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Abstract. The present paper is devoted to computational aspects of propo-
sitional inconsistency-adaptive logics. In particular, we prove (relativized
versions of) some principal results on computational complexity of deriv-
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1. Introduction

Adaptive logic is a well-developed approach to non-monotonic logic
which can be considered as unifying for formalization of default rea-
soning (see [4]). Naturally, being non-monotonic, such logics usually
have rather complex consequence relations, so it is surprising that there
are only a few works devoted to investigating algorithmic complexity of
adaptive logics.
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Historically, the first adaptive logics were inconsistency-adaptive (cf.
[1]) and thus, with the present manuscript, we start the systematic study
of algorithmic properties of this kind of logics (more precisely, of their
propositional variants). As a point of departure, we consider several
known results on adaptive logics complexity, but give alternative, sim-
pler (than in the available literature on the subject) and purely algo-
rithmic proofs for them. Simultaneously, we prove several theorems in a
relativized form which may serve as a basis for the subsequent general-
izations.

For instance, it is known [3] that the set of consequences derivable
from a finite premiss set in the adaptive logic CLuN r (having the weak
paraconsistent logic CLuN as its lower limit logic and supplied with
the reliability strategy) is decidable: this was obtained by providing the
goal directed proof procedure for CLuN r. A similar proof procedure
for the minimal abnormality strategy was suggested in [8] and yields
the decidability of the set of consequences of a finite premiss set in the
corresponding adaptive logic CLuN m. The goal directed proof proce-
dures (for CLuN r and CLuN m) are rather complicated, involve many
different parameters and both have various applications besides the de-
cidability itself. Actually, however, all we need for getting decidability
in these cases is the fact that only finitely many minimal disjunctions
of abnormalities are CLuN -derivable from a finite set of premisses: this
observation will be reflected in our own proofs of Propositions 3.1, 3.5
and 3.6 (see Section 3).

In their paper [5], L. Horsten and P. Welsh investigated the com-
plexity of the sets of CLuN r- and CLuN m-consequences for an infinite
recursive set of premisses: they argued that each of these is Σ0

3 and that
the estimation is exact, namely there is a recursive set Γ the collections
of CLuN r- and CLuN m-consequences of which are both Σ0

3-complete.
Though it is easy to check their lower bound proof (i.e., that the prob-
lem is Σ0

3-hard), the proof for the upper bound is hard to follow. The
latter is quite complicated and is based on a fairly non-standard repre-
sentation of the dynamic proof procedure for adaptive logics. Moreover,
the Σ0

3-complexity for CLuN m contradicts the Π1
1-hardness of the same

problem established by P. Verdee [7] (which will be discussed below). In
Section 3 we give a direct and explicit proof of the fact that generalizes
the Σ0

3 upper bound for the reliability strategy and relies on the standard
format of adaptive logics (as in [2, 4]). The idea is the following. Let us
start with the definition of the final derivability relation: a formula A
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is finally derivable from a set of premisses Γ iff there is a finite stage of
proof s (from Γ) such that A is derived on some unmarked (according to
the reliability strategy) line i of this stage and for any finite extension t of
s, there exists a further finite extension r (of t) in which i appears to be
unmarked. The definition contains a Σ0

3 prefix followed by a condition re-
cursive modulo the predicate “to be a finite stage of proof from Γ” (which
doesn’t presuppose markings done): the proof of Theorem 3.7 and its
corollaries provide the detailed analysis and demonstrate the technique
needed. Then it only remains to notice that such predicate appears to
be recursive in case of recursive Γ, and recursively enumerable (r.e.) in
case of r.e. Γ (more generally, its algorithmic complexity is m-equivalent
to the complexity of Γ). The obtained result agrees with the estimation
for the reliability strategy claimed by Horsten and Welsh and generalizes
it as well. However, this argumentation cannot be carried over to the
minimal abnormality strategy, because the definition of final derivabil-
ity involves infinite stages of proof (and, in effect, essentially exploits
them). Verdee [7] proved that the collection of CLuN m-consequences is
Π1

1-hard for a suitable recursive set Γ. It turns out that this estimation
is exact: in Theorem 3.15 we prove that for every set of premisses Γ,
the set of its CLuN m-consequences is Π1

1 w.r.t. Γ. On the other hand,
if there are only finitely many formulas unreliable w.r.t. Γ, then the set
of CLuN m-consequences of Γ will be again arithmetical modulo Γ (see
Proposition 3.17).

2. Preliminaries

We assume the reader is acquainted with the basics of computability
theory. Let us recall only the definition of the arithmetical hierarchy.
An n-ary relation R on the set of natural numbers ω belongs to the class
Σ0

1 iff it is a projection of n+ 1-ary recursive relation, i.e.,

R = {〈x1, . . . , xn〉 | ∃y(〈x1, . . . , xn, y〉 ∈ Q)}

for some recursive relation Q ⊆ ωn+1. An n-ary relation R ⊆ ωn belongs
to the class Π0

1 iff its complement ωn \R is in Σ0
1. Next Σ0

n+1 consists of
projections of Σ0

n-relations, and elements of Π0
n+1 are exactly the com-

plements of Σ0
n+1-relations. Taking into account that every projection of

Σ0
n-relation is again a Σ0

n-relation, one can easily obtain that any relation

{z̄ | ∃x1∃x2 . . .∀y1∀y2 . . . R(x1, x2 . . . , y1, y2 . . . , z̄)}
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defined via a recursive matrix R with the prefix containing n-alternations
of quantifiers and starting with existential quantifier belongs to Σ0

n+1,
whereas the relation defined via a recursive matrix R with prefix con-
taining n-alternations of quantifiers and starting with universal quan-
tifier belongs to Π0

n+1. The families of classes Σ0
n+1 and Π0

n+1 form
the arithmetical hierarchy. Note that Σ0

1 coincides with the class of r.e.
relations.

If we start not with the family of all recursive sets, but with the
family of sets recursive with respect to an oracle X , we will get the
relativized arithmetical hierarchy consisting of classes Σ0,X

n+1 and Π0,X
n+1,

n ∈ ω.
A set which belongs to one of the classes of the arithmetical (w.r.t.

X) hierarchy is called arithmetical (w.r.t. X).
The following representation of arithmetical sets is well-known. A set

S is in Σ0
n (Π0

n) iff there is an arithmetical Σn(Πn)-formula A(x1, . . . , xn)
such that

S = {〈a1, . . . , an〉 | N |= A(a1, . . . , an)},

where N = 〈ω,+, ·, s, 0〉 is the standard model of arithmetic. Thus,
arithmetical sets are defined via the arithmetical first order formulas.

A set S ⊆ ωn is said to be a Π1
1-set iff

S = {〈a1, . . . , an〉 | N |= ∀P A(P, a1, . . . , an)},

where A(P, x1, . . . , xn) is a second order arithmetical formula with only
one predicate variable P (so “∀P” ranges over all subsets of naturals),
and S is a Π1,X

1 -set iff

S = {〈a1, . . . , an〉 | NX |= ∀P A(P,X , a1, . . . , an)},

where NX = 〈ω,+, ·, s, 0, X〉 is the standard model of arithmetic enriched
with the unary predicate symbol X interpreted by X and the formula A
may contain occurrences of both P and X .

Now we introduce the necessary adaptive logic terminology (cf. [2]).
Fix some language L with the set of formulas ForL. Let γ be a Gödel
numbering of ForL, i.e., γ is an effective one-to-one mapping from ForL

onto ω with the property: γ(A) < γ(B) whenever A is a proper subfor-
mula of B.

Let LLL be a lower limit logic, namely a monotonic logic in the lan-
guage L with its consequence relation ⊢LLL (between sets of L-formulas),
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appropriate class of models, and its satisfiability relation �LLL (between
the models and the formulas). In fact, the relation ⊢LLL will be a sub-
relation of an adaptive consequence we intend to define.

Fix a set of formulas Ω ⊆ ForL the elements of which will be called
abnormalities. Usually it is assumed that the set Ω is distinguished by a
logical form of formulas, e.g., consists of all formulas of the form A∧¬A.
This assumption guaranties the decidability of the set of abnormalities.
For an LLL-model M, put Ab(M) := {A ∈ Ω | M � A}.

Let ∆,Γ ⊆ ForL. We employ the following notation1:

ℓ(ϕ) := the length of ϕ ∈ ForL;

SubF(Γ) := the set of all subformulas of formulas in Γ;

∆ ⊆fin Γ means “∆ is a finite subset of Γ”;

Dab(∆) :=
∨

ϕ∈∆ ϕ, where ∆ ⊆fin Ω.

Formulas of the form Dab (∆) are called Dab-formulas. Then Dab (∆)
is a minimal Dab-consequence of Γ iff Γ ⊢LLL Dab (∆) and there is no
∆′ ⊂ ∆ for which Γ ⊢LLL Dab (∆′). Set

U(Γ) := {A ∈ ForL | A ∈ ∆ for some minimal

Dab-consequence Dab(∆) of the set Γ} .

We say that the elements of U(Γ) are unreliable with respect to Γ.
Let M be an LLL-model of the set of L-formulas Γ, namely M � Γ.

Then M is reliable iff Ab(M) ⊆ U(Γ), and M is minimally abnormal iff
there is no other model M′ of Γ with Ab(M′) ⊂ Ab(M).

Now we are to define (semantically) two adaptive consequence rela-
tions: for Γ ∪ {A} ⊆ ForL, Γ �ALr A iff M � A for all reliable models
M of Γ, and Γ �ALm A iff M � A for all minimally abnormal models
M of Γ.

The relation �ALr provides the semantics for the adaptive logic ALr

based on the lower limit logic LLL, the set of abnormalities Ω, and the

reliability strategy. Similarly, the adaptive logic ALm (corresponding to
�ALm) is based on the same lower limit logic and set of abnormalities,
but exploits a different strategy of handling abnormalities which is called
the minimal abnormality strategy.

Next we have to define the proof procedures for the adaptive logics
ALr and ALm. Both of them significantly make use of the notion of a

1 Below we presuppose that the logical connective “∨” is in the language.
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stage of proof (from a given set of premisses). For any Γ ⊆ ForL, a stage

of proof from Γ is represented by a sequence (finite or infinite) of lines,
where each line is a quintuple with the following components: (i) a line
number, (ii) a formula, (iii) line numbers for the premisses of a rule, (iv)
the name of the rule, (v) a condition which is a finite set of abnormalities.
Moreover, every line of a stage of proof s must be constructed from the
previous lines using one of the following rules:

PREM If A ∈ Γ, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) —, (iv) PREM, and (v) ∅.

RU If A1, . . . , An ⊢LLL B and A1, . . . , An occur in s as the second
elements of lines with numbers i1, . . . , in that have conditions ∆1,
. . . , ∆n, respectively, then one may add a line consisting of: (i)
an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v)
∆1 ∪ . . . ∪ ∆n.

RC If A1, . . . , An ⊢LLL B ∨ Dab(Θ) and A1, . . . , An occur in s as the
second elements of lines with numbers i1, . . . , in that have conditions
∆1, . . . , ∆n respectively, then one may add a line consisting of: (i)
an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and (v)
∆1 ∪ . . . ∪ ∆n ∪ Θ.

If s is a stage of proof that contains a line with number i, the second
element being A and the fifth element ∆, we say that A is derived in s at

line i under condition ∆. By an extension of a stage of proof s we mean
a stage of proof t with the property: the sequence of lines of s forms a
subsequence of that of t, when all the (i)-st and (iii)-rd components of
lines in s are suitably renumbered.

Notice, the notion of a stage of proof does not depend on the strategy
of handling abnormalities. Rather, the strategies are involved in the
proof theory in the form of marking definitions.

Let s be a stage of proof from a premiss set Γ. For the reliability
strategy, we first need to define the set Us of formulas that are unre-
liable at s.2 Say that Dab (∆) is a minimal Dab-consequence at s iff
Dab (∆) has been derived at some line of s under the empty condition
(i.e., Dab (∆) is the second component of this line whilst the fifth com-
ponent is empty) and there is no ∆′ ⊂ ∆ for which Dab (∆′) has been
derived in s under the empty condition. Let Us := {A ∈ ForL | A ∈

2 We use here the notation Us instead of the traditional Us(Γ) to emphasize the
fact that this set is determined solely by the stage of proof s and the whole set of
premisses Γ is not indeed required. Analogously, we write Φs instead of Φs(Γ) below.
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∆ for some minimal Dab-formula Dab(∆) at stage s}. At times, when
it doesn’t lead to confusion, we call lines by their numbers.

Definition 2.1. Let a finite stage of proof s contain a line with number i
and condition ∆. We say that this line i is r-marked (or marked according

to the reliability strategy) at stage s iff ∆ ∩ Us = ∅.

Definition 2.2. A formula A is finally ALr-derived at a finite stage of

proof s iff A is derived at some line i of s, which is not r-marked at s and
any finite extension of s in which this line is r-marked may be further
finitely extended in such a way that the line becomes r-unmarked again.

Definition 2.3. A formula A is finally ALr-derivable from Γ (written
as Γ ⊢ALr A) iff there exists a stage of proof s (from Γ) such that A is
finally r-derived at some line of s.

Now we turn to the minimal abnormality strategy where infinite
stages of proof play an important role.

First we need to say a few words on the so-called choice sets. Assume
Σ is a family of sets. A set ∆ is said to be a choice set for Σ iff for any
ϕ ∈ Σ, ∆ ∩ϕ 6= ∅. Then such a choice set ∆ is minimal (for Σ) iff there
is no other choice set ∆′ for Σ with ∆′ ⊂ ∆. It is well-known that every
family of finite sets has a minimal choice set (see, e.g., [4, Fact 5.1.2]).
The next statement is an obvious strengthening of this latter result.

Proposition 2.4. Let Σ be a family of sets. A choice set ∆ for Σ is
minimal iff for every a ∈ ∆, there exists ϕ ∈ Σ such that ∆ ∩ ϕ = {a}.

Suppose that s is a stage of proof from Γ and {Dab(∆i) | i ∈ I} is
the family of all minimal Dab-formulas at s. Denote by Φs the set of all
minimal choice sets for the family {∆i | i ∈ I}.

Definition 2.5. Let a stage of proof s contain a line with number i and
condition ∆. We say that this line i is m-marked (or marked accord-

ing to minimal abnormality strategy) at stage s iff one of the following
requirements is satisfied:

(i) there is no ϕ ∈ Φs such that ϕ ∩ ∆ = ∅;
(ii) for some ϕ ∈ Φs, there is no line in s at which A is derived under

condition Θ with ϕ ∩ Θ = ∅.

Definition 2.6. A formula A is finally ALm-derived at a stage of proof

s iff A is derived at some line i of s, which is not m-marked at s and any
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extension of s in which this line is m-marked may be further extended
in such a way that the line becomes m-unmarked again.

Definition 2.7. A formula A is finally ALm-derivable from Γ (written
as Γ ⊢ALm A) iff there exists a stage of proof s (from Γ) such that A is
finally m-derived at some line of s.

For an arbitrary set of formulas Γ, we denote by Φ(Γ) the set of all
minimal choice sets for the family {∆i | i ∈ I}, where {Dab(∆i) | i ∈ I}
is the set of all minimal Dab-consequences of Γ. It is easy to reformulate
the criterion for the final m-derivability as follows.

Proposition 2.8. A formula A is finally ALm-derivable from Γ iff there
exists a stage of proof s from Γ with the property: Φs = Φ(Γ) and for
every ϕ ∈ Φ(Γ), there is a line i of s such that A is derived at this line
under condition ∆i with ϕ ∩ ∆i = ∅.

Assume that

CnALr(Γ) := {A | Γ ⊢ALr A} and CnALm(Γ) := {A | Γ ⊢ALm A} .

We also write Cnr(Γ) and Cnm(Γ), for short, if it is clear from the
context what kind of lower limit logic and abnormalities are used.

For many concrete lower limit logics and sets of abnormalities one can
prove that the final ALr(ALm)-derivability relation is strongly complete
w.r.t. the proper semantics, i.e., that ⊢ALr=�ALr (⊢ALm=�ALm).

Perhaps the most standard choice for a lower limit logic and a collec-
tion of abnormalities (in propositional setting) is the propositional weak
paraconsistent logic CLuN together with inconsistencies

Ω := {A ∧ ¬A | A ∈ ForCL},

where ForCL is the set of formulas in the classical propositional language
{∨,∧,→,¬} built up from the propositional variables Prop. Thus, we ar-
rive at (propositional) inconsistency adaptive logics CLuN r and CLuN m.

The logic CLuN can be viewed as the least subset of ForCL containing
the axioms of classical positive logic with the only additional axiom for
the negation, namely p ∨ ¬p, and closed under the rules of substitution
and modus ponens. The consequence relation ⊢CLuN associated with
CLuN is defined as follows: for Γ ∪{A} ⊆ ForCL, Γ ⊢CLuN A holds iff A
can be obtained in a finite number of steps from the elements of CLuN ∪Γ
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using modus ponens. And for Γ,∆ ⊆ ForCL, the relation Γ ⊢CLuN ∆
means that Γ ⊢CLuN A1 ∨ . . . ∨An for some {A1, . . . , An} ⊆ ∆.

Models of CLuN are simply valuations v : ForCL → {0, 1} having the
properties: for all A,B ∈ ForCL,

1. v(A ∧B) = 1 iff v(A) = 1 and v(B) = 1;
2. v(A ∨B) = 1 iff v(A) = 1 or v(B) = 1;
3. v(A → B) = 1 iff v(A) = 0 or v(B) = 1;
4. if v(A) = 0, then v(¬A) = 1.

We write v(Γ) = 1(0) iff v(A) = 1(0) for all A ∈ Γ. Hence Γ �CLuN A

means that v(Γ) = 0 or v(A) = 1 for each CLuN -valuation v. Accord-
ingly, for two sets of formulas Γ and ∆, Γ �CLuN ∆ means that for every
CLuN -valuation v, either v(Γ) = 0 or v(A) = 1 for some A ∈ ∆.

The logic CLuN is strongly complete w.r.t. the semantics just de-
scribed, i.e., for any Γ,∆ ⊆ ForCL, we have

Γ ⊢CLuN ∆ ⇐⇒ Γ �CLuN ∆ .

Since the values v(Γ) and v(∆) are completely determined by the
restriction of v to the subformulas SubF(Γ ∪ ∆), the relation ⊢CLuN re-
stricted to finite sets (for both premisses and consequences) is decidable.

The analogs of strong completeness results for the final CLuN r- and
CLuN m-derivabilities were proved by D. Batens.

Theorem 2.9 ([1]). For any Γ ∪ {A} ⊆ ForCL, the equivalences hold:

Γ ⊢CLuNr A ⇐⇒ Γ �CLuNr A ,

Γ ⊢CLuNm A ⇐⇒ Γ �CLuNm A .

The next criterion for the final CLuN r-derivability is also useful (it
can be viewed as a sort of ‘compactness’ for the non-monotonic logic
CLuN r).

Theorem 2.10 ([1]). For any Γ ∪ {A} ⊆ ForCL, Γ ⊢CLuNr A iff there
exists ∆ ⊆fin Ω such that Γ ⊢CLuN A ∨ Dab(∆) and ∆ ∩ U(Γ) = ∅.

A similar criterion for the final CLuN m-derivability was provided
in [1]. However, since the proof of this statement in [1] (and also in
[4]) essentially exploits the presence of classical negation in the language
involved, but the latter is not available in CLuN (according to our pre-
sentation), we give an alternative proof of this statement here.
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Theorem 2.11 ([1]). For any Γ∪{A} ⊆ ForCL, Γ �CLuNm A iff for each
ϕ ∈ Φ(Γ), there exists ∆ ⊆fin Ω such that Γ ⊢CLuN A ∨ Dab(∆) and
∆ ∩ ϕ = ∅.

Proof. ⇒ Suppose there exists ϕ ∈ Φ(Γ) such that for every ∆ ⊆fin

Ω \ ϕ, we have Γ 0CLuN A ∨ Dab(∆). What it means is Γ 0CLuN

{A} ∪ Ω \ ϕ. Hence, due to strong completeness for CLuN , there is a
CLuN -valuation v with the property:

v(Γ) = 1 and v({A} ∪ Ω \ ϕ) = 0 .

Particularly, v is a model of Γ with Ab(v) ⊆ ϕ. Now if B ∧ ¬B ∈ ϕ

but v(B ∧ ¬B) = 0 (i.e., B ∧ ¬B 6∈ Ab(v)), by Proposition 2.4 there is a
minimal Dab-consequence Dab(Θ) of Γ with ϕ∩ Θ = {B ∧ ¬B}. On the
other hand, Θ \ {B ∧ ¬B} ⊆fin Ω \ ϕ, so v (Θ \ {B ∧ ¬B}) = 0. Then
Dab (Θ) is false in a CLuN -model of Γ and can’t be a CLuN -consequence
of Γ which is a contradiction. Consequently, Ab(v) = ϕ. Notice, if v′ is
such that

v′ (Γ) = 1 and Ab (v′) ⊆ Ab (v) = ϕ ,

then v′ (Ω \ ϕ) = 0 and an argument similar to the above leads to v′ = v.
Thus, v is minimally abnormal and Γ 6�CLuNm A.

Moreover, one can prove that a set of abnormalities ϕ is in Φ(Γ) iff

ϕ coincides with Ab(v) for some minimally abnormal model v of Γ.
Indeed, by the above argument we have that if Γ 6⊢CLuN Dab (∆)

for each ∆ ⊆fin Ω \ ϕ, then ϕ = Ab(v) for an appropriate minimally
abnormal model of Γ (one should omit “A” to get this). Suppose there
exists ∆ ⊆fin Ω\ϕ such that Γ ⊢CLuN Dab (∆), hence Γ ⊢CLuN Dab (∆′)
where ∆′ ⊆ ∆ and Dab (∆′) is a minimal Dab-consequence of Γ. But in
this case ϕ 6∈ Φ(Γ).

Inversely, if v is a minimally abnormal model of Γ, then Ab(v) is a
choice set for {∆i | i ∈ I}, where {Dab(∆i) | i ∈ I} is the collection
of all minimal Dab-consequences of Γ. If Ab(v) is a proper supset of
some ϕ ∈ Φ(Γ), then v is not minimally abnormal, since (by the direct
implication) ϕ = Ab(v′) for a suitable model v′ of Γ.

⇐ Assume that for every ϕ ∈ Φ(Γ), there exists ∆ ⊆fin Ω with the
property: Γ ⊢CLuN A ∨ Dab(∆) and ∆ ∩ ϕ = ∅. If there is a minimally
abnormal model v of Γ such that v(A) = 0, then Ab(v) ∈ Φ(Γ) and so
Γ ⊢CLuN A ∨ Dab(∆) for some ∆ ⊆fin Ω with ∆ ∩ Ab(v) = ∅. Since
v(A) = 0, we obtain v(Dab(∆)) = 1 which conflicts ∆ ∩Ab(v) = ∅. ⊣
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Remark that we have also established the following

Corollary 2.12. Let Γ ⊆ ForCL. Then

Φ (Γ) = {Ab(v) | v is a minimally abnormal model of Γ} ,

U (Γ) =
⋃

{Ab(v) | v is a minimally abnormal model of Γ} .

In particular, if v is a minimally abnormal model of Γ, then Ab (v) ⊆
U(Γ). So every minimally abnormal model (of Γ) is also reliable one.

3. Complexity Bounds

The next simple observation plays an important part in providing the
results of this section. For Γ,∆ ⊆ ForCL, we denote

∆Γ := ∆ ∩ {A ∧ ¬A | ¬A ∈ SubF(Γ)} .

For instance,
ΩΓ := {A ∧ ¬A | ¬A ∈ SubF(Γ)} .

Proposition 3.1. Let Γ ⊆ ForCL and ∆ ⊆fin Ω. Then Γ ⊢CLuN

Dab (∆) entails Γ ⊢CLuN Dab (∆Γ).

Proof. Let v be a CLuN -valuation such that v (Γ) = 1. Now we want
to show v (Dab (∆Γ)) = 1.

Construct v′ : ForCL → {0, 1} inductively as follows:

1. if p is a propositional symbol which does not appear in Γ, then v′ (p)
is arbitrary (but, obviously, fixed; e.g., zero);

2. if A ∈ SubF (Γ), then v′ (A) := v (A);
3. if A has the sort A1 ∧A2, A1 ∨A2 or A1 → A2, then v′ (A) is defined

as for CLuN -valuations being given the values of v′ (A1) and v′ (A2);
4. if ¬A 6∈ SubF (Γ), then v′ (¬A) := 1 − v′ (A).

It is straightforward that v′ is a CLuN -valuation as well, and, since
it acts just like v on the elements of SubF (Γ), v (A) = v′ (A) for any
A ∈ ∆Γ. Clearly, v′ (Γ) = v (Γ) = 1 and v′ (Dab (∆Γ)) = v (Dab (∆Γ)).
In particular, v′ is a model of Γ. Thus, by assumption, v′ (Dab (∆)) = 1.
On the other hand, v′ (A) = 0 for all A ∈ Ω\∆Γ, because in v′ the nega-
tion behaves classically outside of SubF (Γ). Hence v′ (Dab (∆ \ ∆Γ)) =
0, and so v′ (Dab (∆Γ)) = 1. Finally, we obtain the desired equality
v (Dab (∆Γ)) = v′ (Dab (∆Γ)) = 1. ⊣
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Consequently, for a finite Γ, there are only finitely many minimal
disjunctions of abnormalities that are derivable from Γ. By analogy one
can establish the following

Corollary 3.2. Let Γ ⊆ ForCL and ∆ ⊆fin Ω. Then Γ ⊢CLuN A ∨
Dab (∆) entails Γ ⊢CLuN A ∨ Dab

(

∆Γ∪{A}

)

.

From the last Corollary and Theorem 2.10 we obtain

Corollary 3.3. For any Γ ∪ {A} ⊆ ForCL, Γ ⊢CLuNr A iff there exists
∆ ⊆ ΩΓ∪{A} such that Γ ⊢CLuN A ∨ Dab(∆) and ∆ ∩ U(Γ) = ∅.

In the proof of Proposition 3.1, for every CLuN -model v of Γ, we’ve
constructed another model v′ of Γ with the property Ab(v′) ⊆ Ab(v)∩ΩΓ.
This construction leads us naturally to

Corollary 3.4. Let Γ ⊆ ForCL and v be an arbitrary reliable or min-
imally abnormal CLuN -model of Γ. Then Ab (v) ⊆ ΩΓ.

Proposition 3.5. The relation

{(Γ, A) | Γ ∪ {A} ⊆fin ForCL and Γ ⊢CLuNr A}

is decidable.

Proof. By Proposition 3.1, if Dab (∆′) is a minimal Dab-consequence
of Γ (in CLuN ), then ∆′ is a subset of the finite set ΩΓ. Thus, in order
to get all minimal disjunctions of abnormalities which are derivable from
Γ, we only have to verify, for each ∆′ ⊆ ΩΓ, whether Γ ⊢CLuN Dab (∆′)
holds or not, and this can be done effectively as was noted in the previous
section. As a result, we computably obtain the finite set U (Γ).

Now, according to Corollary 3.3, it remains to check if there exists
∆ ⊆ ΩΓ∪{A} (obviously, ΩΓ∪{A} is finite, just like ΩΓ, and can also be
effectively found) such that Γ ⊢CLuN A∨Dab(∆) and ∆∩U(Γ) = ∅. ⊣

Proposition 3.6. The relation

{(Γ, A) | Γ ∪ {A} ⊆fin ForCL and Γ ⊢CLuNm A}

is decidable.

Proof. Due to Theorem 2.9 and Corollary 3.4, Γ ⊢CLuNm A is equiva-
lent to v (A) = 1 for all v ∈ K where
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K := {v | v (Γ) = 1, Ab(v) ⊆ ΩΓ,

and there is no v′ such that v′ (Γ) = 1 and Ab (v′) ⊂ Ab (v)} .

Let R be the class of all mappings ρ : SubF (Γ ∪ {A} ∪ ΩΓ) → {0, 1}
satisfying the conditions 1–4 from the definition of CLuN -valuation (re-
stricted to the elements of SubF (Γ ∪ {A} ∪ ΩΓ)). Assume the nota-
tion Ab (ρ) := {A ∈ Ω | ρ (A) = 1}, for ρ ∈ R. Suppose

G := {ρ ∈ R | ρ (Γ) = 1, Ab(ρ) ⊆ ΩΓ,

and there is no ρ′ ∈ R such that ρ′ (Γ) = 1 and Ab (ρ′) ⊂ Ab (ρ)} .

To verify the conditions v (A) = 1 and v (Γ) = 1 we only need to know
how v acts on the elements of SubF (Γ ∪ {A}). Therefore, instead of
checking v(A) = 1 for all v ∈ K, it will be enough to examine the
equality ρ(A) = 1 for all ρ ∈ R. Since the set Γ ∪ {A} ∪ ΩΓ is finite,
G is also finite and, moreover, can be found in the effective way. This
means that we have an algorithm deciding whether Γ ⊢CLuNm A holds
or not. ⊣

Now we turn to the upper estimations for the general case. Remark:
in the sequel, we often identify Γ with γ(Γ) := {γ (B) | B ∈ Γ}.

Theorem 3.7. For every Γ ⊆ ForCL, the set Cnr (Γ) is Σ0,Γ
3 .

Proof. Having a Gödel numbering of formulas allows us to provide
an effective coding for more complex syntactical objects, e.g., finite se-
quences of formulas, lines of stages of proof, finite stages of proof, finite
sets of formulas, finite sets of finite sets of formulas, etc.

Let us consider the following predicates and functions:

• Proof (n) which is true iff n encodes some finite stage of proof from
ForCL;

• ProofΓ (n) which is true iff n encodes some finite stage of proof from Γ;
• len (n) which returns the number of lines in the finite stage of proof

encoded by n (i.e., its length) in case Proof (n) holds, and 0 otherwise;
• Sub (n, k) which is true iff both Proof(n) and Proof (k) hold, and k

corresponds to the stage proof which is an extension of the stage of
proof encoded by n;

• Head (n, i, k) which is true iff Proof (n) holds, 1 ¬ i ¬ len (n), and
γ−1 (k) is the (ii)-component of the i-th line of the stage of proof
encoded by n;
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• Mrkr (i, n) which is true iff Proof (n) holds, 1 ¬ i ¬ len (n), and the
i-th line of the stage of proof encoded by n appears to be r-marked;

Notice, ProofΓ (n) implies Proof (n) and, in case ProofΓ (n) holds, the
predicate Mrkr (i, n) works correctly as if it was applied to the stages of
proof from Γ. In other words, all necessary information is encoded in n

and we don’t need to know if a stage of proof is from Γ or another set
of premisses to provide an appropriate marking.

Lemma 3.8. The predicates Proof , Sub, Head, Mrkr, and the function
len are all recursive, while the predicate ProofΓ is recursive w.r.t. Γ.

Proof. The recursiveness of Proof, Sub, Head, and len is straightfor-
ward. Indeed, to verify whether Proof (n) holds, we need to check that n
is a code of a finite sequence of quintuples and for the i-th quintuple of
this sequence (encoded by n), that: 1. the first of its components equals
to i; 2. the second component is a code of a formula; 3. the third is a code
of a finite set of numbers strictly smaller than i; 4. the forth is a code of
the name of a rule; 5. the fifth is a code of a finite set of abnormalities;
6. finally, certain ‘extra requirements’ (they are discussed below) related
to the name of the rule used in the forth component should be satisfied.
These ‘extra requirements’ are also easy to check, namely

• if the forth component of the i-th line is RU, the fifth element B,
and A1, . . . , Am are the formulas represented by the second elements
of lines the numbers of which are sewed in the forth element of i,
then A1, . . . , Am ⊢CLuN B and the fifth element of i is the code of
the set ∆1 ∪ . . . ∪ ∆m where ∆k’s (k = 1, . . . ,m) are the the fifth
elements of lines corresponding to Ak’s;

• if the forth element of line i is RC, then we have to verify whether
A1, . . . , Am ⊢CLuN B ∨ Dab(Θ) or not for some set of abnormalities
Θ with the property ∆ \ (∆1 ∪ . . . ∪ ∆m) ⊆ Θ ⊆ ∆ where Ak’s and
∆k’s are as in the previous item, and ∆ is the fifth element of i;

• if the forth element of line i is PREM, then the third and the fifth
elements are empty (we might reserved a special code for ‘empty’).

Clearly, all these conditions can be checked computably. Now it follows
readily from the recursiveness of Proof that Sub and Head are recursive
predicates, whereas len is a recursive function.

Note that ProofΓ (n) is true iff Proof (n) holds and, additionally,
for lines with the mark ‘PREM’ in their (iv)-component, their (ii)-
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components are some elements of Γ  the latter is recursive w.r.t. the
oracle Γ.

Why is Mrkr (i, n) recursive? Clearly, having the code n of a stage of
proof (call it s, for short) at hands, one is able to find, in the effective way,
all minimal Dab-formulas at that stage, hence construct the finite set Us

which allows to effectively provide the r-marking for all lines in s. ⊣

Now we are to complete the proof of the proposition. Using the pred-
icates introduced above, the condition Γ ⊢CLuNr A can be expressed as

(†) ∃n ∃i (ProofΓ(n) ∧ Head(n, i, γ(A)) ∧ ¬Mrkr(i, n) ∧

∀k (Sub(n, k) ∧ ProofΓ(k) ∧ Mrkr(i, k) →

∃l (Sub(k, l) ∧ ProofΓ(l) ∧ ¬Mrkr(i, l)))) ,

or, equivalently, as

∃n∃i∀k∃l(ProofΓ(n) ∧ Head(n, i, γ(A)) ∧ ¬Mrkr(i, n) ∧

(Sub(n, k) ∧ ProofΓ(k) ∧ Mrkr(i, k) →

(Sub(k, l) ∧ ProofΓ(l) ∧ ¬Mrkr(i, l)))).

Obviously, the latter represents a Σ0,Γ
3 -relation. ⊣

Corollary 3.9. Let Γ ⊆ ForCL. If Γ is Π0
m, then Cnr (Γ) is Σ0

m+3,
and if Γ is Σ0

m+1, then Cnr (Γ) is Σ0
m+3.

Proof. First, remark that the predicate ProofΓ has the same complex-
ity as Γ.

If Γ is in Σ0
m+1, then (†) (from the proof of Theorem 3.7) can be

represented as

∃n∃i (A ∧ ∀k (¬B ∨ ∃lC))

where A, B and C are Σm+1-formulas3. Since ¬B is equivalent to a Πm+1-
formula, it can be transformed into ∀sD with D being a Σm-formula.
Hence we get the chain of equivalences:

(†) ⇐⇒ ∃n∃i (A ∧ ∀k (∀sD ∨ ∃lC)) ⇐⇒ ∃n∃i (A ∧ ∀k ∀s (D ∨ ∃lC))

⇐⇒ ∃n∃i (A ∧ ∀k ∀s ∃l (D ∨ C)) ⇐⇒ ∃n∃i ∀k ∀s ∃l (A ∧ (D ∨ C))

3 Obviously, one may assume that k, s and l does not occur in A, l does not occur
in D, and s does not occur in C.
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where A ∧ (D ∨ C) may be expressed by a Σm+1-formula. Thus, the
condition Γ ⊢CLuNr A is specified by a Σm+3-formula, whence the result
follows.

Clearly, if the set Γ is Π0
m, then it is Σ0

m+1 as well. So, by the previous
argument, Cnr (Γ) will be in Σ0

m+3. ⊣

In particular, the special case of Corollary 3.9 is

Corollary 3.10. For every r.e. Γ ⊆ ForCL, the set Cnr (Γ) is Σ0
3.

This statement can be reformulated in a uniform way. Let Wn, n ∈ ω,
be an effective enumeration of all r.e. subsets of ω (here the ‘effectiveness’
means that the set {〈n,m〉 | n ∈ Wm} is again r.e.).

Corollary 3.11. The set

{〈n, γ (A)〉 | Γ ∪ {A} ⊆ ForCL,Wn = γ (Γ) and Γ ⊢CLuNr ϕ}

is Σ0
3.

Notice that Corollary 3.10 looks like a generalization of the result
on the complexity upper bound for the set of CLuN r-consequences of
a recursive set of premisses (namely the result stated in [5]). Actu-
ally, these statements are equivalent due to the fact that every r.e.
CLuN r(CLuN m)-theory can be recursively axiomatized.

Proposition 3.12. For every r.e. Γ ⊆ ForCL, there is a recursive Γ′ ⊆
ForCL such that

Cnr(Γ) = Cnr(Γ′) and Cnm(Γ) = Cnm(Γ′) .

Proof. Let ϕ0, ϕ1, . . . be an effective enumeration of all elements of Γ.
Consider the sequence of formulas ψn := ϕ0 ∧ . . .∧ϕn, n ∈ ω. Due to the
requirements on the Gödel numbering, if n < m then γ(ψn) < γ(ψm),
because in this case ψn is a proper subformula of ψm. Thus, Γ′ = {ψn |
n ∈ ω} can be enumerated by means of a monotonic recursive function
and hence is recursive. Trivially, CnCLuN(Γ) = CnCLuN (Γ′).

Since Γ and Γ′ are syntactically (and so semantically) equivalent,
they have the same models and U (Γ) = U (Γ′). By definitions, this
immediately implies the desired conclusions. ⊣
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In effect, the last statement can be generalized to every lower limit
logic LLL the language of which contains a fusion connective ∗ such that
for any formulas A1, . . . , An (in the language of LLL), we have

CnLLL({A1, . . . , An}) = CnLLL({A1 ∗ · · · ∗An}) .

In case of CLuN , the conjunction plays the role of fusion. Moreover, the
transformation Γ 7→ Γ′ (cf. the proof) can be viewed effectively in the
sense that given a number of some r.e. set Γ (i.e., n satisfyingWn = γ (Γ))
we computably get a Kleene number of an appropriate recursive set Γ′.

Finally, note that the lower bound proof (for the reliability strategy)
from [5] can be adapted to obtain

Proposition 3.13. For each m ­ 0, there exists a Π0
m(Σ0

m+1)-set Γ ⊆
ForCL such that Cnr (Γ) is Σ0

m+3-hard.

Sketch of proof. Let A (v) be an arithmetical Σm+3-formula with
the property: the set {n ∈ ω | N � A (n)} is Σ0

m+3-complete. Clearly,
using the usual coding techniques, A (v) can be translated into the form

∃x ∀y ∃z B (x, y, z, v)

where B (x, y, z, v) is a Πm-formula.
Assume that Γ ⊆ ForCL is obtained by applying the scheme:

• for any n, i, k and l, the set Γ contains the formulas

sn
i,k,l ,

(

qn
i,k ∧ ¬qn

i,k

)

∨ (rn
i ∧ ¬rn

i ) and pn ∨ (rn
i ∧ ¬rn

i ) ;

• for any n, i, k and l, if B (i, k, l, n) holds in N, then Γ includes

sn
i,k,l → qn

i,k ∧ ¬qn
i,k .

Trivially, we have that (the set of codes of formulas in) Γ is Π0
m. By a

routine argument, one is able to demonstrate the equivalence

Γ �CLuNr pn ⇐⇒ N � A (n) ,

whence the first part of the result follows.
For the second part, remark that if we already have a Π0

m-set Γ ⊆
ForCL with Σ0

m+3-hard set of CLuN r-consequences (see the previous
case), then Γ is obviously a Σ0

m+1-set with the same consequences. ⊣
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Therefore the estimations from Corollary 3.9 are exact, namely

Corollary 3.14. For each m ­ 0, there exists a Π0
m(Σ0

m+1)-set Γ ⊆
ForCL such that Cnr (Γ) is Σ0

m+3-complete.

Further, we discuss the algorithmic complexity of CLuN m-conse-
quence relation. In [7] P. Verdee constructed the recursive set of pre-
misses such that the set of its CLuN m-consequences is Π1

1-hard. It fol-
lows from the next statement that Π1

1 appears to be the upper bound
for the complexity of the set of CLuN m-consequences from any (fixed)
arithmetical Γ.

Theorem 3.15. For every Γ ⊆ ForCL, the set Cnm (Γ) is Π1,Γ
1 .

Proof. Let us consider the following predicates and functions: Seq(n)
which is true iff n is a code of a non-empty finite sequence of numbers;
lh(n) which returns the length of n in case Seq(n) holds, and 0 otherwise;
(n)i which returns the i-th component of n in case Seq(n) holds, and 0
otherwise.

Obviously, all these are primitive recursive ones, and so representable
via the formulas of the first order arithmetic with restricted quantifies.
Hence we can introduce the corresponding predicate and functions into
the language of arithmetic with no harm in expressiveness (cf. [6] for the
details). For simplicity, suppose we use the same notation Seq(x), lh(x)
and (x)i for them in the formal language (a similar technique is to be
applied to other recursive predicates and functions needed below). So
the formula

Sbset(x, y) := Seq(x) ∧ Seq(y) ∧ ∀i ≤ lh(x) ∃j ≤ lh(y) ((x)i = (y)j)

expresses the fact that all elements of (the finite sequence) x occur in
(the finite sequence) y. Now if Ω(x) is a primitive recursive predicate
checking that x is a code of some abnormality, then

Fsa(x) := Seq(x) ∧ ∀i ≤ lh(x) Ω((x)i)

says that x is a finite sequence of abnormalities. Analogously, let dab(x)
be a function returning the code of the disjunction of all elements of x
in case Fsa(x) holds, and 0 otherwise (trivially, it is primitive recursive).

Naturally, one is able to write down a Σ0,Γ
1 -predicate PrΓ

CLuN(x)
which verifies if a formula codified by x is provable from Γ in CLuN .
Thus, the following
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MdabΓ(x) := Fsa(x) ∧ PrΓ
CLuN(dab(x)) ∧

∀z ((Fsa(z) ∧ PrΓ
CLuN(dab(z)) ∧ Sbset(z, x)) → Sbset(x, z))

means that dab(x) is a minimal Dab-consequence of Γ.
Next, if P is an unary predicate variable, then the second order

formula

ChoiceΓ(P ) := ∀x (MDabΓ(x) → ∃i ≤ lh(x)P ((x)i))

stands for “P is a choice set for the set of all minimal Dab-consequences
of Γ”. In view of Proposition 2.4, each minimal choice set for the set of
minimal Dab-consequences of Γ can be distinguished by the property

MchoiceΓ(P ) := ChoiceΓ(P ) ∧ ∀x (P (x) →

∃y (MdabΓ(y) ∧ ∀i ≤ lh(y) (P ((y)i) → (y)i = x))) .

And then we use Theorem 2.11 to express the fact that A is finally
CLuN m-derivable from Γ, namely

∀P
(

MchoiceΓ(P ) → ∃x
(

Fsa(x) ∧

∀i ¬ lh(x) (¬P ((x)i)) ∧ PrΓ
CLuN (γ(A) ∨ dab(x))

)

)

,

where γ (A)∨dab(x) is a shorthand for ∨(γ (A) , dab(x)) (here ∨ is a func-
tion which returns the code of the disjunction of formulas represented
by its arguments). Obviously, we have obtained a Π1,Γ

1 -formula. ⊣

Corollary 3.16. For every arithmetical Γ ⊆ ForCL, the set Cnm (Γ)
is Π1

1.

The complexity of the set of CLuN m-consequences of a given Γ can be
essentially reduced if we additionally presuppose that the set of formulas
unreliable w.r.t. the premiss set Γ is finite.

Proposition 3.17. For each Γ ⊆ ForCL, if the set U(Γ) is finite, then
the set Cnm (Γ) is Σ0,Γ

1 .

Proof. We will use the notation from the proof of Theorem 3.15. Since
every minimally abnormal model of Γ is reliable (remember Corrol-
lary 2.12), the finiteness of U(Γ) implies that both the set (of sets) Φ(Γ)
and all of its elements are finite. To check whether Γ ⊢CLuNm A holds
or not, one has to verify, for every finite ϕ ∈ Φ(Γ), the condition



228 Sergei P. Odintsov, Stanislav O. Speranski

∃x
(

Fsa(x) ∧ ∀i ¬ lh(x) ∀j ¬ lh(γ(ϕ)) ((x)i 6= (γ(ϕ))j) ∧

PrΓ
CLuN (γ(A) ∨ dab(x))

)

,

where γ(ϕ) is the code of some finite sequence consisting of the codes of
elements in ϕ (one may choose an arbitrary sequence with this property).
Since PrΓ

CLuN (x) is a Σ0,Γ
1 -formula, the above condition can be given by

a Σ0,Γ
1 -formula. And the finite conjunction of all such formulas is, of

course, a Σ0,Γ
1 -formula as well. ⊣
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