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INTUITIONISTIC OVERLAP STRUCTURES

Abstract. We study some connections between two kinds of overlap rela-
tions: that of point-free geometries in the sense of Grzegorczyk, Whitehead
and Clarke, and that recently introduced by Sambin within his constructive
approach to topology. The main thesis of this paper is that the overlap rela-
tion in the latter sense is a necessary tool for a constructive and intuitionistic
development of point-free geometry.
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structive reasoning.

Introduction

The relation of “overlap” between regions is a basic notion in mereology,
in mereotopology and in several other point-free descriptions of geometry
and topology. A similar idea, together with the related notion of “positiv-
ity”, has recently gained importance in certain intuitionistic approaches
to topology and mathematics in general, such as Sambin’s [11,12]. This
paper aims to be a first step towards an exchange between these two
traditions.

In Section 1, we start by presenting the so-called overlap algebras

introduced by Sambin [12]. By means of some examples, we show how
they can be employed to obtain intuitionistic versions of classical the-
orems about complete Boolean algebras. In particular, we address the
problem of an intuitionistically sound definition of “atom” for a frame
and we discuss a couple of possible solutions.

Then, in Section 2, we use overlap algebras to construct intuitionistic
versions of various kinds of connection structures [1,2]. In particular, we
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propose a notion of intuitionistic mereological field which is based on the
notion of an overlap algebra rather than on that of a complete Boolean
algebra. Finally we prove intuitionistic versions of some classical results
on the conncetion structures associated to the regular open sets of a
topology.

All proofs and constructions in this work are carried on by means of
intuitionistically sound arguments. Therefore, though being valid also
under a classical reading, our results remain true also in more general
frameworks such as topos-valid mathematics.

1. Overlap algebras

What are the algebraic properties that characterize the collection Pow(S)
of all subsets of a given set S? Although natural the question is, the
answer is by no means trivial. First of all, it depends on the language
one choose. In the language of lattices, for instance, one can characterize
powersets as atomic, complete Boolean algebra. On the other hand, the
answer heavily relies on the foundational assumptions one is inclined to
make and, specifically, on the kind of logic one uses at the metalanguage.
It is a fact of life that Pow(S) is no longer a Boolean algebra as long as
you look at it from an intuitionistic point of view. Are we able to select
all those properties of powersets that hold intuitionistically?

Before proposing an answer to this question (following Sambin [12]),
we would try to motivate our interest in intuitionistic logic. There is
certainly someone who feels intuitionistic logic to be more natural than
classical one. There can even exist someone believing that only intu-
itionistic logic is “true”. Surely there are many who are simply curious
about the possibility of adopting a different logic. However, besides
these kinds of subjective motivations, there is also a more mathematical
reason for developing Mathematics on intuitionistic basis. In that way,
in fact, all definitions make sense and all results are valid not only in the
usual intended set-theoretic interpretation, but also within the interal
language of any topos [10].

For every set S, Pow(S) is a complete Heyting algebra (with respect
to the obvious operations) and this remains true also intuitionistically.
Is this all what we can say intuitionistically about powersets? Certainly
not; at least for two reasons. First, one has to find a suitable notion
of “atom” in such a way that every powerset wll turn out to be atomic.
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Second, one needs a way for expressing when an element is “inhabited”, a
statement which is intuitionistically stronger than merely asserting non-
emptyness. As we are now going to see, these two problems are deeply
linked.

If (X, ≤, 0) is an arbitrary poset with a bottom element, then one
wants atoms to be minimal among the elements that are different from
0. This same idea can be formalized in several ways which are equiva-
lent classically, but not intuitionistically. For instance, any one of the
following conditions is a candidate for defining when a ∈ X is an atom.

a 6= 0 & ¬(∃x ∈ X)(x 6= 0 & x < a)(1)

a 6= 0 & (∀x ∈ X)(x < a ⇒ x = 0)(2)

a 6= 0 & (∀x ∈ X)(x ≤ a ⇒ x = 0 ∨ x = a)(3)

a 6= 0 & (∀x ∈ X)(x 6= 0 & x ≤ a ⇒ x = a)(4)

Which of these is the more convenient from an intuitionistic point of
view? None! They all look too restrictive because either singletons in
Pow(S) cannot be proven to satisfy them, as it happens in the cases of
(3) and (4), or it is impossible to prove that every subset satisfying them
is a singleton. As an example, let us analyze the case of (4). Let {a}
be a singleton and assume that X ⊆ S is such that ∅ 6= X ⊆ {a}. Why
cannot we conclude that X = {a}? Surely we could if we knew X to be
inhabited. In fact, if that were the case, that is, if there existed an element
b ∈ X , then b = a because X ⊆ {a} and hence a ∈ X , that is, {a} ⊆ X

as wished. Note also that X being inhabited is a necessary condition for
X to coincide with {a}. So the question is: are the hypotheses sufficient
for finding an element b ∈ X? From an intuitionistic point of view, the
answer is: “No”! We only know X 6= ∅, that is, ¬∀b¬(b ∈ X). This is
intuitionistically weaker than ∃b(b ∈ X).

In view of this discussion, it should be clear that the problem of find-
ing a good definition of atom comes together with the need for expressing
inhabitedness. So a possible solution is to add a new primitive predicate
to the language of lattices, namely an overlap relation.

Definition 1.1 (Sambin [12]). Let P be a complete lattice. An overlap

relation >< on P is a binary relation on P such that
O1 x >< y ⇐⇒ y >< x

O2 (x ∧ z) >< y ⇐⇒ x >< (z ∧ y)
O3 x >< (

∨

i∈I yi) ⇐⇒ (∃i ∈ I)(x >< yi)
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O4 x ≤ y ⇐⇒ ∀z
(

(x >< z) ⇒ (y >< z)
)

for all x, y, z ∈ P and every set-indexed family {yi | i ∈ I} ⊆ P.
We call overlap algebra (or simply o-algebra) a complete latttice with
overlap.

Among the consequences of the axioms O1-O4 (see [4,5]), we want to
mention only one, perhaps surprising: every o-algebra is a frame, that is,
binary meets distribute over arbitrary joins. In fact, for any z ∈ P, one
has: (x ∧

∨

i∈I yi) >< z iff
(

∨

i∈I yi

)

>< (x ∧ z) iff (∃i ∈ I)
(

yi >< (x ∧ z)
)

iff
(∃i ∈ I)

(

(x ∧ yi) >< z
)

iff
(

∨

i∈I(x ∧ yi)
)

>< z. This shows that x ∧
∨

i∈I yi

=
∨

i∈I(x ∧ yi) by O4.

With classical logic, x >< y becomes equivalent to x ∧ y 6= 0 and
o-algebras turn out to be just complete Boolean algebras [4, 5]. This
fact suggests a general idea: in order to prove an intuitionistic version
of a classical result about complete Boolean algebras, replace them by
o-algebras.

We say that an element x in an o-algebra P is positive (or inhabited),
and we write Pos(x), if x >< x holds. O-algebras can be presented also in
terms of this positivity predicate Pos. In fact, it is easy to check that an
o-algebra is just a frame equipped with a unary predicate Pos such that:
(5)

Pos(
∨

i

yi) ⇔ ∃iPos(yi) and ∀z
(

Pos(x ∧ z) ⇒ Pos(y ∧ z)
)

⇒ x ≤ y .

In this case the overlap relation x >< y is defined as Pos(x ∧ y).
The positivity predicate Pos is precisely what is needed in order to

obtain an intuitionistically sound definition of atom. What we are going
to give (following [12]) is just a “positive” rendering of (4).

Definition 1.2. Let P be an o-algebra.1 We say that a ∈ P is an
atom if

(6) Pos(a) & ∀x
(

Pos(x) & x ≤ a =⇒ x = a
)

.

An o-algebra P is atomic if every x ∈ P is a join of atoms, that is,
x =

∨

{a ∈ P | a ≤ x & a is an atom}.

1 This same definition makes sense also for more general structures. In [4] it was
used for formal topologies equipped with a positivity predicate, that is, a predicate
Pos satisfying a weakened form of (5). From the point of view of Locale Theory [8],
these structures coincides with the so-called open (or overt) locales.
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In the following paragraph we will show that this definition of atom
provides a solution to the problem of characterizing powersets in an
intuitionistically sound way. We end this section by an elegant charac-
terization of the notion of atom (see [4] for a detailed proof).

Proposition 1.3. Let P be an o-algebra. Then a ∈ P is an atom if and
only if

(7) a ≤ x ⇐⇒ a >< x for all x ∈ P .

1.1. Atomic o-algebras

Till now, we have not explained yet why the notion of o-algebra (and the
corresponding notion of atom) solves our initial problem of characterizing
powersets. First of all, one should check that Pow(S) is an o-algebra
for every set S. The overlap relation X >< Y between subsets X, Y ⊆
S is defined by the formula: (∃a ∈ S)(a ∈ X ∩ Y ).2 Therefore the
corresponding positivity predicate Pos(X) is given by (∃a ∈ S)(a ∈ X)
and hence it says precisely that X is inhabited.

It is easy to check that Pow(S) is an example of an atomic o-algebra.
Its atoms are precisely the singletons. Moreover, every atomic o-algebra
is isomorphic to a powerset [12]. More explicitly, if P is atomic and S

is the set of all its atoms, then the map x 7→ {a ∈ S | a ≤ x} is an
order isomorphism between P and Pow(S) that “respects overlap”, that
is, x >< y holds iff the corresponding subsets of atoms have an element
in common.

Summing up, from an intuitionistic point of view, powersets are pre-
cisely the atomic o-algebras. If one reads this result with a classical
eye, then it is clear that atomic o-algebras must coincide with atomic,
complete Boolean algebras. Examples of non-atomic, even atom-less,
o-algebras are given in [3, 5].

1.1.1. Other approaches to atomicity

There exist at least two other ways for characterizing powersets intu-
itionistically. One is developed in [9] where powersets, seen as discrete
locales, are characterized in terms of maps between locales. A predicative
account of such a method is developed in [4]. Another approach is as
follows.

2 Sambin uses the symbol X ≬ Y for the overlap relation between subsets.
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Given a poset (P, ≤) and an element p ∈ P, let us write ↓ p for the
sub-poset of P whose carrier is the set {x ∈ P | x ≤ p}. As a poset, ↓ p

always has a top element, namely p. Moreover, it inherits much of the
structure of P. For instance, if P has arbitrary joins, then also ↓ p has
arbitrary joins (and they are computed in P).

If (P, ≤, 0) is a poset with bottom element, then a ∈ P is a minimal
non-zero element if and only if ↓ a is order-isomorphic to {0, 1}. The
same idea can be used also intuitionistically as long as {0, 1} is replaced in
a suitable way. What is the characteristic property of the poset {0, 1}?
One possible answer is: {0, 1} is the initial object in the category of
frames. Another one is: {0, 1} is (isomorphic to) the powerset of a
singleton set. From an intuitionistic point of view, the initial frame
can be presented as Pow({∗}) even though this frame is far away from
containing just two elements! Thus we are led to the following alternative
definition of atom.

Definition 1.4. Let P be a poset with bottom element. An element
a ∈ P is an atom if ↓ a is isomorphic to the initial frame.

This definition seems to work well also intuitionistically. In fact, it
is clear that every singleton in Pow(S) is an atom and so Pow(S) is an
atomic frame. Moreover we can show (intuitionistically) that also the
converse holds. First, we need a couple of lemmas.

Lemma 1.5. Let P be a poset with zero, a ∈ P be an atom and {xi | i ∈
I} ⊆ P. If

∨

i∈I xi exists and a =
∨

i∈I xi, then a = xi for some i ∈ I.

Proof. If a =
∨

i∈I xi, then each xi belongs to ↓ a. Let f be the frame
isomorphism between ↓ a and Pow({∗}) which exists by hypothesis. By
applying f to both sides of the equation a =

∨

i∈I xi, we obtain f(a) =
⋃

i∈I f(xi). Since a is the top element of ↓ a, it must be f(a) = {∗}.
So ∗ ∈

⋃

i∈I f(xi) and hence ∗ ∈ f(xi) for some i ∈ I. For this same
index i, the subset f(xi) must coincides with the whole {∗} and so a =
f−1({∗}) = f−1(f(xi)) = xi, as wished. q.e.d.

Lemma 1.6. Let P be a frame and let a, b ∈ P be two atoms. Under
these assumptions, if a ≤ b, then a = b.

Proof. Let fa and fb be the two isomorphisms from ↓ a and, respec-
tively, ↓ b to the initial frame Pow({∗}). Moreover, let g : (↓ b) → (↓ a)
be the map defined by x 7→ a ∧ x. So g(a) = g(b). Since P is a frame,
this map turns out to be a frame homomorphism. So the composition
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g◦fb
−1 is a frame morphism from the initial frame to ↓ a. By the univer-

sal property of the initial object in a category, it must be g◦fb
−1 = fa

−1,
that is, g = fa

−1 ◦ fb. In particular, g is injective and so a = b follows
from g(a) = g(b). q.e.d.

Proposition 1.7. Let P be an atomic frame and let S be the set of
atoms of P. Then P is isomorphic to Pow(S).

Proof. Let f : P → Pow(S) be the map defined by f(x) = {a ∈ S | a ≤
x}. If x, y ∈ P and x ≤ y, then clearly f(x) ⊆ f(y) and so f is order-
preserving. We claim that the order-preserving map {ai | i ∈ I} 7→
∨

i∈I ai from Pow(S) to P is the inverse of f . Clearly, x =
∨

f(x) because
P is atomic. On the other hand, the inclusion {ai | i ∈ I} ⊆ f(

∨

i∈I ai)
is clear because ai ≤

∨

i∈I ai for all i ∈ I. As for the other inclusion, let
a ∈ f(

∨

i∈I ai), that is, a ≤
∨

i∈I xi and a is an atom of P. Since P is a
frame, we can write a = a ∧

∨

i∈I ai =
∨

i∈I(a ∧ ai). By the first lemma
above, we obtain a = a ∧ ai for some i ∈ I; so a ≤ ai and hence a = ai

by the second lemma. q.e.d.

2. O-algebras and connection structures

Besides being the key feature of o-algebras, the idea of an “overlap re-
lation” is also typical of all approaches to point-free geometry. So the
question arises as to whether this is a mere coincidence of terms or
something more. We are going to show that deep links exist between
o-algebras and the so-called “connection structures” (for which we refer
mainly to [1, 2, 6]).

2.1. Intuitionistic mereological fields

Several kinds of connection structures exist. According to [1], which is
based on the works of Whitehead and Clarke, a connection structure
is given by an inhabited set R together with a reflexive and symmetric
binary relation C on it such that:
• for every x, y ∈ R, if ∀z(xCz ⇔ yCz), then x = y;
• every inhabited subset X ⊆ R has a fusion,
where f(X) ∈ R is a fusion of X if ∀z

(

f(X)Cz ⇔ (∃x ∈ X)xCz
)

.
The first condition ensures that the pre-order defined by

(8) x ≤ y
def

⇐⇒ ∀z(xCz ⇒ yCz)
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is in fact a partial order. The second condition says that f(X) is the join
of the subset X with respect to this partial order. In fact, for every y, one
has: f(X) ≤ y iff ∀z(f(X)Cz ⇒ yCz) iff ∀z((∃x ∈ X)xCz ⇒ yCz) iff
∀z(∀x ∈ X)(xCz ⇒ yCz) iff (∀x ∈ X)∀z(xCz ⇒ yCz) iff (∀x ∈ X)(x ≤
y). Thus a connection structure is equivalent to a triple (R, ≤, C) where:
• (R, ≤) is a poset such that every inhabited subset of R has a join,
• C is a reflexive and symmetric binary relation on R,
• x ≤ y ⇐⇒ (∀z ∈ R)(xCz ⇒ yCz) for all x, y ∈ R and
• (

∨

X)Cy ⇐⇒ (∃x ∈ X)(xCy) for every inhabited X ⊆ R.
The relation C is called the connection relation. In every connection
structure, an overlap relation O can be defined by putting:

(9) xOy
def

⇐⇒ (∃z ∈ R)(z ≤ x & z ≤ y) .

Clearly, xOy always implies xCy.
A classical example of a connection structure is given by a mereolog-

ical field with x � −y as the connection relation. Recall that a mereo-
logical field is the algebraic structure obtained by deleting the bottom
element from a complete Boolean algebra. As it is, this definition looks
suspicious from an intuitionistic point of view. Is just discarding 0 what
we really want to do? Or would we rather like to select “inhabited”
elements? Not surprisingly, I suggest to call an intuitionistic mereolog-

ical field the structure obtained by selecting all positive elements of an
o-algebra. For P an o-algebra, we thus put:

(10) P+ def
= {x ∈ P | Pos(x)} = {x ∈ P | x >< x} .

It is clear that P+ is a connection structure with C given by the restric-
tion of >< to P+. Moreover, the connection relation C and the overlap
relation O coincide in P+, as we know show. Let x, y ∈ P+ such that
xCy, that is, x >< y; we claim that xOy. To this aim, it is sufficient to
check that x ∧ y ∈ P+. To see this, we first rewrite the hypothesis x >< y

as (x ∧ x) >< (y ∧ y). Then, by the axioms O1 and O2 in Definition 1.1,
we get (x ∧ y) >< (x ∧ y), that is, Pos(x ∧ y).

2.2. Grzegorczyk’s connection structures

A different approach to pointfree geometry was proposed by Grzegorczyk
in [7], where a notion of “being separated” is assumed as primitive in
addition to the structure of a mereological field. Following [2], we prefer



Intuitionistic overlap structures 209

to assume the complementary notion instead, namely that of “being
connected”.

Definition 2.1. An intuitionistic (Grzegorczyk’s) connection structure

is given by an intuitionistic mereological field R together with a reflexive
and symmetric relation C on R such that x ≤ y =⇒ (∀z ∈ R)(xCz ⇒
yCz) for all x, y ∈ R.

For every o-algebra P, the structure (P+, ><) is clearly a connection
structure in which C and O coincides (they both coincides with ><).

We are now going to enrich the structure of an o-algebra by means of
“operators” in order to obtain intuitionistic models of connection struc-
tures in which the overlap relation does not boil down to the connection
relation. The first idea that comes to mind is to add to an o-algerba P a
closure operator, that is a function ( ) : P → P satisfying the following
conditions

(11) x ≤ x , x = x and x ≤ y ⇒ x ≤ y

for all x, y ∈ P. A connection structure is then obtained by considering
on P+ the connection relation x >< y. In this kind of models, the relation
O still coincides with ><, while C is strictly weaker than them, in general.

An important notion, which is usually employed in the definition of
points and which becomes interesting only when C and O do not coin-
cide, is that of non-tangential inclusion. Recall that the non-tangential
inclusion relation ≪ is defined in the following way:

(12) x ≪ y
def

⇐⇒ ∀z(xCz ⇒ yOz) .

It is easy to check that x ≪ y implies x ≤ y in those connection struc-
tures that are obtained from o-algebras with closure operators as above.
In fact if x >< z, then also x >< z, that is xCz, and hence yOz, that is
y >< z. So x ≤ y by O4 of Definition 1.1. Are we able to construct models
in which also the converse holds? The answer is known to be affirmative
for models constructed by using regular open sets [7]. Here we are going
to follow the same idea but, instead of considering topological spaces, we
will employ a more general and abstract notion, that of o-topology [5].

Definition 2.2. An o-topology is an overlap algebra P together with a
function ( )◦ : P → P (the interior operator) satisfying

(13) x◦ ≤ x , x◦◦ = x◦ , x ≤ y ⇒ x◦ ≤ y◦ and (x∧y)◦ = x◦ ∧y◦

for all x, y ∈ P.
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An o-topology is an intuitionistic version of what is usually called an
interior algebra. Similarly to what is usually done for interior algebras,
every o-topology can be equipped with a closure operator ( ) too. Con-
trary to the classical case, however, y is not defined as −(−y)◦ but in
the following (classically equivalent) way instead:

(14) y
def
=

∨

{x | ∀z
(

(x >< z◦) ⇒ (y >< z◦)
)

} .

It follows by O3 that y >< z◦ ⇒ y >< z◦ for every y, z. This is precisely
the compatibility condition of [12]. Given this, it is easy to prove that
x ≤ y if and only if x >< z◦ ⇒ y >< z◦ for all z ∈ P. Therefore ( )
is a closure operator, that is, the three conditions displayed in (11) are
satisfied.

It is easy to check that the mapping x 7→ x◦ is idempotent, besides
being monotone. Its fixed points are the regular open elements of P.
We write Preg for the class {x ∈ P | x = x◦} and P+

reg for the positive
elements of Preg.

Proposition 2.3. Let P be an o-topology and let P+
reg be the class of

all positive, regular elements of P. If xCy is defined as x >< y, then
(P+

reg, C) is a connection structure (in the sense of Definition 2.1) in
which x ≪ y ⇔ x ≤ y.

Proof. We refer to [5] for the proof that Preg is an o-algebra. We only
recall that ≤, ∧ and >< between regular elements are those inherited
from P; on the contrary, joins in Preg are given by ( )

◦

-closure of those
in P. As a consequence, P+

reg is an intuitionistic mereological field in the
sense of the previous section. Since the axioms required on C are easy
to check, it only remains to prove that x ≤ y implies x ≪ y. So let xCz,
that is, x >< z. Therefore y >< z because x ≤ y and hence y >< z because y

is open (recall the compatibility condition above), that is, yOz. q.e.d.

Note that the equivalence x ≤ y ⇔ ∀z(xCz ⇒ yCz) does not gen-
erally hold in such a kind of models. Can we find connection structures
in which this holds but at the same time O and C do not coincide (in
general)? As suggested in [1], a solution is to consider regular spaces. As
above we move to the more general framework of regular o-topologies [5].

Definition 2.4. An o-topology is regular if for all x, y:

(15) x >< y◦ =⇒ ∃z(x >< z◦ & z◦ ≤ y◦) .
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This definition is justified by the following argument. Thanks to the
axiom O3 in Definition 1.1, an o-topology is regular if and only if y◦

=
∨

{z◦ | z◦ ≤ y◦} for every y. This expresses in an algebraic way the
following well-known characterization of a regular space: a topological

space X is regular if and only if each open set Y ⊆ X is a union of open

sets whose closure is contained in Y .

Proposition 2.5. Let P be an o-topology and let (P+
reg, C) be the as-

sociated connection structure on its positive, regular elements. If P is
regular, then x ≤ y ⇔ ∀z(xCz ⇒ yCz) holds in (P+

reg, C).

Proof. For fixed but arbitrary x, y ∈ P+
reg, let us assume that xCz

implies yCz for all z ∈ P+
reg. We fist claim that x ≤ y. Thanks to the

definition of ( ), to prove the claim it is sufficient to show that (∀p ∈
P)(x >< p◦ ⇒ y >< p◦). So let x >< p◦. By regularity, there exists
z such that x >< z◦ and z◦ ≤ p◦. Put t = z◦

◦
so that t is regular.

Note that z◦ ≤ t. Moreover, t is positive; in fact, x ∧ z◦ is positive
because x >< z◦ and so Pos(t) holds because x ∧ z◦ ≤ z◦ ≤ t. So t

belongs to P+
reg. From x >< z◦ it also follows that x >< t and hence, a

fortiori, xCt. By assumption, we then get yCt, that is, y >< t. Since
the map ( )◦ is idempotent, the last condition becomes y >< z◦. From
the hypothesis z◦ ≤ p◦, it now follows that y >< p◦. Hence we can
conclude y >< p◦ (by the compatibility condition), which proves the claim.
To complete the proof we must check that x ≤ y follows from x ≤ y

together with the assumptions that both x and y are regular. This is
easy because x ≤ y yields x ≤ y by the properties of a closure operator
and so x = x◦ ≤ y◦ = y. q.e.d.

Summing up, for the connection structure associated to the positive,
regular elements of a regular o-topology we know that:
• the overlap relation xOy is given by x >< y in the underlying o-

algebra,
• the connection relation xCy is x >< y,
• the inclusion relation x ≤ y is equivalent to ∀z(xCz ⇒ yCz) and
• the non-tangential inclusion x ≪ y coincides with x ≤ y.
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