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SOCRATES DID IT BEFORE GODEL

Abstract. We translate Socrates’ famous saying I know that I know noth-
ing into the arithmetical sentence I prove that I prove nothing. Then it is
easy to show that this translated saying is formally undecidable in formal
arithmetic, using Goédel’s Second Incompleteness Theorem. We investigate
some variations of this Socrates-Godel sentence. In an appendix we sketch
a ramified epistemic logic with propositional quantifiers in order to ana-
lyze the Socrates-Godel sentence in a more logical way, separated from the
arithmetical context.

Keywords: The “paradoxon” of Socrates, Godel’s Second Incompleteness
Theorem. A ramified epistemic logic with propositional quantifiers.

1. Introduction

Socrates used to say I know that I know nothing, thereby implying that
he was superior to his contemporaries who did not even know that they
knew nothing.

However, is this saying of Socrates not self-contradictory? For, on
the one hand, he knows something, namely that he knows nothing. And
by the same token, he knows nothing.

The purpose of this short note is to show that Socrates’ saying is
far from self-contradictory if formalized carefully. Quite the contrary,
its careful formalization is the first formally undecidable arithmetical
proposition. In this sense, Socrates did “IT” before Godel; and that
Socrates did it before Gédel was, of course, confirmed and even proved
by Gédel (in 1931).

That a person A knows a proposition ¢ means that A possesses a
theory ¥ in which ¢ is provable, in symbols: ¥ F ¢. Thus the reference

Received December 17, 2009; Revised March 2, 2011
© Nicolaus Copernicus University (Torun) 2011 ISSN: 1425-3305


http://dx.doi.org/10.12775/LLP.2011.011

206 JOSEF WOLFGANG DEGEN

to A’s Ego as a bearer of A’s knowledge is immaterial.! Then Socrates’
saying translates into the assertion: It is provable in ¥ that nothing
is provable in . For a wide range of theories X this assertion is an
arithmetical sentence, and it is neither provable nor refutable in 3.

2. A Formal Execution

In the following exposition we will follow rather closely the presentation
in [2], which the reader may look up for more details.

We assume that X is recursively axiomatized, containing enough?
arithmetic about the natural numbers 0, 1, 2, 3, ... and every arith-
metical sentence ¢ provable in ¥ is true in the standard natural numbers
w = {0,1,2,...} together with addition and multiplication. We denote
this standard model by (w,0, 1,4, x) or simply by (w). Hence ¥ is con-
sistent. (Truth in the standard natural numbers is a stronger property
than mere consistency.)

As usual, we assign in an effective and injective way natural numbers
fa to expressions « of the language of 3. Such natural numbers fa are
called Godel numbers. Thus, expressions are coded by natural numbers,
which is by now an ubiquitous and familiar procedure also in theoretical
computer science.

Let’s now denote by the arithmetical formula o(n) the standard prov-
ability predicate for . More precisely, one constructs first the arith-
metical formula Bew(y,n) with the meaning: y is the Gédel number of
a proof in X of the formula (or of the sentence)® with the Gédel number
n. The formula o(n) is then defined by JyBew(y, n).

Then one can show, amongst other things, the two following facts.

Lo < YFo(fy). (1)

(For the direction from right to left we use truth in the standard natural
numbers. For the direction from left to right we use the numeralwise
representability of every primitive recursive relation in X.)

YN o(tle =) = (alte) = o(ty)). (2)

! Similarly, if the sentence ¢ stands in a book, then it is immaterial for the truth
or falsity of ¢ whether or not A is the owner of the book.

2 E.g. primitive recursive arithmetic is more than enough.

3 A sentence is a formula without free variables.
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After these preliminaries, it is clear that Socrates’ saying I know that

I know nothing translates (in accordance to our informal considerations
above) into

[socrates] <= o(fVax—o(z)).* (3)

THEOREM 1. (a) X ¥ [socrates] (b) X ¥ —[socrates]

That is to say, the arithmetical sentence [socrates] is formally unde-
cidable in X, or to express it in a different way: the sentence [socrates]
is a witness to the incompleteness of the theory X.

PROOF. Ad (a) Suppose X b [socrates]. Then by the fact (1) and def-
inition (3) we get ¥ F Vz—o(x). Substituting for x the Goédel num-
ber fVz—o(x) we get ¥ F —o(fVz—o(z)). That is the same as ¥ F
—[socrates]|. A contradiction to the consistency of X.

Ad (b) Now suppose ¥ F —[socrates]. We shall deduce from this
that ¥+ —o(§(0 = 1)), that is ¥ proves its own consistency; and that is
impossible by Godel’s Second Incompleteness Theorem (which Socrates
did not know, of course, since he knew nothing!)

First we have ¥ - 0 =1 — Vz—o(x) by the logical principle ez falso
quodlibet. By (1) we have ¥ F o(#(0 = 1 — Va—o(x))). By another
easily verifiable law concerning the provability predicate, namely fact
(2) above, the last fact yields

YEo((0=1)) = o(fVz—o(z)).
By contraposition and definition we have
¥ F =[socrates] — —o(8(0=1)).
Hence by applying the modus ponens we get the desired
YF -o(f(0=1)). .

So we may ask which of the sentences [socrates], =[socrates] is true
in the standard natural numbers?

The answer is left to the reader. If the reader can give no immediate
intuitive argument (s)he should first prove ¥ F [socrates] <> o(§(0 = 1)).
Not totally easy. Try your hands on it before reading the next passage.

4 We should correctly write Vz(sent(x) — —o(z)) instead of Va—o(z)) where
sent(x) means that x is the Gédel number of a sentence. However, we shall mostly
omit such relativization of quantifiers to avoid cluttering up our notations.
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If found, the solution is easy to understand. The direction <— has

already been proved. For — start with ¥ F 1 = 1; hence ¥ F o(8(1 =
1)). From this we get ¥ F Fzxo(x). This in turn is logically equiv-
alent to ¥ F Vz-o(z) — 0 = 1. Finally, by (1) and (2) we get
Y F o(tVz—o(z)) — o(§(0=1)).
Remark. The phenomenon described in the present paper in an arith-
metical context gives rise to a ramified epistemic logic with propositional
quantifiers. In this logic Socrates’ saying, its negation, and related propo-
sitions can be thoroughly discussed. See Appendix.

The next two sections contain not much in the way of theory, but
several exercises which the reader might find interesting and inspiring.

3. Some Variations

In the sentence o (§Vz—(o(z)) there are two occurrences of the provability
predicate o(n), the first positive, the second negative. There are four
such possibilities, namely

(+V+)  o(fVzo(z)): I know that I know everything
(+V—)  o(fVz—o(x)): I know that I know nothing

(=V+) —o(tVzo(x)): I do not know that I know everything
(=V=) —o(fVz—o(z)): I do not know that I know nothing

What about provability or nonprovabiliy of these four sentences in 7?7
Sentence (+V—) is formally undecidable as already shown; hence its
negation (—V—) is formally undecidable too.

Consider sentence (+V+). It cannot be proved in ¥. For suppose
¥ F (4+V+). Then by (1)[from right to left] we have ¥ F Vzo(x).
Then ¥ F o(4(3 = 1)). Again by (1)[from right to left] we have
¥ F3=1. And X is inconsistent since obviously ¥ F =3 =1.

Next we show that also ¥ ¥ (—V+). Suppose (x) ¥ + —o(fVzo(x)).
Wehave ¥ + 0=1— Vzo(z). Then by (1) and (2) weget ¥ F o(#(0 =
1)) — o(fVzo(z)). By contraposition and modus ponens together with
() we get the contradiction ¥ F —o((0 = 1)).

Summary. Each of the four sentences of our above list is formally unde-

cidable.
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4. Further Variations

Next we make up a new table of four sentences where the quantifier V is
replaced by the quantifier 3 and see what will happen.

(+34) o(f3zo(x)): I know that I know something

(+3-) o(fFz—o(x I know that there is something I do not know

(=3+) —o(t3zo(x I do not know that I know something

(=3=) —o(t3x—o(x)): I do not know that there is something I do
not know

Ad (+3+) First we have ¥ - 1=1. Then by (1) ¥ F o(#(1 =1)).
Hence by pure logic ¥ F 3Jzo(z). Finally by (1) we get the desired
Y F o(f3zo(x)).

Hence our sentence is provable; therefore

Ad (—3+) This sentence is refutable (in X).

Ad (+3-) Suppose ¥ F o(f3z—o(x)). By (1)[from right to left]
we have ¥ F 3Jr—o(r). We want to show (x) ¥ +F ZJz-o(z) —
=0 (4(0 = 1)) from which we can deduce by modus ponens the contradic-
tion ¥ F —o(#(0 = 1)). However, instead of (k) it is easier to prove its
contrapositive

)):
)):

Y F o(0=1)) = Vzo(z)

To do this we have to go down to the definition of o(n). We work in X.

So, let Bew(y,#(0 = 1)) for some y, and let a be the Gédel number
of a sentence, i.e. we suppose sent(a). Then there is a number z such
that sent(a) — Bew(z,fa) where « is the formula 0 = 1 — [ with
88 = a. It follows that there exists a v such Bew(v,a). Hence we have
sent(a) A Bew(y, (0 = 1)) — Bew(v,a). Introducing the quantifiers in
the correct order and using the definitions we finally have the desired
Y F o(t(0=1)) = Vzo(x).

Ad (—3—) Not provable in ¥. This can be shown by a meanwhile fa-
miliar argument. By the way, although it is seldom explicitly mentioned
in the literature about Godel’s Theorems, we have 3 ¥ —o(f1)) for every
sentence 1, by the meanwhile familiar argument.

That is, claims of ignorance, i.e. of not-knowing something, are never
provable — provided the system in question is consistent.
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5. Conclusion

All sentences in the (xVx) list are formally undecidable; in the (*3x)
list just two sentence are formally undecidable; of the remaining two,
one is provable and the other is refutable. A remarkable feature of our
sentences is that none of them arises by a fixed point construction. Of
course, the unprovability of consistency, which is used in our arguments,
relies on a fixed point construction. (Recall: the fixed point lemma
(or the diagonalization lemma. See [2] for the simple proof.) yields a
sentence 7 such that ¥ + <> —o(f7). Since we can use the properties
(1) and (2) of ¥ we don’t need Rosser’s refinement in order to show that
7 is formally undecidable in 3. Using the Bernays derivability conditions
one shows ¥ F 7 <> =0(f(0 =1)). See again [2] for details.

We recommend to the reader to make up and investigate further lists
like our two lists (xVx*) and (x3%) about o(n), i.e. of sentences that do
not arise as fixed points, but whose provability status can be (easily)
settled. Try your hand at

Va(sent(z) A o(x) — Jy(sent(y) Ay >z A -o(y))),
o(f3z(sent(x) A Vy(sent(y) ANy > bz — o(y)))).

Before doing these and similar exercises the reader is invited to read [3].

Appendix

Here I give a sketch of the promised ramified epistemic logic with propo-
sitional quantifiers. This logical system I call SOCR. First two remarks.

(1) The issue of quantifiers over propositions is still in an unsettled
state. The intuitionistic sequent calculus with just — and V (binding
propositional variables) is very complicated, and the cut elimination
theorem for it is a very complicated and strong result.

(2) Ramifications, first used in Principia Mathematica, are by now
largely forgotten, and are used only in several systems of predicative
second order arithmetic, and there also only as a tool. But in SOCR
ramifications are essential and constitutive. There are certainly other
purely logical systems in which ramifications are essential and constitu-
tive.
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The precise form of SOCR depends on the ramification indices we
choose. For definiteness let us use as ramification indices all ordinals
strictly smaller than w“. We call the ordinals below w* also levels.

The language of SOCR
(1) For each level o we have free propositional variables a®, b*, a1,
. and bound (propositional) variables =%, y®, x1%, ... of the super-
scripted level. Optionally we may have for some level some propositional
constants of that level.

(2) The logical signs are =, —, A, V, V, 3, K, and the brackets (, ).

The unary connective K means “He knows that”. If He is Socrates,
then in “She knows that” She is perhaps Xantippe.

Now we define by simultaneous induction the formulae and their
levels.

(3) Each free propositional variable of level « is a formula of level a.
Also, each propositional constant of level « is a formula of level .

(4) If v and 1) are formulae of level « and 3, respectively, and if * €
{—, A, V}, then (1) is a formula of level max(a, §)+ 1. Furthermore,
= is a formula of level a4+ 1, and K¢ is a formula of level A, where A
is the smallest limit ordinal such that @ < A < w®.

(5) If Fla®] is a formula of level 8 in which the bound propositional
variable % does not occur, then Vx® F[z®] and J2* F[z®] are formulae
of level A\, where X is the smallest limit ordinal such that max(a, 8) <
A< wv.

If p is a formula of level ~y, then we may write this level as superscript,
as in the expression ¢”. A formula without free variables is called a
sentence.

The calculus SOCR is a sequent calculus. For the connectives =, —,
A, V we choose the usual rules. For K we choose the S4 rules. We have
the usual structural rules, and the cut rule of the form

o = Vy,p 0, Py = Yy
D, 0y = Uy, ¥y

(cut)

The formula ¢ is called the cut formula.
Now it remains to state the rules for the quantifiers. We state all
four rules in order to show the mechanics of the ramifications by levels.

Fla®,® = ¥
e Flze], & = U

3 =) fora <p
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o = U, Flp”]
>
(= 3J) = U, JooFa] fora > p
FlpPl,® = ¥
>
vV =) V] = U fora>p
P v, Fla”
(= V) — ¥, Fla] fora < f

® = U,V F[z?]

In the rules (3 =) and (= V) we have to fulfil the so-called
eigenvariable condition, i.e. the free variable a” must not occur in the
conclusion, i.e. under the stroke.

As usual, (formal) proofs are finite rooted trees whose leaves are
logical axioms of the form ¢ = ¢, and the inner nodes (including the
root) arise by application of one of the rules. The sequent at the root is
called the end sequent; it is proved by the proof.

A proof is called intuitionistic if in every sequent occurring in it the
succedent has at most one formula. The system with intuitionistic proofs
may be denoted by IntSOCR, while the system without the restriction
to intuitionistic proofs may, for emphasis, be denoted by ClassSOCR
(classical SOCR).

THEOREM 2. The system ClassSOCR admits elimination of cuts.

The proof of this theorem is syntactic where one induction parameter
is the level of the cut formula. On the other hand, I could not settle the
problem whether the system IntSOCR admits cut elimination. To make
cut elimination go through in the intuitionistic case we have perhaps to
change the rules for K a little bit.

For none of the two systems I have developed a semantics.

Now let me close the paper with a discussion of Socrates’s saying
I know that I know nothing in the context of SOCR. The only (logical)
axioms of SOCR are sequents of the form ¢ = ¢. But we can extend
SOCR by adding nonlogical axioms. These have the form = ¢ where
(p is a sentence.

Let AX be a set of axioms. Then SOCR + AX is inconsistent if we
can in SOCR (with cut) derive the empty sequent = from AX.> If
SOCR + AX is not inconsistent it is called consistent.

5 Recall that from == we can prove every sequent by means of the structural
rules.
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Let a be a level (i.e. an ordinal < w®). The sentence socrates(a) is
the sentence KV z® = K z, and —socrates(a) is of course the sentence
- KVa® = Kz Let AX(—socr) be the following set of axioms:

{= -—socrates(a) : a < w*}

THEOREM 3. The system SOCR + AX (—socr) is consistent.

Intuitively each
— —socrates(a)

is a kind of definite consistency assertion, from which we can deduce by
(= 3) the sequent
— Jg*-K 2?

for a suitable limit ordinal A\: There is something I do not know (prove).

What can we say about sequents of the form = socrates(a) (with-
out the negation sign —)?

The reader should convince himself of the consistency of SOCR +
{=> socrates(0)}. But then we have the following catastrophe.

THEOREM 4. The system SOCR + { = socrates(1)} is inconsistent.

PROOF. From = socrates(l) in S4 and by definition we get —
Vzl-Ka!. From this in SOCR we get = —K(a® — a%). Observe
that the formula (a® — a°) gets level 1.

On the other hand, from the logical axiom a° = a° we get by
(= —) the sequent = (a® — a®). From this by the necessitation
rule of S4 (for K) we get = K(a® — aY). =

Of course, we have further inconsistencies if we replace the ordinal 1
by bigger ordinals. All this shows that Socrates’ positive saying cannot
be vindicated in the context of a ramified epistemic logic — while his
negative saying can be vindicated, even throughout all levels.

Finally, suppose we erase all levels while retaining all rules. We get
thereby the system SOCR(unramified). In this system we derive the
empty sequent = from the (unramified) axiom

(0) = KVz-Kzx

as follows.
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With an S4 rule we get KV - Koz = Va-Kaz. With a cut using
(0) we get
(1) = Vz-Kz
From the logical axiom
(2) -KVz-Kz = -KVzr-Kz
we get by an unramified (V =) the sequent
3) Vr-Kzr = -KVr—-Kz
With a cut from (1) and (3) we get the sequent
4) = -KVz-Kz
From the sequent (0) we get by a (= =) the sequent
(5) —KVr-Kz =

Finally, a cut from (4) and (5) yields the empty sequent —>.
So, in the unramified epistemic logic, Socrates’s saying is really a
paradoxon, or more definitely: a self-contradiction.
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