von Neumann is speaking about the measurement of a quantum-particle.
What is a measurement? For him it is a relation between an observer
on one side and an observable on the other side. That is, on one side we
have a subject and on the other an object. von Neumann gives for granted
the independent existence of a subject and of an object; then he puts
them in a relation (the experiment). The difficulty lies in the fact that
we cannot divide sharply the subject from the object. So we are faced
with two opposite possibilities: 1) we push the boundary subject/object
in the direction of the object; 2) we push the boundary subject/object
in the direction of the subject. In the first case, we have a sort of

25 I discussed this sentence in my unpublished paper [Bon10a], where it is argu-
mented Bell’s position and it is found a feasible way out.
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brutal idealism in which there is no room for the object and the subject
occupies the totality of the real. So the context of experiment (of a
possible experience) would be the entire universe. This is a position
extremely subjective. The subject is everything. On the contrary, in the
second case there is no room for the subject and the situation is more
intricate.

We can circumvent the obstacle, asserting that the experiment is
an indivisible totality in which anything is entangled. The process of
individuation of one element is a process of abstraction which results
in a figure by fuzzy borders, this fuzzyness being harmless for many
purposes.26 In the previous examples, we have seen the importance
of the context in defining the meanings of some mathematical objects.
One more I insist that the truth or falsity of a sentence is not in issue;
from an algorithmic point of view, there is no danger in assuming a
liquid setting. For this reason we can say that the qualitative essence
of a structure encompassing scientific concepts is harmless for a merely
computation purpose.

The liquidity of the context becomes important, on the contrary,
in defining the meanings of the involved entities being something more
than a truth value. Therefore, the contextual vagueness is not in con-
tradiction with the requested rigour of the definitions, theorems, and
so on. They are two sides of the same matter. The algorithm works
independently from the semantic nuances associated to the objects that
it puts in connection.

I stress also the fact that, following this line of thought, the various
situations which structure the entities are highly objective. Is there
something more objective than a phenomenon? The phenomenon is not
objective in a crude positivistic sense, not satisfying a quantitative way
of thought, but it is the only thing that a man can share. In any case,
it is more understandable the concept of whole, of an object inserted in
a phenomenon, than a limit entity as an individuum or a point. This
doesn’t mean that we advocate for a nominalistic philosophy, notwith-
standing many possible overlappings. We maintain a structural approach
to reality in which any element has meaning only in connection with all
the other elements. Our approach is diverse from nominalism inasmuch
we insist on the structural character of the wholes, which in their growing

26 Bell said that it was harmless For All Practical Purposes.



344 Davide Bondoni

modify the meanings of the parts. This confers to the parts a context-
dependent meaning.

Going back to the problem of measurement, we must observe that our
possible way out is not new, having its roots in Husserl’s phenomenology.

Transition. Keeping in mind what said in the previous section, we can
pass to the main object of our research: to verify a structural philosophy
in Ernst Schröder’s work. The previous arguments must be kept in the
background in the following parts. Albeit not always manifest, they
remain in the shadow, to support Schröder’s words.

3. Ernst Schröder

3.1. Formalism

The idea that mathematics is structural in its essence is so not disturb-
ing. It doesn’t affect the pragmatic job of the mathematician.27 On
the contrary, it casts light on many mathematical and logical concepts,
providing a context and a relational web in which embedding them.
Furthermore, it permits to find connections between elements at first
sight not related. There was not a Schröder mathematician, a Schröder
logician, a Schröder set-theoric, a Schröder analyst, etc., but only one
Schröder declined in diverse ways according to the topic in issue. There
was not in particular a different approach to mathematics and to logic.
Both were approached in a combinatorial and abstract way and both
had their main goal in the Solution Problem.

That Schröder gave such importance to the solution problem [Au-
flösungsproblem] is not surprising, because in a theory structured as a
formal calculus it is the only possible algorithm to make deductions
possible in form of solution of a system of equations.28 As we saw
above, Schröder formulated his fixed point theorem to solve a system
of algebraic or transcendental equations. The signifiance of the solution
problem in logic is the same. In fact, in the most intricate lecture of
[Sch66b] we read [Sch66b, p. 163]:

27 In this sense we can state with Bell that such structural philosophy, albeit
qualitative, is FAPP.

28 Obviously, there is a big difference between deduction and solution, the first
requiring a semantic. We cannot deny that Schröder’s was limited by this confusion.
I refer the reader to [Bon10b, pp. 112–116 and p. 124].
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[. . . ] one can always formulate the general solution σ [of the equation
F (x) = 0] both from a theoretical and a practical point of view in such
a form that it fulfils the following (first) additional condition:

{F (x) = 0} ↔ {σ(x) = x} [. . . ].

In other words, if an equation [F (x)] is solvable, then its general solution
can be expressed as a function with a fixed point. Of course, if the
solution is a constant, say a, then we consider it as a 0-ary function, i.e.
a0. In this case the function coincides with its fixed point.

I stress that this quotation is from a logical book. Notwithstanding,
we find concepts belonging to functional analysis. If we pay attention
to the previous equation, we note that there is no hint referring to a
logical world. A reader who didn’t read the Vorlesungen could tag this
equation with a mathematical label. As a matter of fact, we can rephrase
some logical sentence in mathematical terms and vice-versa. For example
[Sch90a, p. 602]:

[. . . ] I became to be interested on the geometrical and combinatorial
problems [. . . ] which can be built up with [only] three concepts or
classes A, B, C with the help of the particles and, or and not [. . . ].29

Compare it with the following excerpt from [Sch73]:

If three number [a, b, c] are linked progressively by two operations of
first grade [i.e. sum and subtraction], then these operations are both
additions [(a+ b)+ c] or they are the result of the connection [Verknüp-
fung] of an addition and a subtraction in a order whatever [(a+b)−c =
a − (b + c)], or they are the result of the connection of two subtractions
[(a − b) − c]. [Sch73, p. 187].

Replacing in the second quotation number with concept or class, the
operations + and − with the connectives and and not we obtain the
first quotation.30 In both cases Schröder is putting the same question:
given three elements a, b, c (whatever they are), how ways are there to
connect them with a binary operation ⊔ and ¬?31 This is an unique
combinatorial problem tackled in the first case in a logical context, in
the second in an algebraic one. It is not important, and in any case

29 In this quotation concept is the intensional side of a class.
30 I remember that or can be defined with and and not.
31 ⊔ is the lattice join and ¬ the lattice ortho-complementation.
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not in issue, the nature of the objects which are put in relation as the
following quotation shows:

Be assumed that it is given an unlimited manifold of objects (of a sort
whatever) which are clearly different each from other – by a distinguish-
ing mark or a boundary [Grenze]. Generic elements of this manifold are
indicated with the letters a, b, c . . . .32 [Sch74b, p. 1]

The unique request on the universe of discourse is that its elements
be in some way different; there is no other condition to satisfy. These
objects have no meaning in itself, but in relation with each other:

I put forward as examples of such objects belonging to a manifold [. . . ]:
proper nouns, concepts,33 judgements, algorithms, numbers, symbols
of quantities or of operations, points and sets of points, or some geo-
metrical constructions [Gebilde], quantities of substances, etc.

[Sch74b, p. 1]

Because the elements of a manifold are without meaning, we can contex-
tualize them differently. In other words, this abstract manifold admits
a variety of different semantics.34 To underpin this possibility Schröder
states:

As particular examples of such operations which are subject to the laws
of O1,35 one knows until now:
1. the logical addition of concepts (or of individuals)36

2. [the logical addition] of judgements37 (or of algorithms)
3. the numerical addition of generic complex numbers38 and analogous
4. the geometrical addition with the points belonging to the number

plane39

32 Schröder is suggesting that the elements of the manifold are disjoint.
33 In logical sense.
34 Today we would speak of models. Obviously, Schröder could not have this

concept in mind, but nevertheless he foresaw albeit vaguely a structured semantic.
35 O1 is the formal system of ordinary algebra. See Figure 1.
36 I.e. predicative logic.
37 I.e. propositional logic.
38 I.e. (x + iy) + (u + iv) = (x + u) + i(y + v) [Bea05, p. 32]. I adduced this

definition, because it is possible to express complex numbers with the help of polar

coordinates [BN10, p. 8] or using De Moivre Formula [D’A10, pp. 42–43]. Nevertheless
the word numerical suggests an algebraic formulation of complex numbers.

39 I refer the reader to my [Bon10b, p. 151] and to [Sch77, p. 484] where Schröder
introduced a possible geometrical interpretation of the logical product: As you can
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5. the addition of von Staudt’s dices

O1 =























I. a(bc) = b(ca) = c(ab) = (ca)b = (ab)c = (bc)a

II. a b
c

= ab
c

= a
( c

b
) = a

c:b = a
c
b =

a(b : c) = b : c
a

= b : (c : a) = (ab) : c = (a : c)b

III. a
bc

=
( a

c
)

b
= a:c

b
= a

b
: c = (a : b) : c = a : (bc)

Figure 1. The three laws of O1 [Sch74b, p. 24].

furthermore [. . . ] the multiplication on the same domains [Gebieten],
which stays often with the corresponding addition in the relation ex-
pressed by the distributivity law. [Sch74b, p. 25]

In other words, these examples are true also for the operation of
product which often distributes over the sum. It deservers our atten-
tion, before going on, the last example, because Schröder considered von
Staudt’s theory from an abstract point of view.

3.2. von Staudt

At the beginning of [Sch76], we read:

From two years I am investigating the formal connections [Beziehun-
gen]40 of the simplest type, which can obtain between an operation and
its inverses, in their mutual logical independence, and I wrote yet for
a particular occasion a preliminary communication41 on the results of
these researches. [Sch76, p. 289]

The formal and combinatoric investigations which were until now
exemplified in an algebraic context in [Sch73] or in a geometrical one,
are now exemplified in a more formal setting:

see, for example in a text by Otto Boeddicker, one may express the measure A(·)B of

the area [Gebiet] which is common to two uni- or multi-dimensional surfaces A and

B by multiple integrals extended partly over the last areas themselves, partly over their

boundaries [. . . ]. Schröder is saying that the measure of the overlapping of two areas
A, B equals the product of the surface integrals of A and B. The implicit reference
must be [Boe76, p. 22]. In any case, we can consider a point as a vector and a sum of
points a vectorial sum (according to the usual Parallelogram Law [Bea05, p. 53]).

40 I translate Beziehung with connection to avoid confusion. The expression
relation would be misleading in this context.

41 [Sch74b]. The footnote is by Schröder himslef. The particular occasion refers
to the fact that this book was written as a contribute for the school program (years
1873/1874) of the Gymnasium in Baden-Baden.
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Figure 2. I am regretting for the bad quality of the scannerization. Proceeding
clockwise, we have t1, t∞, tb, tab, t0, ta.

The multiplication and the addition of dices with their inverse opera-
tions, which were considered [until now] only as geometrical operations
from the point of view of the associativity, commutativity and the dis-
tributivity, [. . . ] provide analogous [. . . ] an analytical example of one
operational sphere [Operationskreis] corresponding to the four species
[of operations]. [Sch76, p. 290]

Being a von Staudt Dice-point defined by four fundamental points t0, t1,
t∞, t, we state the product of two Dice-points in the following way:

I will indicate the number corresponding to the von Staudt-product
of two arbitrary Dice-points ta and tb with tab or with the symbolic
product tc = ta(×)tb.42 [Sch76, p. 291]

Furthermore:

von Staudt’ sum of both the Dice-points ta and tb will be expressed,
accordingly, with ta+b or ta(+)tb. We can treat the symbolic addition
[. . . ] as a special case of the previous mentioned multiplication [. . . ].
Therefore, it is sufficient to solve the problems only for the multiplica-
tion which we can express by tc, ta and tb. [Sch76, p. 291]

Without entering in the details of [Sch76], it is clear from these ex-
cerpts that Schröder is adopting a formalistic point of view. In any case,

42 The emboldening is mine. See Figure 2.
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these quotations explain the meaning of the sum of Dice-points to which
Schröder refers in [Sch74b] as a possible semantic for an abstract theory.
It is interesting also the relation between an operation and its possible
inverses, because it express the search for a formal symmetry between
the elements of a theory.

[Sch74b] is so the pivot and the more clear statement of Schröder’s
philosophy. All his work finds his reason d’être in this booklet: the
absolute algebra is a formal theory which generalizes the concepts and
operations of many fields. The question, now is: what does remain in an
abstract structure of the objects under consideration? Nothing but the
relationships among them.43 In fact Schröder himself in his last paper
defined the absolute algebra a theory of the Verknüpfung:

[The investigations in arithmetic and algebra] [. . . ] path the way to the
absolute algebra, i.e. to a general theory [. . . ] of connection [Verknüp-
fung]. Of such works, which represent Schröder very own [ureigenest]44

field of research, it were only a little part published.45

[Eck01, without number of page; the second page of Schröder contribute]

To speak is Schröder in 1901, that is thirty year after the publication
of [Sch73] or of [Sch74b], to prove as the project of a formal theory of
connections was the main goal of Schröder’s work.

43 The relations are what survives in a theory, once we have spoiled its elements
of their possible meaning.

44 I translated ureigenest with very own. This word is a combination of the prefix
ur- (reinforcing the following adjective) and the superlative of eigen (proper, own)
[Dud07, pp. 1783–1784]. With such expression Schröder stressed that the absolute
algebra was really the matter in which he was most interested.

45 I must thank prof. Volker Peckhaus in Padeborn for these pages. I own a copy
of this book, but Schröder is not mentioned. The volume is a collection of profiles of
artists, scientists, musicians, etc. There is no criterion in the choice of the persons
embraced in this text. Perhaps, Eckstein collected some notes about important people
he knew personally. Incidentally, not any person quoted there is German; E. Grieg,
E. Ibsen, L. Duse, etc. were not German. Eckstein himself supported the costs of the
publication which ought circulate only privately. So it is possible that there are more
versions of the same book. Mine is from the Bibliothek der Hansestadt–Lübeck. For any
person enumerate in the book there is a picture probably of the same Eckstein, because
he was also a photographer. The question is: why did Eckstein choose Schröder, a

little known mathematician? Eckstein was an historian focused on the history of the
Hebrews in the same places where Schröder lived and wrote a monograph on the
Hebrew history in the Baden-Baden. Perhaps he became acquainted with Schröder
during one of his researches.
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Repertorium. Furthermore, note this quotation taken not from the orig-
inal paper of Schröder [Sch76], but from a mathematical Repertorium
where this paper is abridged:

In my Handbook of Arithmetic and Algebra [Sch73], I spoke for the first
time of a discipline, of which the usual algebra and analysis appear to
be only a special case [specieller Fall], and in which they are included
as a [. . . ] yarn in a wide dress.46 [Sch79, p. 81]

I think that Schröder could not be more clear. Universal algebra is a for-
mal theory of which the various mathematical branches are only possible
semantics. Obviously, lacking of a precise understanding of the concept
of axiomatic system, Schröder could not think as a modern model the-
orist, but this does not imply that Schröder didn’t recognize a formal
structure on one side and its possible interpretations on the other side.

Note also in this quotation the metaphor of the yarn and of the dress.
A yarn is included in a dress, like algebra or analysis in a formal theory
of connections. A dress is not an uniform and vague totality, but it is
a structured whole in which the yarns are in relation with each other,
forming a lattice of relations, a warp-yarn or a web. Schröder is saying
that the various and different logical and mathematical branches are
inserted in a more formal theory in a structural way. It is such structure
to be the common feature of particular contextualized theories.

3.3. Structure

I rephrase an example yet proposed in [Bon01, p. 34] from an husserlean
point of view. Let us think a chessboard as a structured whole. For an
accident we have lost a black tower. We could then bring a little wood
piece and agree on the fact that from now on this little piece replaces the
lost tower. It is not important that this wood piece be similar or not to
the lost black tower. We could brought a thing whatever. The essential
is that this new object has the same rôle in the play of the preceding
tower. For this reason in the context in issue our wood piece is not
distinguishable from the black tower inasmuch it has the same meaning.
In other words, the meaning of a tower derives from the relational web in

46 Incidentally, Schröder in [Sch79] refers to his Lehrbuch, but in the original
paper of 1876 [Sch76] he referred to the Abriss. These two volumes are often confused
in the literature. [Sch74a] is a short version for students of the Lehrbuch.
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which it is inserted. Fulfilling some relationships and not others a tower
is a tower.

It is the totality of the laws of chess which founds the meaning of
any single piece of the chessboard. The particular shape of the pieces
is not so relevant; they can be made of different material and carved in
different shapes. They must only obey to some laws and not to others.
The pieces are in a structural web in a particular position and not in
another. The structural web of chess determines that a tower to be a
tower must be in a determinate place of this relational lattice.

Language by signs. For Schröder the objects of a theory are nothing but
pure ink spots on paper :

[. . . ] the deduction turns out to be in his highest form a computation,
a calculus, in which the order and position47 of the little pictures of the
letters or of the ciphers constitutes from now on the unique object of
observation.48 [Sch90b, p. 14]

If the real objects of a theory are only the concrete signs on papers we
could doubt that these signs are always the same, especially during our
absence as observers. For this purpose Schröder yet in 1873 formulated
an axiom on the persistence of signs:

[. . . ] in our deductions and consequences the signs [Zeichen] are fixed
in our memory – and much more on paper [. . . ]. [Sch73, pp. 16–17].

Schröder puts in comparison the signs of the calculus with the mush-
rooms in a wood:

[. . . ] they [i.e. the signs] cannot grow from paper as they were mush-
rooms, neither they can vanish by themselves [. . . ]. [Sch73, p. 17]

I would stress the physical character of the signs. They are things [Dinge],
something which we can touch, see with our eyes, modify with our cal-
ligraphy. The deduction is not an operation executed with concepts
symbolized with signs, but it is an operation on the signs themselves:

The letters [Buchstaben] are always identical to themselves while we
operate with them; an a can never transform itself in a b [. . . ].

[Sch73, p. 17]

47 In the original Taxis und Thesis.
48 The emboldening is mine. I translated Ziffern with ciphers and not with

numbers, because Schröder is speaking of any possible sign on paper.
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If the objects of our possible theory are only signs on paper, then
they can receive their meaning only in relation to other signs. A sign
has no meaning in itself: ∂ can mean the infimum of a set, a commu-
tative operation, Euler’s constant, and so on. No pre-assigned meaning
is possible for Schröder. Only the context can give meaning to a sign,
and a denotation is only a possibility among others. For this reason it is
necessary to be consistent with the use of signs and postulate that they
cannot change by themselves.

This explains Schröder’s interest in the relations. Relying on a struc-
tural philosophy in the background, Schröder understood that the out-
most generality of mathematical concepts could be obtained only in a
formal theory. The elements of this theory are meaningless and then
there are only the relations between the elements to survive. At this
point, it is natural asking: what is a relation? The answer to this ques-
tion is in [Sch66b].

3.4. The concept of relation

To be honest Schröder was ambiguous in defining a relation; in some
place he introduces it as a class of ordered couples, but in other ones he
considers it as a totality from which to derive the concept of set, function
and individual. I think that in this context is interesting focusing on the
second way of defining a relation. In this case, a relation is a whole which
ontologically founds the elements which satisfy them. A binary relation
founds the being of two individuals and it establishes an arrow from one
to the other; that is, it states an order from one individual (the relate)
to another one (the correlate).

From this point of view, a relation is as an experiment à la Bohr
which founds its various elements. The relation is a gestaltic situation in
which everything is entangled and where there is an overlapping between
the various objects. What is the meaning of these diverse elements?
Their meaning depends on the the meaning of the whole (the relation)
founding them. The individuals have a meaning only as founded entities
of a totality which has a meaning and not another. Let us make a little
example. We consider the relation is lover of and two objects Alice and
Bob. The relation considered implies that one object be a lover and one
object be a loved. In this way, the relation is lover of gives a meaning
to Alice and Bob and established an order from the first to the second.
In other words, only in a relation of being lover of Alice can have the
meaning of lover and only loving a guy. So, Alice acquires his meaning
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only in the context of a large structure in which she is embedded and
only in relation to the other components of this structure.49

Obviously, Alice can changes meaning with the passing of time or
inasmuch she is founded by another relation. In fact, Alice can be a lover
with Bob and a loved with Alfred. It is the context to give meaning to
Alice. One possible context is given from the relation exemplified, but
Alice can be also in a relation of serving, helping, reading, etc. In any
case, it is the structural context to determine the reference of Alice.50

So, albeit his ambiguities, Schröder’s analysis of the concept of re-
lation reveals as part of his thought had a structural source. It is not
by chance that Schröder tried to algebrize [condensieren] any formula of
the calculus of relatives, because in this manner is possible to eliminate
the concept of individual. Using Löwenheim’s words:

To condense a relative expression means to transform it so that no ∃
or ∀ occurs any longer. For example, ∃y(xRy ∧ ySz), when condensed
yelds R ◦ S. [Löw67, p. 233]

Distributivity. In a meeting of the British Association for the Advance-
ment of Science hold in the September 1883 [Sch84] Schröder’s con-
tribute focused on the distributivity which he affirmed being a logical
principle discovered by the algebra of logic. This is highly interesting.
For Schröder the most important principle discovered in logic from the
ancient Greek thought is a formal law. In fact, Schröder formulated in
an abstract way the distributivity.

3.5. Combinatorics

It is not only Schröder’s formalism to suggest a structural approach, but
also his combinatoric vein. Let us remind a well known combinatorial
problem:

In the plane there are six points h1, h2, h3 (houses) and f1, f2, f3 (foun-
tains). Is it possible drawing in the plane a path from any house to any
fountain, such that diverse paths do not intersect? [BE86, p. 29].

For the solution of the problem, it is indifferent the nature of the objects
which are connected with a path. They can be houses, fountains, or

49 In this example Bob.
50 I remember Bohr’s reply to EPR: it is the experiment to cause the non-locality

of the two particles.
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simply points in the plane. What it is important are the relations among
these elements. If you prefer, it is the totality of the situation to be
problematic, not its parts. The meaning of the six elements is determined
by the structure of the path. The path founds the elements, inserting
them in an appropriate context.

This way a combinatorial problem evokes a structure–problem. It is
this last to be solved. Step by step we erase any specific feature of the
elements involved to obtain only formal elements. At this point we can
focus ourself on the true problem. This process of abstraction is helpful
in determining what is essential to the solution of the problem and what
is not. In the previous example, it is inessential speaking of houses and
fountains, being relevant only the form of the path.

For this reason I cited [Sch84]. In the definition of distributivity
is irrelevant not only the meaning of the elements to which the dual
operations apply, but also the specific nature of these operations. The
distributivity law states that an operation distribute over its dual. Two
arbitrary operations dual each other are sufficient.

So, when we ask how many ways are there to combine some ele-
ments?, we are putting a combinatorial question which points to the
relations between the elements of a totality.

Let us quote again from Über die formalen Elemente:

If one connects [verknüpft] progressively three numbers a, b, c with two
of the three fundamental operations [i.e. time and division], eighteen ele-
mentary expressions arise which can be ordered in three groups of six el-
ements according to our principles of permutation [Vertauschungsprin-
cipien] [. . . ] in such way that in [any group] the letters can be permuted
again.51 [Sch74b, pp. 12–13]

As one can easily see, the focus is on the grouping of some elements
sharing a common property. This is a purely combinatorial problem
which leaves the nature of the grouped and permuted elements out of
consideration. To be in the foreground are the fundamental operations52

and the principles of permutation. In any case, relations.

51 The emboldening is mine. I refer the reader above to page 345 where we
quoted Schröder tackling a similar combinatorial problem in [Sch90a] and [Sch73].

52 A fundamental operation with its inverse. Schröder could choose instead of
time and division, addition and subtraction, raising to power and root, or exponenti-

ation and logarithm [Sch74a, p. 12].
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Coda. As noted above, formalism implies that an object has more inter-
pretations. As a matter of fact, Schröder applied the operations not on
objects, but on signs, on the letters of the calculus in issue. This is a
crude formalism. In the same way Schröder considers the operations or
the tools employed in the various situations. In the case of distributivity,
are not in question the meanings of the operations distributing each on
other. All is secondary or marginal but the meta-relationship of duality
between these operations.

For this reason the same formal law of distributivity can be applied
in different fields and with different meanings. Like the distributivity
there is a lot of formal operations, instruments or concepts which can be
contextualized differently. One of these formal concepts is the solution
problem. Unhesitatingly we can say that all Schröder’s work revolves
around the solution problem, showing Schröder’s algebraic vocation.

References

[Ale94] Daniel S. Alexander, A History of Complex Dynamics, from Schröder
to Fatou and Julia, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH,
Braunschweig–Wiesbaden, 1994.

[Bal10] John T. Baldwin, “The birth of model theory: Löwenheim’s theory
in the frame of the theory of relatives, by Calixto Badesa, Princeton
University Press, NJ, 2004”, Bulletin of the American Mathematical
Society 47 (2010), 1: 177–185, review.

[Ban20] Stefan Banach, Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales, Ph.D. thesis, University of
Lvov, 1920, published in the Fundamenta Mathematicae, 3 (1922),
pp. 133–181.

[BE86] V. G. Boltjanskij and V. A. Efremovič, Anschauliche kombinatorische
Topologie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.

[Bea05] Alan F. Beardon, Algebra and Geometry, Cambridge University
Press, Cambridge, 2005.

[BN10] Joseph Bak and Donald J. Newman, Complex Analysis, Springer
Verlag, Berlin–Heidelberg–New York, 2010, third edition.

[Boe76] Otto Boedicker, Erweiterung der Gauss’schen Theorie der Verschlin-
gungen mit Anwendungen in Elektrodynamic, Union Deutsche Ver-
lagsgesellschaft, Stuttgart, 1876.

[Bon01] Davide Bondoni, “On mereology”, unpublished Thesis, in Italian,
2001.

[Bon10a] , The Problem of the Observer in Physics, arXiv:1006.0187v1
(2010).



356 Davide Bondoni

[Bon10b] , Variations on a Theme by Schröder, LED Edizioni, Milan,
2010, in Italian.

[Bon11a] , “Ernst Schröder, between mathematics and logic” (in Ital-
ian), Lettera Pristem Matematica 78 (2011): 48–53.

[Bon11b] , “Math and poetry as exemplified in Ernst Schröder’s work”,
Notices of the American Mathematical Society 58 (2011), 2: 232.

[Bon11c] , “Quality versus quantity”, Notices of the American Mathe-
matical Society 58 (2011), 6: 766.

[Bon11d] , “Zbl 00168.00201, Schröder, Ernst, Der Operationskreis des
Logikkalküls (German). Unveränderter Nachdruck der 1. Aufl. 1877.
Stuttgart: B.-G. Teubner. VIII, 37 S. (1966)”, Zentralblatt Math
(2011), review.

[BPS08] Marco Bramanti, Carlo D. Pagani, and Sandro Salsa, Mathematical
Analysis 1, Zanichelli editore, Bologna, 2008, in Italian.

[D’A10] John P. D’Angelo, An Introduction to Complex Analysis and Ge-
ometry, American Mathematical Society, Providence, Rhode Island,
2010.

[Ded32a] Richard Dedekind, Stetigkeiten und irrationale Zahlen, Richard
Dedekind, Gesammelte mathematische Werke (Braunschweig)
(Robert Fricke, Emmy Noether and Öystein Ore, eds.), Druck und
Verlag von Friedr. Vieweg & Sohn Akt.-Ges., 1932, Dritter Band,
pp. 315–334.

[Ded32b] , Was sind und was sollen die Zahlen?, Richard Dedekind,
Gesammelte mathematische Werke (Braunschweig) (Robert Fricke,
Emmy Noether and Öystein Ore, eds.), Druck und Verlag von Friedr.
Vieweg & Sohn Akt.-Ges., 1932, Dritter Band, pp. 335–391.

[Ded96a] , Continuity and Irrational Numbers, From Kant to Hilbert, a
Source Book in the Foundations of Mathematics (Oxford) (William
Ewald, ed.), Oxford University Press, 1996, Volume II. English trans-
lation by W.-W. Beman, revised by William Ewald pp. 765–779.

[Ded96b] , Was sind und was sollen die Zahlen?, From Kant to Hilbert,
a Source Book in the Foundations of Mathematics (Oxford) (William
Ewald, ed.), Oxford University Press, 1996, Volume II. English trans-
lation by W.-W. Beman, revised by William Ewald, pp. 790–833.

[Ded06] Jean-Pierre Dedieu, Points Fixes, Zéros et la Méthode de Newton,
Springer Verlag, Berlin–Heidelberg–New York, 2006.

[Dir58] Paul A.-M. Dirac, The Principles of Quantum Mechanics, Oxford
University Press, Oxford–New York, 1958, fourth edition (revised).
Dirac inserted a note in 1967 about his revision.

[Dud07] Duden, Deutsches Universalwörterbuch, Duden Verlag, Mannheim–
Leipzig–Wien–Zürich, 2007, sixth revised and ampliated edition.



Structural features in Schröder’s work. I 357

[Dud10a] Roman Duda, “Die Lemberger Mathematikerschule”, Jahresbericht
der Deutschen Mathematiker–Vereinigung 112 (2010), 1: 3–24.

[Dud10b] , “The Lvov School of Mathematics”, Newsletter of the Eu-
ropean Mathematical Society 78 (2010): 40–50.

[Eck01] Adolf Eckstein, Geistiges Deutschland, deutsche Zeitgenossen, Adolf
Ecksteins Verlag, Berlin–Charlottenburg, 1901.

[Fri82] Avner Friedman, Foundations of Modern Analysis, Dover Publica-
tions Inc., New York, 1982.

[Gil11] Gianni Gilardi, Analysis, McGraw-Hill, Milan, 2011, in Italian. Sec-
ond edition.

[Heg07] Georg Wilhelm Friedrich Hegel, System der Wissenschaft, Erster
Teil: die Phänomenologie des Geistes, Joseph Anton Goebhardt,
Bamberg und Würzburg, 1807.

[HUL01] Jean-Baptiste Hiriat-Urrut and Claude Lemaréchal, Fundamentals
of Convex Analysis, Springer Verlag, Berlin–Heidelberg–New York,
2001.

[Hus70] Edmund Husserl, Logical Investigations, Routledge & Kegan Paul
Ltd, London–New York, 1970, volume II. Translated by J.-N. Findlay
from the second German edition of Logische Untersuchungen (D.
Moran, ed.).

[Hus09] , Logische Untersuchungen, Felix Meiner Verlag, Hamburg,
2009.

[KY01] A.-N. Kolmogorov and A.-P. Yushkevich (eds.), Mathematics of the
19th Century, Mathematical Logic, Algebra, Number Theory, Proba-
bility Theory, Birkhäuser Verlag, Basel–Boston–Berlin, 2001, second
revised edition. Translated from Russian by A. Shenitzer, H. grant
and O.-B. Sheinin.

[Leś92] Stanislav Leśniewski, Collected Works, vol. 1, Kluwer Academic
Publishers, Dordrecht–Boston–London, 1992, edited by Stanisław J.
Surma, Jan T. Srzednicki, D.-I. Barnett.

[Löw15] Leopold Löwenheim, “Über Möglichkeiten im Relativkalkül”, Math-
ematische Annalen 76 (1915): 228–251.

[Löw67] , “On possibilities in the calculus of relatives”, From Frege
to Gödel, a Source Book in Mathematical Logic (Cambridge–
Massachusetts) (Jean van Heijenoort, ed.), Harvard University Press,
1967, pp. 232–251.

[Mad10] Roger D. Maddux, “Relevance logic and the calculus of relations”,
The Review of Symbolic Logic 3 (2010), 1: 41–70.

[Pon08] Pons, Großwörterbuch Englisch, Ernst Klett Sprachen GmbH,
Stuttgart, 2008.

[Rai09a] Rainer Wüst, Mathematics for Physicians and Mathematicians,



358 Davide Bondoni

Wiley-VHC Verlag GmbH & Co. KGaA, Weinheim, 2009, Volume 1:
Real Analysis and Linear Algebra. Third edition. In German.

[Rai09b] , Mathematics for Physicians and Mathematicians, Wiley-
VHC Verlag GmbH & Co. KGaA, Weinheim, 2009, Volume 2: Analy-
sis in Multidimensional Spaces and Fundamentals in Domains. Third
edition. In German.

[RS05] Simeon Reich and David Shoikhet, Nonlinear Semigroups, Fixed
Points, and Geometry of Domains in Banach Spaces, Imperial Col-
lege Press, London, 2005.

[RSEG02] Simeon Reich, David Shoikhet, Mark Elin, and Victor Goryainov,
“Fractional iteration and functional equations for functions analytic
in the unit disk”, Computational Methods and Function Theory 2
(2002), 2: 353–366.

[RSK01] Simeon Reich, David Shoikhet, and Victor Khatskevich, “Schröder’s
functional equation and the Koenigs embedding property”, Nonlinear
Analysis 47 (2001): 3977–3988.

[RSK03] , “Abel–Schröder equations for linear fractional mappings and
the Koenigs embedding problem”, Acta Universitatis Szegediensis –
Acta Scientiarum Mathematicarum 69 (2003): 67–98.

[Sch70a] Ernst Schröder, ‘Ueber iterirte Functionen”, Mathematische Annalen
3 (1870), 2: 296–322.

[Sch70b] , “Ueber unendlich viele Algorithmen zur Auflösung der Gle-
ichungen”, Mathematische Annalen 2 (1870), 2: 317–365.

[Sch73] , Lehrbuch der Arithmetik und Algebra für Lehrer und
Studierende, Teubner, Leipzig, 1873.

[Sch74a] , Abriss der Arithmetik und Algebra für Schüler an Gym-
nasien und Realschulen, Teubner, Leipzig, 1874.

[Sch74b] , Über die formalen Elemente der absoluten Algebra,
Schweizerbart, Stuttgart, 1874.

[Sch76] , “Ueber v. Staudt’s Rechnung mit Wurfeln und verwandte
Processe”, Mathematische Annalen 10 (1876): 289–317.

[Sch77] , “Note über den Operationskreis des Logikcalculs”, Mathe-
matische Annalen 12 (1877): 481–484.

[Sch79] , Ueber v. Staudt’s Rechnung mit Würfen und verwandte Pro-
cesse, Repertorium der literarischen Arbeiten aus dem Gebiete der
reinen und angewandten Mathematik, II. Band (Leipzig) (Gustav
Zeuner and Leo Koenisberg, eds.), Teubner, 1879, pp. 81–85.

[Sch84] , Exposition of a Logical Principle, as disclosed by the Alge-
bra of Logic, but overlooked by the Ancient Logicians, Report of the
Fifty-Third Meeting of the British Association for the Advancement
of Science, held at Southport in September 1883 (London) (John
Murray, ed.), Spottiswoode and Co., 1884, p. 412.



Structural features in Schröder’s work. I 359

[Sch90a] , “Eine Berechtigung zum ersten Bande meiner Algebra der
Logik”, Mathematische Annalen 36 (1890): 602.

[Sch90b] , Über das Zeichen, Braun, Karlsruhe, 1890.
[Sch66a] , Der Operationskreis des Logikkalkuls, Wissenschaftliche

Buchgesellschaft, Darmstadt, 1966.
[Sch66b] , Vorlesungen über die Algebra der Logik, vol. 3, Chelsea Pub-

lishing Company, Bronx–New York, 1966.
[Sha91] Yu. A. Shashkin, Fixed Points, American Mathematical Society,

Providence, 1991, translated from the Russian by Viktor Minachin.
[Shi96] Georgi E. Shilov, Elementary Functional Analysis, Dover Publica-

tions Inc., New York, 1996, revised English edition. Translated and
edited by Richard A. Silverman.

[Tre67] Adolf Trendelenburg, Historische Beiträge zur Philosophie, vol. 3,
Verlag von G. Bethge, Berlin, 1867.

[Vil64] N. Ya. Vilenkin, Successive Approximation, Pergamon Press, New
York, 1964, translated and adapted from the Russian by Micheal
B.-P. Slater and Joan W. Teller.

[vN96] John von Neumann, Mathematische Grundlagen der Quanten-
mechanik, Springer Verlag, Berlin–Heidelberg–New York, 1996, sec-
ond edition with a preface by Rudolf Haag.

[vS47] Georg Karl Christian v. Staudt, Geometrie der Lage, Verlag von
Bauer und Raspe, Nürnberg, 1847.

[vS56a] , Beiträge zur Geometrie der Lage, Verlag der Fr. Korn’schen
Buchhandlung, Nürnberg, 1856, Erstes Heft.

[vS56b] , Beiträge zur Geometrie der Lage, Verlag der Fr. Korn’schen
Buchhandlung, Nürnberg, 1856, Zweites Heft.

[WZ83] John A. Wheeler and Wojciech H. Zurek (eds.), Quantum Theory and
Measurement, Princeton University Press, Princeton, New Jersey,
1983.

Davide Bondoni

Independent Scholar
via Bersaglio, 2
25070 – Anfo (BS), Italy
davidebond@yahoo.it


	Ouverture
	Background
	Dirac's -function
	Fixed Point Theorems
	Stefan Banach
	From Hegel to Lesniewski
	John von Neumann

	Ernst Schröder
	Formalism
	von Staudt
	Structure
	The concept of relation
	Combinatorics
	References


