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CONCEPTS AS HYPERINTENSIONAL OBJECTS

Abstract. The author defends the view that the notion of concept, if used
in the logical (not cognitivist) tradition, should be explicated procedurally
(i.e., not set-theoretically). He argues that Tichý’s Transparent Intensional
Logic is an apt tool for such an explication and derives the respective defini-
tion. Some consequences of this definition concern the notions of emptiness,
simple concepts, empirical concepts and algorithmic concepts.
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Introduction

The present paper should show that any plausible explication of the
notion of concept has to take into account that

a) as soon as concepts are regarded to be universals, i.e., sets/classes
to be handled by extensional systems, the notion of concept becomes
a superfluous notion that can be easily replaced by the notion of
set/class;

b) if concepts are regarded to be intensions then either intensions are
regarded to be functions from possible worlds (classical PW inten-
sions as used by Kripke, Montague, Tichý) and can be handled by
intensional systems: then the result is the same as in the case a), or
intensions are defined in some other way (see, e.g., Bealer’s [2] and
then the term intension has to be first explicated, which may result
in some more plausible explication that is no more dependent on the
dilemma extension vs. intension.
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Thus if we accept that the notion of concept should not be superfluous
(see [32]). i.e., if using the notion of concept makes it possible to solve
such (logical) problems that cannot be solved (and even formulated)
when concepts are handled as intensions (let alone extensions) then we
have got the situation, which made Carnap in his [5] admit that his
method of intensions and extensions was not efficient enough. This neg-
ative result of Carnap’s attempt at doing intensional logic led A. Church
to his own Alternatives (see Anderson [1] but intensional logic has got
some good years (Kripke, Hintikka) independently of this problem.

In his [10] Cresswell handled the problem using the term hyperinten-
sionality and defining it negatively:

“Hyperintensional contexts are simply contexts which do not respect
logical equivalence.” [10, p. 25]

I will return to Cresswell in Section 1.2. Now I only state that it was
Pavel Tichý, who recognized in [40] and [41] that hyperintensionality
should be based on (abstract) procedures.

Tichý’s Transparent Intensional Logic (TIL) shows how a logical sys-
tem can be hyperintensional when based on procedures, and the present
state-of-affairs as for TIL is summarized in [12].

I am convinced that every way to obtaining hyperintensionality starts
with procedures. If a convincing argument shows that other ways are
possible then at least some claims in the present paper must be corrected.
But now I will use the system described in [12] to justify my claim that
concepts should be explicated as hyperintensional objects.

In the following sections particular topics are presented:
• logical tradition that takes concepts to be non-mental (abstract) ob-

jects in contrast to cognitivism (Section 1);
• concepts and intensions (Section 2);
• procedural complexity (Section 3);
• hierarchy of types (Section 4);
• concepts (Section 5).
While sections 1–3 are rather informal and make up something like a
philosophical background the last two sections are ‘more technical’ and
result in a procedural definition of concepts.

Naturally, much is here taken over from the basic literature on TIL,
the stress is however put on the specific character of concepts and justi-
fication of our proposal of procedural explication of concept.



Concepts as hyperintensional objects 135

1. Logical notions of concept

1.1. Concepts in cognitivist sense

Since our analyses concern logical explications of concept we will not take
into account the way in which the term “concept” is used by cognitivists.
Therefore, what follows is just a brief commentary to this cognitivist use.

One of the most well-known representatives of this use is J. A. Fodor
(see, e.g. [16]). In his Representative Theory of Mind (RTM) he defends
the view that concepts are mental objects, i. e., they are in the head of
the given individual, and thus they are concrete, obeying causal laws.

Interestingly, some 160 years before Fodor it was Bernard Bolzano,
who argued that concepts (Begriffe) are a kind of Vorstellungen an sich,
which are abstract, and so not existent1, whereas Vorstellungen as men-
tal objects are subjective and concrete. Bolzano has convincingly ar-
gued that concepts cannot be subjective: they are shared by distinct
individuals unlike the subjective Vorstellungen. Now the contemporary
cognitivists cannot solve this problem of shareability. It was Fodor, who
tried to save the shareability of concepts and at the same time his claim
that concepts are mental particulars. He used the argument that sharing
a concept means that the respective mental particulars are tokens of a
type and the type (abstract) is shared. That this argument is logically
untenable (because fallacious) has been proved by H.-J. Glock [21].

The main thesis of cognitivists concerning concepts is that concepts
are mental objects and this thesis has not been justified. Moreover,
Glock’s analysis convincingly showed that this thesis could not probably
be ever justified. The cognitivists’ notion of concept cannot be rid of
subjectivism and thus cannot be accepted as a logical notion. RTM can
be regarded to be a modern version of psychologism.

1.2. Logical tradition

Theories of concept either assume that concepts are mental objects, in
particular that they are a kind of image, mental idea (Vorstellung), or
follow some objectivist characteristics, such as are articulated, e.g. by
Glock:

1 In this connection abstract means not localizable (temporarily or spatially),
therefore not existent; concrete means temporarily and spatially localizable, therefore
existent. Cf. also the footnote on p. 224 of Bolzano ([3, vol. I]).
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“According to objectivist or logical conceptions, concepts exist inde-
pendently of individual human minds, e.g. as self-subsistent abstract
entities or as abstractions from linguistic practices.” [21, pp. 5–6]

We have stated (see Section 1.1) that we will not take into account
theories of the former kind, so it is just the objectivist tradition which
is of interest for us.

Within this tradition one should be aware of a contrast between a
complex and a set-theoretical object, a contrast, which in general belongs
to the most important problems in semantics. A widespread notion of
concept has it that concepts are simply universals (we will illustrate this
conception when talking about Frege). The contrast has been sometimes
guessed and sometimes ignored in the history of semantics.2

Aristotle. Trying to find the oldest sources that can be considered to be
something like a germ of a theory of concept we probably come to Aris-
totle’s theory of definition (Metaphysics, Topics, Posterior Analytics).
Aristotle’s coρ(ισµ)oζ means definition or definiens and should signify
a thing’s essence. Two points, whose importance will be clear later, are
to be registered:

a) A definiens is always complex, structured.
b) No object can have more than one definition. (See Topics VI, cf. [33,

p. 6]).

Ad a): Quine famously criticized Carnap’s attempt at defining inten-
sional semantics and showed that neither using notion synonymy nor us-
ing notion analyticity suffices to define meaning3 So far so good. Quine
however deduced from his arguments a not following conclusion, viz.
that intensional semantics was impossible: a kind of ‘pragmatization’
of semantics had to replace futile attempts at vindicating intensional
semantics. Quine as if forgot the possibility to define meaning inde-
pendently of synonymy and analyticity and, on the contrary, to define
synonymy and analyticity in terms of meaning. Quine did not forget this

2 Such historically significant guesses can be observed in Aristotle (his definition
of definitions), in Bolzano (his theory of concepts in his [3]), Frege (just implicitly),
Bealer ([2], two kinds of ‘intension’), David Lewis ([27]), Cresswell ([11]), Heijenoort
([22, 23]), Church ([6, 9]) and, of course, Tichý (not only guesses, [41, 45]). See also
Materna ([28, 29]).

3 See Materna [31]. I use meaning or, equivalently, sense.
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possibility: he rejected it because meaning was for him from the very
beginning an obscure (word? entity?).

Tichý in his [40], translated in [48], using sense instead of meaning,
says:

“In current logic there is a strong tendency to define the sense by means
of the notion of synonymy or analytical identity of expressions. It stems
from the assumption that the relation of synonymy or analytical identity
is definable without the notion of sense. [. . . ] [It follows the description
of the way such definitions are realizable.] This approach is formally
correct, but from the semantic-content point of view we can object that
this method of defining is quite opposite to our intuition. [. . . ] in both
cases [meaning postulates, possible worlds] defining the sense by means
of the relation of analytical identity is either to turn over the natural
logical sequence of these notions, or to fall into a circular definition.”

[48, p. 81]

Tichý shows however that semantic notions like analyticity or synonymy
are definable in terms of sense. As early as in 1968 Tichý proposes a
definition of sense (meaning) as an abstract procedure and so indepen-
dently of analyticity or synonymy, which are then easily definable. In
this connection Tichý appreciates Aristotle’s way of defining. He says:

“It is noteworthy that from this viewpoint classical logic treats these
notions in a more adequate way, at least concerning the terms. The
sense of a term (in classical terminology rather the “content of concept”
of a term) is understood as a collection or a family of features, i.e.
properties, which is something that does not logically depend on any
semantic notion, in particular not on the notion of truth.” (ibidem)

(Remember the structure of definitions per genus proximum et differen-
tias specificas.)

Tichý admits, of course, that some features of classical logic are re-
visable from the viewpoint of contemporary logic but

“the opinion that the notion of intension4 logically precedes the notions
of truth, analyticity and synonymy, and not vice versa, is in our opinion
quite justified, [. . . ].” (ibidem)

Tichý recognized a feature of classical definitions that is essential from
the viewpoint of the above mentioned contrast complex vs. simple (set-
theoretical). As early as in Aristotle’s works the basic intuition connected

4 Here by “intension” Tichý means “content”, surely not Possible-World-
intension.
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with the notion of concept was realized: a concept should determine (the
essence of ) an object by proposing the way how to get the object, how to
construct the object using other concepts. Concepts are complex.

Ad b): This claim follows, of course, from Aristotle’s conception of
definition, which determines the essence of the defined object. What
is interesting is the fact that more than 2000 years after Aristotle it
is George Bealer (see later) who characterizes the distinction between
intensionality and hyperintensionality as follows:

“[. . . ] there have been two fundamentally different conceptions of prop-
erties, relations, and propositions. On the first conception intensional
entities are considered to be identical if and only if they are necessarily
equivalent [. . . ] On the second conception [. . . ] each definable entity is
such that, when it is defined completely, it has a unique, non-circular
definition.” [2, p. 2]

Bealer’s example: consider two definitions:

(c) x is a trilateral iff x is a closed plane figure having three sides.
(d) x is a trilateral iff x is a closed plane figure having three angles.
On the first conception both (c) and (d) count as correct definitions
since they both express necessary truths. On the second conception
[. . . ] (d) does not count as a correct definition; only (c) does.

[2, p. 3]

This is really an interesting comparison. True, Bealer’s characteristic
does not mention the notion of essence, but what he could say would be
that the second conception makes it possible to distinguish concepts (and
he explicitly classifies concepts with the second conception). Thus being
a closed plane figure having three sides is the same property as being a
closed plane figure having three angles, but this necessary equivalence
has been reached in virtue of two distinct concepts.

Thus the intuition that led Aristotle to his unique definition claim
was the same as Bealer’s in this respect: both have considered concepts as
entities that cannot be identified just in terms of necessary equivalence.

Summing up: Aristotle can be considered to be the founder of a theory
of concepts (definitions); to say that his concepts have been hyperinten-
sional entities means to translate his conception into the contemporary
logical language. This is no shallow anachronism.

Bolzano. First of all, we should appreciate that Bolzano was one of
the first explicit adversaries of psychologism in logic. In his [3] he has
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shown that it is images (representations) in themselves (“Vorstellungen
an sich”) what is explored in logic, where being an sich means being
an abstraction, which is not localizable in time and space.5 Concepts
(“Begriffe”) are just a kind of Vorstellungen an sich and are therefore
abstract, extra-linguistic (non-mental) entities.

But besides, concepts are not simple: In general, they are structured.
Traditionally, what concepts are was not clear or even was psycholog-
ically explained, but every student knew that concepts possess content
and extent (Inhalt, Umfang). Talking about content Bolzano suggests
that while the content of a concept consists of some components6 it does
not determine the way in which these components combine7 (p. 244).
Thus the concept is just this way (we comment). That this interpretation
is right can be justified, e.g. by a remarkable place in §148 of [3] where8

“Bolzano distinguishes between the concept, say, TRIANGLE1, as de-
fined in terms of having three sides, and the concept, say, TRIANGLE2,
as defined in terms of having the sum of its angles equal to 2R. Now
Bar-Hillel (a famous logician!) says about Bolzano’s reasoning: “[i]ts
uncritical acceptance may lead to strange, even contradictory formula-
tions. [. . . ] the two occurrences of the word ‘triangle’ [. . . ] though dif-
ferently defined, express both the property Triangle as their intension,
so that the property Triangle is different from the property Triangle.”
If Bolzano had used our terminology he would, of course, have replied
along the following lines: I do not speak about the property (being a)
triangle: I speak about the concepts TRIANGLE1, TRIANGLE2: these
are mutually distinct, for [. . . ] they possess distinct structures.”

The quoted formulations justify our opinion that Bolzano became
a (premature) pioneer of the modern theories of structured meaning/
concepts.

Frege–Church. Frege’s controversial theory of concepts (especially in [17,
18]) shares some problems with his controversial but ingenious theory of
sense and reference (denotation) [19]. Here we will be also brief because
the relevant literature is vast. The most relevant source is  from our

5 See the seemingly enigmatic footnote, p. 224: “Die Nominalisten hatten [. . . ]
richtig bemerkt, dass ein Begriff an sich nichts Existierendes; die Realisten, dass er
kein blosser Name sey.“

6 Die Summe der Bestandteile, aus denen die Vorstellung bestehet.
7 Nicht aber die Art, wie diese Theile untereinander verbunden sind.
8 The following quotation is from Materna [28, p. 107].



140 Pavel Materna

viewpoint  Tichý’s [45], where Frege’s oscillation between a procedural
and a set-theoretical conception of functions is analyzed. This oscillation
can be stated also in Frege’s famous definition of concepts in [17] and
[18]. A concept should be  according to this definition  a function
from objects to truth-values. Defined in this way concepts would be just
(one-place) predicates. Further: If concepts were these functions, which
position would they occupy in Frege’s semantic triangle? Surprisingly,
it looks like if they were denotations (Bedeutungen)! This interpretation
is evidently dubious: concepts would be identical with objects (at least
in the mathematical case) and  as Bedeutungen  they could not play
the role they should according to our intuition: concepts should be  in
general  concepts of something. Not only that: if concepts were objects
then the respective concept word (Begriffswort) could occur in a sentence
as a subject but concepts are functions as well (!) and then the concept
word could not occur as a subject. Frege tried to explain his position
in [18] in his famous discussion with Kerry but one can see that the
problem stems from Frege’s conception of function. On the one hand,
concept as a function is the sense of a concept word. On the other hand,
the denotation of a concept word is a concept in the sense of a graph of
function (Wertverlauf ), which is, of course, a Fregean object.

The great Fregean Alonzo Church was evidently disappointed with
this Fregean chaos and radically corrected the notion of concept using
Frege’s semantic triangle as follows (see [6, p. 6] and [8, p. 41]):

[†]
“Of the sense we say that it determines the denotation, or is a concept
of the denotation.” [6, p. 6]

[‡] “Anything which is capable of being the sense of some name in some
language, actual or possible, is a concept.” [8, p. 41]

We can see that Church’s proposal of defining concepts is most general.
Let us compare the [‡] quotation with Bolzano and Frege:

For Bolzano every expression of a language expresses a concept with
one exception: (declarative) sentences express sentences in themselves
(Sätze an sich). For Church also sentences express senses, which are
concepts of truth-values (or propositions, we say).

For Frege only predicates (one-place but this is not important) express
(denote? see above) concepts. Names (Frege cannot distinguish names
and descriptions) name ‘objects’, sentences express ‘thoughts’
(Gedanken).
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Church is a realist (Platonist), he can imagine any language (“actual
or possible”) and anything which can be the sense of an expression9

is a concept. We can express this idea saying: Concepts are potential
meanings.

Now let us observe the quotation from [6]. In a sense it is so pre-
cise that one can hardly imagine a more precise formulation. We can
reformulate it so that something can be emphasized: The sense of an
expression is a concept of the denotation. The definite vs. the indefinite
article play an important role here: Church indicates that an expression
E has just one sense (the sense) but that the denoted object can be
given not only by that concept that is the sense of E (a concept). We
can illustrate this proposal by a simple example.

Consider two expressions E1 and E2 :

E1 :
A natural number greater than
1 divisible just by itself and 1

E2 :
A natural number having just
two factors

sense1= concept1 sense2 = concept2

Primes

Figure 1.

This conception makes it possible to interpret such cases as two con-
cepts determine one and the same object.

Observe that if the senses (concepts) were set-theoretical objects (e.g.
functions) we would not be able to explain such cases. We will return to
this in Section 2.

Bealer. George Bealer has emphasized some points essential for the tran-
sition to a hyperintensional conception of concepts in [2]. He has dis-

9 I suppose that by name Church means an expression: for example a sentence
is also a name (of a truth-value or a proposition).
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tinguished two levels of analysis: the coarse-grained level and the fine-
grained level. We have seen (see Aristotle) that Bealer’s concepts are
unambiguously hyperintensional. The way he logically handles such en-
tities differs from ours in that he remains in first-order and is distrustful
of possible worlds. As for a more detailed critical analysis of his theory
see [12].

Carnap–Church. When Rudolf Carnap discovered the charm of seman-
tics in [5] he at the same time once again discovered the problem with
intentional context  the problem which Frege tried to solve by giving
up independence of meaning of the context.10

Here I would like to decide that I will use the term meaning as Frege
would use the term Sinn. So I will speak about meaning and denotation.
The term reference (Black, Geach) will be used in another sense.

Carnap’s intensional isomorphism, which should have solved the
problem of a too coarse-grained approach to equivalent expressions, has
attracted Church’s attention. Church’s writings between [7] and [9] are
attempts at correcting Carnap’s proposal and finding a positive solution.
This has been finally found in [9], where Church defines his synonymous
isomorphism, based on λ-convertibility and essentially similar to our
procedural isomorphism (see Section 5).

This interesting story is described in details by C. A. Anderson in [1].

Cresswell. Max J. Cresswell began to explicitly talk about hyperinten-
sionality in his [10] and about structured meaning [11]. Cresswell has
felt the lack of structure in the meaning of an expression E when this
meaning is defined as a function so that the meanings of the particular
subexpressions of the expression E are lost. His proposal in [10, p. 30]
is:11

Let α, α1, . . . be expressions of the given languages, δ a functor, I(α)
be the intension of α, V the value assignment, M(α) the meaning of α.
Then

for α a simple expression: I(α) = M(α) = V (α)
for α = 〈δ, α1, . . . , αn〉: I(α) = I(δ)(I(α1, . . . , I(αn))

M(α) = 〈M(δ), M(α1), . . . , M(αn)〉, and says:

10 Pavel Tichý offers a precise analysis of Frege’s struggle for solving such prob-
lems in [45].

11 In what follows I have exploited my [29, p. 22].
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“The point is that the intension of a complex expression is obtained by
allowing the intension of its functor to operate on the intensions of the
arguments of its functor. The meaning however is simply the n+1-tuple
consisting of the meaning of the functor together with the meanings of
its arguments.” (Emphasis P.M.) [10, p. 30]

This is how Cresswell wants to save meanings of the components of the
expression E. He says (ibidem, p. 32): “Truth-conditional semantics is
sufficient to determine meaning.”

So we get the set-theoretical paradigm: What counts is always the
result of applying a procedure rather than the procedure itself.

Cresswell’s tuple-theory of meaning has been criticized by Tichý
([46]), Jespersen ([25]) and Duží, Jespersen, Materna ([12]). The point
is that it is not the case that meaning of the expression E equals the
set of meanings of the subexpressions of E (Bolzano knew it in 1837, see
above) but it does not equal the ordered tuple of them as well. We get
simply a list of those meanings but we do not know how they combine
to become one meaning.

Cresswell simply has not solved the older problem: Bolzano’s way of
combining (see above) but also Russell’s in [38], where Russell, building
up a conception of structured propositions, states that “every proposition
has a unity which renders it distinct from the sum of its constituents”
(p. 52).

This problem of unity, precisely formulated in King ([26, p. 6]) as
What Binds Together the Constituents of Structured Propositions? and
generalized as What Binds Together the Constituents of a Concept? (see
Materna [29, p. 23]) is exactly what Cresswell has not solved and what
makes up the core of the following problem:

In which way is meaning/concept structured?

Tichý. Pavel Tichý has shown in [40] and [41] that this problem can be
solved as soon as meaning/concept are considered to be abstract proce-
dures. In both papers this view is supported by associating the main
semantic notions with Turing machines. The problem with empirical ex-
pressions is solvable when O-machines (using oracles) are applied. Later
Tichý founded TIL (see Section 3).
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2. Concepts and intensions

In this section we will argue that if intensions are defined (rather stan-
dardly) as functions from possible worlds then concepts cannot be inten-
sions.

First of all, what does it mean to say that a (logical, theoretical)
system is extensional. A general principle of extensionality (PE) can be
formulated as Leibniz’s rule of substitution

a = b, Φ(. . . a . . .)

Φ(. . . b . . .)
(L)

where identity given by the expression “a = b” justifies substitution of
one member of this identity for the other one.

Among other formulations of (PE) we find the extensionalist defini-
tion of identity of functions:

∀f∀g(∀x(f(x) = g(x)) ⊃ f = g). (Fu)

Using classical first-order predicate logic we preserve (PE).
Considering (L) Gamut writes:

Its extensionality is both the strength and the weakness of standard
propositional and predicate logic. It shows that in studying the valid-
ity of inferences in either of these systems, it suffices to consider the
references of expressions and the principle of compositionality.12

[20, p. 5]

Gamut reminds us however that we may need richer semantics and ad-
duces some well-known cases where it seems that principles of exten-
sionality do not hold any more. Now there are two ways how to cope
with such anomalies. One of them sacrifices universal extensionality
(Montague’s Intensional Logic), the other one preserves all rules of ex-
tensionality (Gamut adduces Two-Sorted Type Theory, where s becomes
another type besides e, t, and we will see that TIL is such an extensional
system; see Tichý [42]).

12 Principle of compositionality: “Let E be a set of expressions, m a meaning-
assignment, M a set of ‘available’ meanings: Consider F , a k-ary syntactic operation
on E. m is F -compositional just in case there is a k-ary partial function G on M such
that whenever F (e1, . . . , ek) is defined, m(F (e1, . . . , ek)) = G(m(e1), . . . , m(ek)).”
[39, p. 5]
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This problem arose because principles of extensionality were inter-
preted on the assumption that what we call meaning can be identified
with denotation (a commonly accepted terminology has reference in-
stead). Thus the problems with extensionalism were connected with the
problem What is meaning? And the reduction of meaning to denota-
tion, i.e., repudiating Frege’s category of sense has punished the authors
of this reduction of semantics to denotational semantics by confronting
them with anomalies.

Consider the following anomaly.

Charles calculates 2 + 3 (1)

2 + 3 = +
√

25 (2)

From (1) and (2) we get according to (L)

Charles calculates +
√

25,

which is, of course false if (1) is true. What happened?
(L) is valid but our analysis of premises is wrong. Thus (L) cannot

be applied.
The reason why (L) cannot be applied is connected with the reduc-

tion of meaning to denotation. Indeed, the meaning of 2 + 3 according
to the reductionism is the number 5. So the premise (1) is true as well
as (2). But let us try to show that (1) is not true (the first possibility
of arguing that (L) cannot be applied) or that (1) can be true and (2)
false (!).

The first possibility: The meaning of 2 + 3 is the number 5 (deno-
tation): then it is not the case that Charles calculates 5, it is rather a
kind of nonsense.

The second possibility: The meaning of 2 + 3 is not the number 5
but the procedure consisting in identifying the meanings of +, 2, 3, and
applying the meaning of + to the meanings of 2, 3. Then (1) may be
true but (2) is false: the procedure of adding 2 and 3 is not identical
with the procedure of extracting the square root of 25.

The solution offered by TIL consists in the claim that the meaning
of an expression is never its denotation. In our case the meaning of 2+3
is the procedure described in “the second possibility” above. We can say
equivalently that 2 + 3 expresses a concept (one of the concepts) of the
number 5, while +

√
25 expresses another such concept. (The meaning
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of 2 + 3 is the same in both (1) and (2), the distinction consists in the
fact that in (1) this meaning is mentioned while in (2) it is used so that
(2) is true even on this analysis. All this is ‘technically’ ensured in TIL.)

Another anomaly arises when notional attitudes are analyzed. Con-
sider the wrong argument:
• The President of Czech Republic is the husband of Livia Klaus.
• Charles wants to be the President of Czech Republic.
• Charles wants to be the husband of Livia Klaus.

Again, we have applied (L) where it is not applicable. The meaning of
The President of Czech Republic is the same in both premises, it is a
concept of an intension, viz. of an ‘individual role’, i.e., a function that
associates with a given possible world (and time) at most one individ-
ual. In the first premise however the value of this function in the given
world and time is constructed whereas what is constructed in the second
premise is just this function: Charles’ attitude concerns the role, so the
function, he is not interested in the actual value of the role.

Extensionalists such as those who use predicate logics cannot handle
anomalies (‘puzzles’) of this kind because they do not admit intensions.
Intensionalists like Montague are able to avert the threat stemming from
the puzzles of this kind, but neither they can do anything with the
puzzles of the preceding kind because they do not know constructions
(in the sense of objective abstract procedures).

Since concepts can play the role of meanings (so that denotation is
that object  if any  which is determined (constructed) by meaning)
and a widespread opinion has it that meaning could be an intension
let us prove that on the assumption that intensions are functions from
possible worlds concepts cannot be intensions.

Consider

Proposition 1. “that Sun is greater then Moon”,

Proposition 2. “that Sun is greater then Moon and whales are mam-
mals”.

Propositions are functions that associate every world and time with
at most one truth-value. Let F1, F2 be such functions that correspond
respectively to Proposition 1, Proposition 2. Observe that the
proposition that whales are mammals is true in all possible worlds, which
means that the graph of F1 is identical with the graph of F2 . According
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to (Fu) it means however that F1 = F2 and therefore Proposition 1

= Proposition 2. This means however that we get a puzzle:
F1 = F2 , so F2 can be substituted for F1 in the analysis of the

sentence “Charles knows that Sun is greater than Moon” but Charles
may know that Sun is greater than Moon and, at the same time, not
know that whales are mammals. Contradiction.

The moral is: To be happy with intensions means that we cannot
distinguish between objects that should be distinguished. We are surely
not content with claiming that there is just one proposition here, so we
could say that there are two distinct concepts of one proposition.

If concepts were intensions it would mean that we could not explain
why distinct entities can be logically or analytically equivalent. There
must be a more fine-grained criterion of diversity. We will show that
such a criterion is definable and that concepts satisfy this criterion.

There is another reason why concepts cannot be intensions. We cer-
tainly believe that it is meaningful to talk about mathematical concepts.
Mathematical concepts cannot be defined in terms of intensions because
no mathematical construction is dependent as for its value on possible
worlds13. But we will surely talk about such concepts as a concept of
primes, concepts of irrational numbers etc. etc.

3. Procedural complexity

Let us return to comparison of two expressions:

E1 : “a natural number greater than 1 divisible just by itself and 1”

and

E2 : “a natural number having just two factors”.

Intuitively, E1 and E2 express two (equivalent) concepts.
Let us suppose that concepts are functions. Then we get the same

result as in our example with propositions. Let F1 be a function defined
on natural numbers and returning T(rue) iff the argument is a number
satisfying the criterion given by E1, and F2 be the function that returns
T iff the argument satisfies the criterion given by E2. Clearly, F1 returns

13 Fitting in [14, p. 24] suggests some option of introducing possible worlds into
mathematics, which is however rather artificial.
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the same graph as F2 , so that according to (Fu) there is just one function
here. We have got two concepts of one and the same function.

This negative conclusion has to be supplemented by a positive conjec-
ture that would define concept. More precisely, we should now attempt
at an explication of the notion of concept.

We have argued that concepts cannot be intensions, now we have
shown that in general concepts cannot be (functions as) set-theoretical
objects. They should be complex (structured) rather than simple. In the
brief historical remark (see Section 1) we have suggested that neither
Cresswell’s tuple theory can be considered to explain what “structured“
means because it is not able to answer the question: What Binds To-
gether the Constituents of a Concept? We have also indicated the answer
saying that to be complex essentially means to be a procedure; we have
stressed that what we mean by procedures are abstract procedures: their
concrete counterparts are processes, i.e. time consuming entities. Thus
while two tokens of a record of a program P are concrete (remember:
localizable in time and space) just as two realizations of P on a computer
(i.e. processes), the algorithm itself prescribed by P is abstract.14

The term that was chosen by TIL for explication of abstract objective
procedures is construction. This choice may be criticized but probably
every choice of this kind may be considered controversial. Nevertheless
the first question that can be evidently asked concerns the relation be-
tween the term construction in TIL and the ‘same term  let it be named
construction’ here  in various intuitionist versions. Some intuitionists
emphasize the common features of the TIL notion and the intuitionist
notion of construction.15 I will adduce some formulations from Fletcher:

“The word ‘construction’ is a metaphor. Clearly it is supposed to make
us think of building houses or machines by connecting components to-
gether. For any sort of construction, components come in certain basic
types (bricks, wheels, pistons, [. . . ]); we take as many instances as we
like of each type and connect them together with certain combination
procedures (cementing, gluing, soldering, screwing, [. . . ]), subject to cer-
tain constraints (only two things can be glued together at once, bricks
have to be cemented not soldered. [. . . ]) to form an arbitrarily large
construction.” ([15, p. 51]; emphasis P.M.)

14 Remember Moschovakis’ [37]: Sense and denotation as algorithm and value.
So Frege’s sense (surely an abstract entity) is understood as an algorithm.

15 TIL itself is never mentioned.
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Fletcher adduces this characteristic of constructions because he wants to
compare it with Brouwer’s views. We can immediately see one distinc-
tion: unlike Brouwer16 Fletcher does not require that constructions were
mental. Neither are here all constructions reduced to proofs. A general
summarization follows (ibidem):

[a] construction is a recursive structure,

where such structures are dealt with in mathematical arguments and are
idealizations stemming from “iterative processes and recursively struc-
tured objects in the physical world” (see [15, p. 50]).

(This ‘transition’ from real world to idealized objects is well illus-
trated as follows:

“A mathematical construction is an abstract recursive structure. [. . . ]
Each abstract atom corresponds to a type of physical atom. [. . . ] Equal-
ity of abstract constructions is defined by: x = y iff x and y could be
instantiated by the same physical constructions. Equivalently, x = y iff
x and y are built out of the same atoms using the combination rules in
the same way.” [15, pp. 51, 52]

Fletcher’s conception is in many points compatible with the notion of
construction as defined in TIL. Other intuitionists (like Per Martin-Löf)
develop other conceptions, which share some features with TIL but differ
from it more essentially.

Constructions in TIL are abstract procedures (see Section 4), not
necessarily recursive. In the next section they will be defined. Important
features of constructions can be found in Tichý [44].

The reason of my choice to base the explication of concept on TIL
(rather than, e.g., on intuitionistic notions of construction) is double:
first, my philosophy of logic is not an intuitionist one, second, I share
with Tichý his conception of explication (“epistemic framework”) as for-
mulated in his ([45, pp. 194–200]). Now I quote the important pregnant
formulation of the core of this conception:

“The purpose of theoretical explication is to represent intuitions in
terms of rigorously defined entities. It is to Frege that we owe the
insight that the mathematical notion of function is a universal medium
of explication not just in mathematics but in general. To explicate

16 See Brouwer [4]. This does not mean that such a view must be shared by every
philosopher / logician who calls himself intuitionist.
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a system of intuitive, pre-theoretical, notions is to assign to them, as
surrogates, members of the functional hierarchy over a definite objec-
tual base. Relations between the intuitive notions are then represented
by the mathematically rigorous relationships between the functional
surrogates. [. . . ] By representing intuitions with functional surrogates
we can throw light on their logical interdependence and show how some
of them can be defined in terms of others.” (ibidem)

This approach is essentially similar to the way chosen by Fletcher when
he was explaining his idea of construction.

The functional character of our explication is now clear: Including
nullary functions (particular objects like numbers) we can state that TIL
deals with functions (functional surrogates) and constructions, i.e. the
ways these functions are given. In another paper Tichý formulates this
fact as follows: Logic studies

“[l]ogical objects (individuals, truth-values, possible worlds, proposi-
tions, classes, properties, relations, and the like) and [. . . ] ways such
objects can be constructed from other such objects.”

[46], [48, p. 295]

Both functions and constructions are type-theoretically classified (simi-
larly as in Montague’s School). Types of order one are types of functions
whose values and arguments are not constructions, higher-order types
are types of constructions and functions whose values or arguments are
constructions. Thus a simple hierarchy of types as well as a ramified
hierarchy of types has to be defined.

4. Hierarchy of types

To compare:
Russell’s hierarchy of types is based on properties and relations: TIL

(simple) hierarchy classifies functions.
Martin-Löf’s theory defines types based on the notion of proof: TIL

hierarchy is more general.
Montague: atomic types e, t correspond approximately to ι, o types,

respectively, in TIL, in the two-sorted theory s corresponds to ω in TIL,
no type corresponds to τ in TIL, there are no higher-order types.
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4.1. Types of order 1

Base17 B

{o, ι, τ, ω}, the set of the following types:
• o – the set of truth-values T, F;
• ι – the set of individuals;
• τ – the set of real numbers / the set of time moments;
• ω – the set of possible worlds.

i) Every member of B is a type of order 1. (atomic types)
ii) Let α, β1, . . . , βm be types of order 1. Then (αβ1 . . . βm) is a type

of order 1: it is a set of partial functions with α the type of the
value and βi the types of the arguments. (functional types).

iii) Only [. . . ]

In general, the choice of a base for any type-theoretical system is moti-
vated by some tasks that should be performed. The present choice can
be justified by the task of analyzing expressions of natural language (“NL
expressions”). Naturally, it would be naïve to claim that no better choice
could be found, but one point supports our choice: many well-known
problems articulated in semantics of NL expressions have been solved
when the present base has been used (see for example Tichý [48, 45],
Duží, Jespersen, Materna [12]).

Let us illustrate the above definition of first-order types:
a) Atomic types:
The choice of o is clear: There are just two truth-values, TIL is not

a many-valued logic. The cases where a sentence is neither true nor false
are explained due to partiality. Thus the sentence The greatest prime is
odd cannot be true or false in virtue of the fact that the function that
associates any class of numbers with at most one number (the greatest
one) is partial and takes no value at the class of primes. Absence of a
truth-value is not the same as being a third value.

We have to comment the choice of ι. Individuals, which are in-
habitants of ι, are bare individuals. Briefly, no individual possesses an
empirical property by necessity.18

17 We can change the Base. For analyses, e.g., of the expressions of arithmetic
the Base can contain just two atomic types.

18 The apparent exceptions (like: the empirical property being the size of Aristotle

is possessed by necessity by just one individual, viz. Aristotle) are systematically
explained in [12, 1.4.2.1].
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As for τ , it plays (innocuously) double role. It is the type of real
numbers, and since our natural assumption has it that time is continuum
of moments, any non-empty interval of moments can be mapped onto
the set of real numbers. No essential ambiguities arise.

Finally ω is interpreted as follows: the chain of definitions that de-
termine a property cannot be infinite. Thus we assume an intensional
base as containing intensions, i.e., intuitively, pre-theoretically given ‘de-
terminers’, empirical traits. Each member of ω determines a unique
“combinatorical possibility as to what objects are determined [. . . ] by
what intensions at what times” (Tichý [45, 46].) These combinatorically
possible distributions of traits over objects are just called possible worlds.

b) Functional types:

Some important types of extensions:

• truth functions (oo) (negation), (ooo) (conjunction, disjunction etc.)
• quantifiers (o(oα))(∀, ∃, α any type)
• singularizer (α(oα))(ι, the only x such as)
• mathematical functions (τττ) (for example adding, dividing . . . )

Types of some intensions:

Intensions in general: ((ατ)ω), α any type. Abbreviation ατω. In-
tensions (surrogates for objects pre-theoretically defined over the inten-
sional base, see above) are dealt with as functions from possible worlds,
frequently to chronologies (ατ) of some type.

For example:

oτω is the type of propositions, which for any world and time return at
most one truth-value,

(oι)τω is the type of (empirical) properties of individuals (like being
blue, being a table, to kill the President, etc.). In general, (oα)τω is the
type of a property of objects of the type α. Thus being an interesting
proposition is of the type (= belongs to the type) (ooτω)τω.

(oβ1 . . . βm)τω is the type of m-ary relations-in-intension, βi types of
arguments.

We can see that classes (relations-in-extension) are treated as the
respective characteristic functions. Thus properties and relations-in in-
tension are functions that associate with every world and time some class
(relation-in-extension). So being a table is a function that associates with
every world W and time T the class of individuals that are tables in W
at T , and similarly for relations.



Concepts as hyperintensional objects 153

4.2. Constructions

Higher-order types, which make it possible to make a ‘jump’ into hyper-
intensionality, are defined in the ramified hierarchy of types. The latter
can be however defined only after constructions have been defined. To
justify this claim we now return to our example with the invalid argu-
ment:
• “Charles calculates 2 + 3”,
• “2 + 3 = +

√
25”,

• “Charles calculates +
√

25.
We have said that the meaning of “2 + 3” is the procedure consisting

in identifying the meanings of “+”, “2”, “3”, and applying the meaning of
“+” to the meanings of “2”, “3”. We have also said that constructions in
TIL are abstract procedures. To determine the type of calculate, we can
first state that it is a relation (-in-intension) between an individual and a
construction. Thus the type of the relation denoted by calculate would be

(oι?)τω,

where the question mark indicates the type of the construction. Indeed,
we know the type of the object constructed by a construction C, which
can be encoded by an arrow but up to now we do not know the type of the
construction itself, which would be encoded by a slash. So we can write,
e.g., table / (oι)τω, +/(τττ) but if x is a numerical variable19 we cannot
write x/τ , since we do not know the type of x. Instead we write x → τ .

In what follows I will reproduce the definition of TIL constructions,
as they are formulated in [12, p 45].

i) The Variable x is a construction that constructs an object O of the
respective type dependently on a valuation v; it v-constructs O.

ii) Trivialization: Where X is an object whatsoever (an extension, an
intension or a construction), 0X is the construction Trivialization.
It constructs X without any change.

iii) The Composition [X Y1 . . . Ym] is the following construction. If X
v-constructs a function f of a type (α β1 . . . βm), and Y1, . . . , Ym v-
construct entities B1, . . . , Bm of types β1, . . . , βm, respectively, then
the Composition [X Y1 . . . Ym] v-constructs the value (an entity, if
any, of type α) of f on the tuple-argument 〈B1, . . . , Bm〉. Otherwise

19 Variables are constructions, as we will immediately learn.
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the Composition [X Y1 . . . Ym] does not v-construct anything and so
is v-improper.

iv) The Closure [λx1 . . . xm Y ] is the following construction. Let x1,
x2, . . . , xm be pairwise distinct variables v-constructing entities
of types β1, . . . ,βm and Y a construction v-constructing an α-
entity. Then [λx1 . . . xm Y ] is the construction λ-Closure (or Clo-
sure). It v-constructs the following function f/(α β1 . . . βm). Let
v(B1/x1, . . . , Bm/xm) be a valuation identical with v at least up to
assigning objects B1/β1, . . . , Bm/βm to variables x1, . . . , xm. If
Y is v(B1/x1, . . . , Bm/xm)-improper (see iii), then f is undefined
on 〈B1, . . . , Bm〉. Otherwise the value of f on 〈B1, . . . , Bm〉 is the
α-entity v(B1/x1, . . . , Bm/xm)-constructed by Y .

v) The Execution 1X is the construction that either v − constructs
the entity v-constructed by X or, if X v-constructs nothing, is v-
improper.

vi) The Double Execution 2X is the following construction. Let X be
any entity; the Double Execution 2X is v-improper (yielding noth-
ing relative to v) if X is not itself a construction, or if X does
not v-construct a construction, or if X v-constructs a v-improper
construction. Otherwise, let X v-construct a construction X ′ and
X ′ v-construct an entity Y . Then 2X v-constructs Y .

Nothing is a construction, unless it so follows from (i) through (vi).

Comments. All constructions are extra-linguistic objective abstract pro-
cedures. To understand properly this fact let us compare a λ-term with
a construction. (Let us assume that τ is the type of natural numbers
this time.)

λ-term: λx(x + 1)
Construction: λx[0+ x 01]

The λ-term is an expression in an artificial language. It contains two
occurrences of the variable x, parentheses, and is interpreted as the func-
tion Successor. As an expression, it does not construct anything.

The construction is not an expression:
• it is the abstract procedure encoded by the inscription above;
• it contains just one occurrence of x (λx is only our instruction “ab-

stract over x”);
• it does not contain any parentheses (any symbols for that matter);
• it constructs the function Successor.
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Ad ii): Trivialization 0X is a construction of key importance. It men-
tions the object X . Any object becomes a component of a construction
either as a value of a variable, or as an object mentioned by Trivializa-
tion. Therefore the objects + and 1 cannot be directly components of
a construction: in our example they are components of the construction
due to being constructed (here by Trivialization).

Now imagine that X is a construction. The type of X is then deter-
mined by mentioning X , i.e. by 0X .

In this way higher-order types are definable. Simple hierarchy is
replaced by Ramified hierarchy of types.

4.3. Ramified hierarchy of types (RHT)

T1 (types of order 1): defined above.
Cn (constructions of order n):

(i) Let x be a variable ranging over a type of order n. Then x is a
construction of order n over B.

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are
constructions of order n over B.

(iii) Let X , X1, . . . , Xm (m > 0) be constructions of order n over B.
Then [X X1 . . . Xm] is a construction of order n over B.

(iv) Let x1, . . . . xm, X (m > 0) be constructions of order n over B.
Then [λx1 . . . xm X ] is a construction of order n over B.

(v) Nothing is a construction of order n over B unless it so follows from
Cn (i)–(iv).

Tn+1 (types of order n + 1).
Let ∗n be the collection of all constructions of order n over B:

(i) ∗n and every type of order n are types of order n + 1.
(ii) If m > 0 and α, β1, . . . , βm are types of order n + 1 over B, then

(α β1 . . . βm) is a type of order n + 1 over B (see T1 (ii)).
(iii) Nothing is a type of order n + 1 over B unless it so follows from (i)

and (ii).

Comments. Let us present some examples20, which show the way of
increasing order of constructions.

20 The examples are taken over from [12, p. 53].
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(a) The constructions 0+, [0+x 01], λx[0+x 01], [λx[0+x 01] 05], [0: x 00],
λx[0: x 00], construct objects of types of order 1. They are construc-
tions of order 1 (see definition of Cn), and belong, thus, to the type
∗1 (see definition of Tn+1); i.e., to the type of order 2 (see definition
of Tn+1 i).

(b) Let Improper be the set of constructions of order 1 that are v-
improper for all valuations v; then Improper is an object belonging
to (o∗

1), the type of order 2. (See definition of Tn+1 ii.)
(c) The Composition [0Improper 0[0: x 00]] is a member of ∗2, the type of

order 3. It constructs the truth-value T. The constituent 0[0: x 00] of
this Composition is a member of ∗2; it is an atomic proper construc-
tion that constructs [0: x 00], a member of ∗1. It is atomic, because
the construction [0: x 00] is not used here as a constituent but only
mentioned as an input object.

The way RHT is built up guarantees that no such dangerous events like
collision of variables can happen.

Now we can state (or at least plausibly claim) that as soon as mean-
ing (or what Frege meant by sense) of an expression E is explicated as
construction expressed by E we get a fine-grained semantics that makes it
possible to solve many puzzles which cannot be satisfactorily solved by
intensional logic (some such puzzles are adduced in previous sections,
many others in Tichý’s writings and [12]. An especially remarkable
feature of this approach to Logical Analysis of NL expressions is the
fact that principles of extensionality are obeyed: introducing a new, hy-
perintensional level does not cancel set-theoretical objects as intensions
(we do not say that constructions replace functions: they just construct
functions).

Another remarkable consequence of defining meanings as construc-
tions consists in the fact that meanings defined in this way are inde-
pendent of any context. We will briefly return to this point in the next
section.

5. Concepts

5.1. Concepts and meanings

We have already stated that Church in [6] revising Frege’s semantic
triangle proposed the following semantic principle: The sense of an ex-
pression is a concept of the denotation. According to this principle any



Concepts as hyperintensional objects 157

expression E of a language possesses just one meaning (sense) and this
meaning is one of concepts of the denotation of E.21 So  if the meaning
is a construction  the construction that is the sense (meaning) con-
structs the denotation (if any). But there are other expressions, distinct
from E, that construct the same object O, which means that while an
expression possesses just one meaning there may be (always are) various
distinct concepts of O. In the part “Frege – Church” of Section 1 we
have shown one such example (two definitions of primes). Here we show
the particular constructions.

a natural number greater than 1 divisible just by itself and 1

Types:

Natn/(oτ), > /(oττ), 1/τ, Div/(oττ), ∧, ⊃, ∨/(ooo), x, y → τ,
∀/(o(oτ)) = /(oττ)

C1 λx[0∧[0Natn x] [0∧[0> x 01][0∀ λy [0⊃ [0Divxy][0∨[0= y x] [0= y 01]]] ]]]

a natural number having just two factors

Types: as above, Card/(τ(oτ)), 2/τ
C2 λx [0∧ [0Natn x] [0= [0Card [λy[0Div x y]] 02]]]

Imagine that C1 as well as C2 define a function. We have seen that then
we get just one function. If concepts were functions then we would have
one concept here whereas our intuition shouts: There are two concepts
here.

Yet we can talk about C1 and C2 as follows: C1 is the meaning of

a natural number greater than 1 divisible just by itself and 1

and C2 is the meaning of

a natural number having just two factors

and meanings are constructions, i.e., procedures. Then the procedure
prescribed by C1 differs from the procedure prescribed by C2. The
function constructed by both C1 and C2 is, of course, the same function

21 In some cases there is no denotation. Then the meaning cannot be a concept
of something. Consider the expression the greatest prime. We understand this ex-
pression: we know what to do in order to get the denoted object. The meaning is
the respective construction (it is a concept in our sense, as we will soon learn) but
the construction does not construct anything, so the concept is not a concept of some
number.
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(the type: (oτ)) (viz. the characteristic function of the class of primes)
but the procedures, which are the meanings (senses) of the respective
definitions, are distinct (which we can see when performing the steps
prescribed by C1 and C2 ). The type of both procedures is ∗1 . Thus
we can write C1, C2 / ∗1 → (oτ).

In this example everything what we say about meanings holds of
concepts as well. Can we identify constructions with concepts?

5.2. Constructions and concepts

Every explication should take into account the way the explicandum is
actually used. Let us try to test the hypothesis that every construction
is a concept.

Consider following expressions. Which of them you think do express
a concept?

(1) (a) teacher
(2) the teacher of Alexander the Great
(3) the teacher of my son
(4) the highest mountain
(5) The highest mountain is in Asia
(6) the smallest prime number
(7) the smallest real number
(8) It rains
(9) Sherlock Holmes’ pipe

(1) expresses a concept, it is a ‘simple concept’ that constructs a
property.

(2) expresses a concept, which constructs an ‘individual role’ i.e. an
intension that associates every world-time with at most one individual.

(3) does not express any concept: the ‘my’ refers to an individual that
will be identified after the situation of the utterance of the sentence.

(4) expresses a concept, similarly as (2).
Ad (5): here we can see that our answer will be counterintuitive:

this expression does express a concept, which identifies (constructs) a
proposition. Church (unlike Bolzano) would accept this answer (see [6]).
The objection to this answer stems from the right conviction that con-
cepts  unlike propositions or sentences  cannot be true or false. Yet
the concept that constructs a proposition (our case) is not true or false:
it only identifies a proposition, whether true or false).
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(6) is one of the concepts of the number 2.
(7) is an empty concept: it defines a procedure that ends in a blind

alley (there is nothing like the smallest number).
Ad (8): no proposition is constructed. A hidden parameter (variable)

of the place is missing.
Ad (9): this is a problem. It could be a concept of Sherlock Holmes’

pipe but there is no such individual that could play the role of Sherlock
Holmes. To know what, e.g. Napoleon said on December 1st, 1812 is prac-
tically impossible but only because we cannot detect this expression 
no documents are here, and so. Theoretically however we are convinced
that Napoleon said something at that time, only we have got not data
enough. The case with Sherlock Holmes is different. Here there cannot be
any data (unless Doyle referred to it): the expressions used by Sherlock
Holmes are not a part of the state of affairs of our world. Thus I think
that the fictive names are not connected with concepts (see [45, §49]).

If my answers are acceptable then the following provisional definition
of concepts seems to be acceptable as well.

A construction is closed iff it does not contain any free variable.22

Definition (Provisional). Concept is a closed construction.

Justification: We have decided that (3) and (8) do not express concepts:
the respective constructions would contain free variables (in (3) for my,
in (8) for the localization.

As for (9), no Sherlock Holmes as an individual role can be con-
structed because no predication about ‘him’ is in principle verifiable or
falsifiable: states of the world are not defined by fairy-tales or other kind
of literature. See [12, p. 286–287] for a more detailed justification.
Possible objections

1. Let τ by the type of natural numbers. Consider following construc-
tions:

λx1[0+ x1
01], λx2[0+ x2

01], λx3[0+ x3
01], . . . , λx56[0+ x56

01], . . .,
λx3333[0+ x3333

01], . . .

22 In TIL there are two kinds of boundness. A variable x is 0bound iff it occurs
in a trivialized construction. It is λ-bound iff it occurs in a closure λx1 . . . xmC and
is one of the variables x1, . . . , xm and is there not 0bound. Thus, e.g., x is not free
in the construction 0[ 0+ x 01], x → τ , and it could be considered a concept if our
definition were accepted.
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Which of them is a concept of the Successor function?
This problem cannot be explained away by saying that more than

one concept can construct one and the same object. All such cases that
are relevant share one property: the particular (equivalent) concepts are
meanings of distinct expressions (see the example with two definitions
of primes). Here it is unthinkable (rather nonsensical) to associate the
particular members of the above sequence with distinct NL expressions.
The sequence as if represents one concept, expressed by the (English)
expression successor.

2. What about the sequence

((Bel(ieve)/(oιoτω)τω, x → ι, p → (oτω)), w → ω, t → τ)

0Bel, λw0Belw, λwλt [0Belwt], λw λt λxp [0Belwtxp], . . . , where a con-
struction differs from its neighbor just by η-reduction (expansion)? The
procedure itself is essentially the same, the way of encoding differs. No
distinct NL expressions can be found.

These two objections can be refuted as soon procedural isomorphism
is defined:

Definition (procedural isomorphism). Let C and D be constructions.
Then C and D are α-equivalent, denoted ‘0C ≈α

0D’, ≈α /(o∗n∗n), iff
they differ at most by using different λ-bound variables. C and D are η-
equivalent, denoted ‘0C ≈η

0D’, ≈α /(o∗n∗n), iff one arises from the other
by η-reduction or η-expansion. C and D are procedurally isomorphic
iff there are constructions C1, . . . , Cn (n > 1) such that 0C = 0C1,
0D = 0Cn, and each Ci, Ci+1 are either α- or θ-equivalent.

Examples. 0[λx [0> x 00]] ≈α
0[λy[0> y 00]]; 0[λxy [0+ x y]] ≈η

00+.

The relation procedural isomorphism is provably reflexive, symmet-
ric and transitive so that it induces equivalence classes. Materna in [28]
called these classes of pairs of constructions Quid (“quasi-identical” con-
structions). Clearly, every closed construction C is a member of the
infinite class of constructions Quid-related (= procedurally isomorphic)
with C. This class, let it be C∗ , represents one and the same concept. It
would be, however, incorrect to identify C∗ with a concept:23 We have
strongly emphasized that concepts are not sets. Thus the problem arose

23 This identification has been Materna’s error in [28].
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how to select for any such set of procedurally isomorphic constructions
one of them that would be considered a concept. (The following text is
a quotation from [12, p. 155].)

Remark. The solution that Horák puts forward in [24] is based on ex-
ploiting the Quid relation to define a normalization procedure resulting
in the unique normal form of a construction C: NF(C). If this pro-
cedure is applied to a closed construction C, the result, NF(C), is the
simplest member of the Quid equivalence class generated by C. The
simplest member is defined as the alphabetically first, non-η-reducible
construction. For every closed construction C it holds that NF(C) is
the concept induced by C, the other members of the same equivalence
class pointing to this concept. Thus Horák’s solution makes it possible to
define concepts as normalized closed constructions. Their type is always
∗n for some n, n  1.

For instance, the following constructions are procedurally isomorphic
and thus belong to the same Quid class (a Materna-style concept of the
successor function):

λx[0+ x 01]; λy[0+ y 01]; λz[0+ z 01]; λx[λx[0+ x 01]x]; λy[λx[0+ x 01]y], . . .

The normal form of these constructions is λx[0+x01]. Thus, λx[0+x01] is
a Horák-style concept of the successor function, the other constructions
of this class pointing to this concept. ⊣

Definition (Concept). Concept is a normalized closed construction.

In general, it holds that the meaning of an expression is a construc-
tion. The meaning of an expression that contains some free variables
is an open construction. Such an expression does not have any defi-
nite denotation: its meaning only v-constructs an object, where v is a
parameter of valuation (see the definition of constructions).24

Does it mean that every concept constructs some object? No, we
have seen in the example (7) above that any concept of the smallest real
number constructs nothing: any such concept is an improper construc-
tion. Indeed, it would be incorrect to claim that there is no concept of
the smallest real number: the fact that we understand the expression the
smallest real number suggests that there is a concept here, viz. a proce-
dure that would identify an object (number) if there were such an object.

24 Expressions that express open constructions use some indexical subexpressions
(mostly pronouns).
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Our definition makes it possible to derive some classifications of con-
cepts.

A. A construction C is an empirical concept iff it constructs a non-trivial
intension.25

A construction C is a non-empirical concept iff it either constructs a
trivial intension or an extension.

Thus the sentence “Charles calculates 2 + 3” expresses an empirical con-
cept

λwλt[0Calcwt

0Ch 0[0+ 02 03]],

which constructs a proposition that is for its value certainly dependent on
the current state of the world and, therefore, is not a constant function.

The sentence “Every professional pianist is a musician” expresses
the non-empirical concept

(types: Every/((o(oι))(oι)), Profpian, Mus/(oι)τω)):

λwλt[[0Every 0Profpianwt]
0Muswt]

The procedure abstracts over worlds and times, so it is an intension (a
proposition). This time however no world-time can be found where a
truth-value other than T comes into consideration. We have got a trivial
intension.26

Finally the expressions like “2 is a prime” or “the greatest divisor of
60” do not contain empirical subexpressions. They denote  i. e., the re-
spective concepts construct  extensions, mostly mathematical objects.

B. A construction is an empty concept iff it is improper (see the defini-
tion of constructions).
A construction is a quasi-empty concept iff it constructs an empty
class/relation.
A construction is an empirically empty concept iff the value of the
constructed intension in the actual world-time either is missing or is
an empty class/relation.

Thus the following constructions are respectively: (a) empty, (b) quasi-
empty and (c) empirically empty concepts:

26 There are three trivial propositions: propositions true in all world-times, false
in all world-times and undefined in all world-times.
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(a) The smallest number (Type: the/(τ(oτ)))

[0the λx [0∀ λy[0≤ x y]]]

(b) The class of smallest numbers

λx[0∀ λy[0≤ x y]]]

(c) (i) The man who is taller than the Eiffel tower
(Types: Taller/(oιι)τω, Et/ιτω)

λwλt[0the λx [0∧ [0Manwtx][0Taller x 0Etτω]]]

(ii) to be a man who is taller than the Eiffel tower (a property)

λwλt[λx[0∧ [0Manwtx][0Taller x 0Etτω]]]

Thus the empirical concepts are never empty or quasi-empty. So that
empirical expressions always denote (viz. an intension); what they of-
ten miss is reference (better: referent), i.e. the value of the denoted
intension in the actual world-time. (This value is contingent, i.e., never
conceptually determined.)

C. Simple concepts. Let X be an object of a type of order 1 (i.e., a
non-construction). Then 0X is a simple concept of X . Let x/∗n be
a variable. Then [λx x] is a simple concept of an identity function
(x → α, α an arbitrary type).
The general criterion is: A simple concept is such a concept that no

its proper subconstruction is a concept. This criterion is satisfied by
(0X because X is a non-construction, and by λx x because x as a free
variable is no concept. The former case is more interesting because the
important notion of conceptual system (see [29]) is based on this kind of
simple concept.

(A conceptual system arises as a finite set of simple (“primitive”)
concepts, which unambiguously determines an infinite set of complex
concepts, i.e., such constructions whose simple subconcepts are members
of the set of primitive concepts. Thus simple concepts are always simple
just w.r.t. some conceptual systems.)

There are some problems with simple concepts (see D).

D. Algorithmic constructions. Constructions are abstract procedures in-
volving some steps just like algorithms. The question whether construc-
tions are algorithms can be answered as soon as the definition of con-
structions is taken into account. Explicitly is the answer given in Tichý
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[40] (also [48, pp. 599–621]). Constructions are rather algorithmic com-
putations but moreover:

“[n]ot every construction is an algorithmic computation. An algorith-
mic computation is a sequence of effective steps, steps which consist
in subjecting a manageable object [. . . ] to a feasible operation. A
construction, on the other hand, may involve steps which are not of
this sort. The application of any function to any argument, for exam-
ple, counts as a legitimate constructional step; it is not required that
the argument be finite or the function effective. Neither is it required
that the function constructed by a closure have a finite domain or be
effective. As distinct from an algorithmic computation, a construction
is an ideal procedure, not necessarily a mechanical routine for a clerk
or a computing machine.” [48, p. 613]

Thus we can distinguish algorithmic and non-algorithmic concepts.
While algorithmic concepts are concepts of recursive functions we

cannot claim that, in general, non-algorithmic concepts are not concepts
of recursive functions.

Examples. (instead of properly formed constructions a mathematically
correct way of encoding them has been chosen; the way how to get the
respective constructions is clear but the result is a little long [. . . ]):

Let a, b, c and n be variables that v-construct (= range over) natural
numbers. Observe the constructions (expressed by)

(a) λabcn(n > 2 ⊃ ¬(an + bn = cn)),
(b) ∀abcn(n > 2 ⊃ ¬(an + bn = cn)).

The respective constructions, composed from simple concepts 0>, 0⊃,
0¬, 0+, 0∀, and say, 0Exp,27 are: (a) algorithmic (“effective steps”, see
above) and (b) non-algorithmic. We know however that (b) constructs a
recursive function since the truth-value T has been born in a computer
(a very hard birth, by the way).

Now as for the problems with simple concepts: Let M be any infinite
set. In which way does the simple concept 0M lead us to the set M?
It simply offers M without any change, but on our assumption that M
is infinite it means that there is no algorithm here which would lead to

27 The expression xn will encode what [0Exp xn] in a regularly written construc-
tion encodes.
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actual infinity. Let us apply this situation to our example with the set
Prime.

The simple concept 0Prime confronts us with an impossible ‘way’ to
the set of primes. It offers the actually infinite set of primes without
any change, which is inaccessible to our knowledge. But after all, we
know how to decide of any natural number whether it is a prime.28 An
accessible way is, e.g., the already mentioned construction

λx[0∧ [0Natn x][0 = [0Card [λy[0Div x y]]02]]]

This construction (a concept of the set of primes) contains also some
simple concepts of infinite objects: 0Natn, the simple concept of natural
numbers, 0Card , the simple concept of the set of pairs 〈set, number〉, 0=,
the simple concept of all pairs of natural numbers 〈x, x〉, 〈y, y〉, . . . , 0Div,
the simple concept of the set of all pairs of natural numbers such that
the first member is divisible by the second. This time however we are
not asked to present these actual infinities: we have just to apply these
infinite functions to a (de)finite argument: the actual infinity is replaced
by potential infinity.

Consider now any conceptual system. Its finite set of simple concepts
may contain such simple concepts which construct infinite sets. Then
the operations of refinement (see below) become remedies.

Before explaining what a refinement is let us introduce a useful notion
of ontological definition.

While verbal ‘equational’ definitions (Aritostotelian, Russellian, even
explications) consist of two parts, viz. definiendum and definiens, the
essence of definitions is compatible with the situation where there is no
definiendum. In my [28] describe a dialogue with Tichý:

“I explained my motivation: an essential feature of (explicit) definitions
consists in assigning the definiendum with a meaning (i.e., with a con-
cept). Tichý did not assent. He said: “Imagine a function having as its
domain the set of natural numbers, and returning 1, 2 or 3 depending
on whether the given argument is divisible by at most two numbers,
or by more than two and less than six numbers, or by more than six
numbers, respectively. Have I defined this function?” I admitted that
he had. Tichý: “But I have not introduced any new term for denoting
this function: there is no definiendum here.” ” [28, p. 7]

28 We cannot take into account such factors as the length of human life or even
the duration of cosmos etc., of course.
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Yes, having at our disposal some simple concepts {C1, . . . , Ck} we can
define objects in terms of those simple concepts, viz. creating compound
concepts whose simple subconcepts are all from that set of simple con-
cepts. This is what Tichý did when he defined that ‘nameless’ function.
In general:

An ontological definition is any compound concept that is not empty.

Now we can define refinement29:
Let C1, C2, C3 be constructions. Let 0X be a simple concept of X ,

let 0X occur as a constituent of C1, and let C2 differ from C1 only by
containing in lieu of 0X an ontological definition of X . Then C2 is a
refinement of C1. If C3 is a refinement of C2 and C2 is a refinement of
C1, then C3 is a refinement of C1.

Our ‘paradigmatic’ example of refinement is just our replacement of
0Prime by various equivalent compound concepts (e.g. λx[0∧[0Natn x][0 =
[0Card [λy[0Div xy]]02]]], see above). Thus one way how a non-algorithmic
concept can be transformed to an equivalent algorithmic one consists in
finding a refinement. That this is by far not a trivial task can be testified
by the case Fermat’s Last Theorem.

6. Conclusion

Explicating our intuitions concerning the world around us we exploit
such exactly definable notions like classes, properties, relations, in gen-
eral: functions.30 We have to use, of course, language, linguistic ex-
pressions, and we meet a strange phenomenon: on the one hand, all
expressions of the respective language are, in general, complex while
functions are ‘flat’, simple set-theoretical objects. How come that com-
plex expressions are about simple objects?

This question seems to support the views according to which any
form of correspondence theory is doomed to breaking down.

The present article shows that a logical analysis of natural language
can associate complex expressions of a natural language with complex
extra-linguistic meanings, which can be viewed as abstract procedures.

29 The first definition of refinement can be found in Duží [13].
30 Let me remind you of the fact that classes, relations, and properties can be

viewed as (characteristic) functions.
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All those ‘functional surrogates’ (see [45]) like classes, properties, rela-
tions are then results of applying such abstract procedures. But then
our problem disappears: the product of a procedure is not necessarily
similar to the procedure.

Abstract procedures, here defined as (TIL) constructions, which do
not contain free variables serve here as explicans for the notion of con-
cept. Thus the complexity of concepts is mirrored by the complexity
of expressions. We can say that expressions encode their meaning, in
the case of expressions that do not contain indexical subexpressions,
expressions can be said to encode concepts.

Explicating concepts as (abstract) procedures is in harmony with our
(often hidden) intuitions. This explication can be used wherever we see
that some objects are certainly distinct while the set-theoretic semantics
says that they are not distinct. Typically, wherever we are told by set-
theoretic semantics31 that the two obviously distinct objects are actually
one and the same function we can say: well, but this function is created
by two distinct concepts, and we know what we mean.

The present paper argues that this procedural definition of concepts
was implicitly suggested by some great philosophers, in particular al-
ready by Aristotle, not surprisingly by Bolzano, and that some sugges-
tions came with recognizing [5] that neither intensionality can solve all
logical puzzles connected with the need of making a jump to hyperinten-
sionality, suggested and propagated especially by Cresswell and strictly
realized by Pavel Tichý.

Our explication is based on Transparent Intensional Logic (TIL)
founded by Pavel Tichý. All newly introduced expressions needed for
the formulations are defined and the final definition is extremely simple.
Whoever understands the essence of the basic idea does not need to
study and remember all auxiliary definitions articulated in the paper.
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31 Don’t forget that it is not only an extensional logic but also an intensional logic,
whose semantics is set-theoretic, at any rate if intensions are defined as functions from
possible worlds.
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