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PROPOSITIONS, POSSIBLE WORLDS,

AND RECURSION

Abstract. The issue of reduction of propositions to sets of possible worlds is
addressed. It is shown that, under some natural assumptions, there always
exist recursive propositions, i.e. decidable sets of possible worlds, which are
not assigned to any sentence of a language. Some consequences of this result
are discussed.

Keywords: Propositions, possible worlds, decidability.

1. Propositions are sometimes regarded as sets of possible worlds. This
idea, whose first explicit formulations are attributed by Cresswell [1972]
to Montague [1969] and Stalnaker [1970], prima facie seems a quite
attractive one. However, the identification of propositions with sets
of possible worlds quickly puts us into a trouble: there are too many

propositions. For let us suppose that there exist denumerably many (by
’denumerable’ we mean, here and below, ’countably infinite’) possible
worlds. Assume also that a language in question comprises denumerably
many (declarative) sentences. Thus, by Cantor’s diagonal argument, the
cardinality of the set of propositions is greater than the cardinality of
the set of sentences. Now suppose that the assignment of propositions
to sentences is univocal, i.e. there is exactly one proposition that corre-
sponds to a sentence. It follows that there are propositions which are
not assigned to any sentence  generally speaking, propositions which are
not expressed by any sentence. Otherwise we arrive at a contradiction.
The situation is analogous when there are more than denumerably many
possible worlds. And nothing changes when the language in question
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is formal and thus the sentences of the language are its well-formed
formulas.

2. The above drawback is easily visible.1 In order to get rid of it one
has to take into consideration only an at most denumerable family of
sets of possible worlds and to identify propositions with elements of the
family. Yet it is unclear what (if any) is the right criterion for choosing
the family.

3. Another shortcoming of the analyzed account of propositions is widely
known: it leads to a very coarse individuation of propositions. In partic-
ular, there is only one proposition that corresponds to any contradiction,
namely the empty set. Similarly, there is only one proposition that cor-
responds to any logical truth.2

4. The main aim of this paper is to point at a certain further difficulty
faced by the reduction of propositions to sets of possible worlds. The
difficulty arises on the condition that tools and results of (classical) recur-
sion theory are applicable, although in an indirect manner, to sets of pos-
sible worlds. This, in turn, presupposes that not only sentences but also
possible worlds are represented by natural numbers in a one-to-one way.

The details of the relevant mapping will not play any role in our
reasoning: we simply assume that a certain mapping exists, is fixed,
and is such that each sentence and each possible world is represented
by exactly one natural number, but there is no natural number which
represents both a sentence and a possible world. For brevity, we shall
call the natural number which represents a possible world or a sentence
the code of the possible world or the sentence.

5. Let W be an arbitrary but fixed infinite recursive set of possible
worlds. Or, to be more precise, let W be a denumerable set of possible
worlds such that the set [W ] of codes of elements of W is recursive.

Call a proposition any subset of W .

1 The situation resembles that known from discussions on the problem of ade-
quacy of intensional semantics. If propositions are sets of possible worlds, then, by
Cantor’s diagonal argument, there are more propositions than possible worlds. On the
other hand, by the so-called principle of plenitude (see Lindström [2009]), which orig-
inates from Kaplan (see e.g. Kaplan [1994]; the relevant principle was introduced by
him in the sixties) there are at least as many possible worlds as there are propositions.
This is the essence of Russell-Kaplan Paradox, widely discussed in the literature.

2 For a recent discussion see e.g. Berto [2010].
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Consider a language, L, which comprises denumerably many sen-
tences and for which there exists an assignment of propositions (taken
from ℘(W ), i.e. the power set of W ) to sentences of L. We assume
that this assignment is univocal. However, we do not prejudge what is
the nature of the assignment. Traditionally, the proposition assigned to
sentence A is conceived as the set of all the possible worlds such that
A is true in each world which belongs to the relevant set. We neither
assume nor deny that it is the case, however. We simply suppose that
to each sentence there corresponds exactly one proposition.

The proposition assigned to sentence A will be referred to as |A|. The
set of codes of elements of |A| will be designated by [|A|]. In general, by
[X ] we designate the set of codes of all the elements of X .

Let us introduce some auxiliary notions.

Definition 1. Sentence A of L expresses proposition X ∈ ℘(W ) iff
X = |A|.

Definition 2. Proposition X ∈ ℘(W ) is:

(a) infinite iff X is denumerable,
(b) recursive iff [X ] is recursive,
(c) recursively enumerable iff [X ] is recursively enumerable.

There is no space for defining the concepts of recursion theory used;
they are basic and thus we assume that a reader is familiar with them.
As usual, we abbreviate ‘recursively enumerable’ as ‘r.e.’.

6. We need one more concept. Let Σ be the set of all the sentences of L.
We define the following relation R∗ ⊆ Σ × W between sentences and
possible worlds:

(∀A ∈ Σ)(∀w ∈ W )(R∗(A, w) ↔ w ∈ |A|).

Thus R∗(A, w) holds just in case world w belongs to the proposition
expressed by A. Since sentences and possible worlds are, by assumption,
uniformly coded by natural numbers, there exists a 1–1 function, say,
g, such that g(x) is the sentence/possible world coded by x. Moreover,
there exists exactly one relation R̂ ⊆ [Σ] × [W ] between codes of sen-
tences and codes of possible worlds such that the following holds:

(∀x ∈ [Σ])(∀y ∈ [W ])(R̂(x, y) ↔ R∗(g(x), g(y))).
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We say that the assignment of propositions to sentences is effective iff R̂

is an r.e. relation. The underlying idea is: if a world is an element of the
proposition expressed by a sentence, this can be effectively established.

7. Now let us ask:

(∗) Is it possible that each recursive proposition X ∈ ℘(W ) is expressed
by some sentence of L?

A remark is in order. There exist denumerably many infinite recur-
sive subsets of an infinite recursive set. Thus, to avoid triviality, let
us suppose that the language L involves denumerably many sentences
each of which expresses an infinite proposition. Otherwise the answer
to (*) would be negative from the very beginning, for the assignment of
propositions to sentences is supposed to be univocal.

8. Assume that L is a language in which the assignment of propositions
to sentences is effective. Let Ψ be the set of all the sentences of L that
express infinite propositions, i.e.:

(8.1) for each A ∈ Ψ : |A| is denumerable.

Suppose that:

(8.2) Ψ is denumerable,
(8.3) [Ψ ] is r.e.

One can prove that then there exists an infinite family Ξ of infinite

recursive subsets of [W ] such that for each Y ∈ Ξ and each A ∈ Ψ :

Y 6= [|A|].

Now let us take an arbitrary but fixed Y ∈ Ξ. Consider g(Y ), i.e.
the image of Y under the function g that assigns possible worlds as well
as sentences to their codes (see Section 6). Clearly, g(Y ) is a proposition
belonging to ℘(W ). On the other hand, the image of [|A|] under g is |A|,
i.e. the proposition expressed by A, for any sentence A. The above result
yields that g(Y ) is different from |A|, for each Y ∈ Ξ and each A ∈ Ψ . In
other words, there are recursive infinite propositions3 belonging to ℘(W )
which are not expressed by any sentence of L / are not assigned to any
sentence of L. Thus, if the assumptions specified above hold, the answer
to the question (∗) is negative.

3 Actually, denumerably many of them.
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Observe that the answer to a more general question:

(∗∗) Is it possible that each recursively enumerable proposition X from
℘(W ) is expressed by some sentence of L?

is also negative under the assumptions made above. The reason is simple:
each recursive proposition is an r.e. proposition as well.

9. For conciseness, let R→x = {y ∈ rng(R) : xRy}, where rng(R) is the
range of a binary relation R.

The formal result presented in Section 8 is obtained in two steps.

(I) We define a certain relation R′ by:

∀x∀y(R′(x, y) ↔ x ∈ [Ψ ] ∧ R̂(x, y)).

Recall that [Ψ ] and R̂ are, by assumption, r.e. Hence R′ is r.e. as well.
We obtain an effective deeply infinite double frame:4

([W ], [Ψ ], R′).

Note that R′ has the following property:

(•) {X ⊆ [W ] : X = R′→[A] for some A ∈ Ψ} =

= {X ⊆ [W ] : X = [|A|] for some A ∈ Ψ}.

(II) We make use of the following theorem:5

The Recursive Jump Theorem (Wiśniewski & Pogonowski [2010]). For

any deeply infinite effective double frame (Φ, Γ, R) there exists an infinite

family Ξ of infinite recursive subsets of Φ such that each element of Ξ

is different from any R→x, for all x ∈ Γ .

10. Let us now reverse the picture by assuming that the language L and
its semantics are built in such a way that each recursive proposition X ∈
℘(W ) is expressed by some sentence of L and the relevant assignment

4 A double frame is an ordered triple (Φ, Γ , R), where Φ, Γ are non-empty sets
and R ⊆ Γ × Φ is a relation whose domain is Γ . A double frame (Φ, Γ, R) is deeply

infinite if Φ and Γ are countably infinite sets, and each set R→x is infinite, for all
x ∈ Γ . A double frame (Φ, Γ, R) is effective if Φ and Γ are sets of natural numbers, Φ

is recursive, Γ is r.e. and R is an r.e. relation. Cf. Wiśniewski & Pogonowski [2010].
5 For a direct application of the theorem in the area we are interested in here

see Wiśniewski & Pogonowski [2010], pp. 38–39. The setting adopted in the present
paper is more general.
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(of propositions to sentences) is still univocal. It follows that the set Ψ of
all the sentences of L which express infinite propositions is denumerable.

Now, by the result presented in Section 8, at least one of the following,
(A) or (B), holds:

(A) [Ψ ] is not r.e.

An r.e. set is the set of values of a partial recursive function, and partial
recursive functions correspond to algorithms. Since sentences of L are
coded by natural numbers, it follows that the set Ψ is not positively
decidable. In other words, there is no algorithmic procedure which is
capable to identify, in a finite number of steps, each element of the set
of sentences expressing infinite propositions.

(B) the assignment of propositions to sentences is not effective.

Strictly speaking, (B) means that the relation R̂ which fulfils the condi-
tion:

(∀x ∈ [Σ])(∀y ∈ [W ])(R̂(x, y) ↔ R∗(g(x), g(y))).

is not r.e. But given that R∗ is defined by:

(∀A ∈ Σ)(∀w ∈ W )(R∗(A, w) ↔ w ∈ |A|).

and g is the “decoding” function, that is, a function that recovers sen-
tences and possible worlds from their codes, it follows that there occurs
at least one sentence such that some world(s) belong(s) to the proposi-
tion expressed by the sentence, but this can not be effectively established.
Thus each algorithmic procedure whose outputs are true statements say-
ing that a world belongs to the proposition expressed by the sentence,
is incomplete in the sense that it does not “reach”, in a finite number of
steps, a certain true statement of this kind.

11. The results of this paper can be interpreted in two ways. First,
as “deep” philosophical claims, telling something about the necessity of
existence of inexpressible propositions. Second, as a, just another one,
argument against the identification of propositions with sets of possible
worlds. The reader is free to choose between these options.
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