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EQUATING CATEGORIALLY NAMES

AND QUANTIFIERS WITHIN

FIRST-ORDER LOGIC

Grammarians traditionally consider quantifier expressions such as something,
everything, somebody, everybody, some dog, every dog together with names
(singular name expression) as belonging to the noun phrases category. The
reason is simple: both quantifier expressions and names can be used as sub-
jects in sentences. Logicians on the other hand, usually treat quantifier ex-
pression (in short: quantifiers) as operators, i.e. as expressions of a different
category from the name category. The source of this distinction seems clear:
names are categorametic, whereas operators are syncategorsmetic expres-
sions. However, when we are trying to explain the opposition categorametic-
syncategorametic we usually give names and quantifiers as paradigmatic ex-
amples respectively.

Despite this tradition, one can study logical differences between names
and quantifiers on a deductive level while letting them to be expressions of
the same category (e.g. the generalized quantifier category). It means that
names and quantifiers can be accounted as sharing some syntactic properties
while differing in others. As we will see, the advantage of this approach is
that it may lead to a version of first-order logic which can accommodate a
vast class of expressions included between names and quantifiers.

In order to equate categorically names and quantifiers feasible we must
first unify the grammar of these expressions. It is enough to assume that
names occupy the same position as quantifiers in the first-order language.
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Thus instead of Pa we will have from now on axPx; generally for every
formula A(x) we will also have the subject-predicate formula axA(x). This
notation may seem to be strange but basically it is equivalent to a more
familiar, but a little bit more complicated λ-notation: [λxA(x)]a.

For convenience, we will use the word ‘names’ whether talking about
singular names or individual constants. Quantifiers and names will be called
collectively terms, i.e., terms are either quantifiers or names. Assume that t,
s represent terms. Let us consider first the following group of properties:

P1 tx¬A ⊃ ¬txA

P2 ¬txA ⊃ tx¬A

P3 tx(A ∧ B) ⊃ txA ∧ txB

P4 txA ∧ txB ⊃ tx(A ∧ B)

P5 txA ∨ txB ⊃ tx(A ∨ B)

P6 tx(A ∨ B) ⊃ txA ∨ txB

P7 tx(A ⊃ B) ⊃ (txA ⊃ txB)

P8 txsyA ⊃ sytxA

P9 txtyA ⊃ txA(x|y)

P10 txA(x|y) ⊃ txtyA

(A(y|x) is the formula which results from freely substituting every occurrence
of x by y in A.)

This is not a complete list of properties (see below) and these properties
are not independent from each other assuming classical dependences between
connectives, in particular, P5–P7 easily follow from P1–P4. Clearly, names
fulfill all principles listed above — it means that names are scope indepen-
dent (in other words, this is tantamount to the fact that the principle of
eliminability of λ-expressions holds for names: [λxA(x)]a ≡ A(a|x).1 The
universal quantifiers fulfills: P1, P3, P4, P5, P7, P8 (when assigned to s), and
P9. The existential quantifiers fulfills: P2, P3, P5, P6, P8 (when assigned
to t), and P10. We notice that P3, and P5 are fulfilled by all expressions
under consideration. On the other hand, it is also worth noticing that indi-

1 This is the reason why we adopt in classical logic much simpler grammar for individual
constants than for quantifiers.

© 2002 by Nicolaus Copernicus University



Equating categorially names . . . 121

vidual constants have all properties among P1–P10 that are possessed either
by the universal or by existential quantifier.

Another group of formulas expresses the behavior of all terms in free-
bound variable relevant contexts.

P11 tx(A ⊃ B) ≡ (A ⊃ txB), where x is not free in A;

P12 txA ≡ A, where x is not free in A;

P13 txA ≡ tyA∗, where ∗ differs from A in that x is free in A just in those
places where y is free in A∗.

(Remarkably, there are no properties of this kind which are distinctive for
quantifiers and for individual constants).

Still another group of properties can be taken into account; these can
be called logical or deductive properties. In particular, they express logical
relations between universal quantifier and all terms. The choice of these
properties, as properties given before, is not systematic (the list is neither
independent nor exhaustive).

P14 ∀xA ⊃ A(y|x)

P15 ∀x(A ⊃ B) ⊃ (txA ⊃ txB)

P16 ∀xA ⊃ txA

P17 ¬∃xA ⊃ ∀x¬A

P18 txA ⊃ ∃xA

P19 if ⊢ A then ⊢ txA and ⊢ ¬tx¬A

P20 if ⊢ A ⊃ B then ⊢ txA ⊃ txB.

Selecting some of properties P1–P20 given above, possibly adding some new,
one can develop a system of first-order logic in which names and quantifiers
are expressions of the same category. Theorems of this system are supposed
to express all properties specific for names, and no other properties. There
are many ways developing an axiomatic system for such logic. In particular,
we propose the following system, call it L-system.

L1 Classical truth-functional tautologies.

L2 ∀x(A ⊃ B) ⊃ (txA ⊃ txB)

L3 A ⊃ ∀xA, provided x is not free in A

© 2002 by Nicolaus Copernicus University



122 Jacek Paśniczek

L4 ∀xA ⊃ A(x|y)

L5 txA ⊃ tyA(y|x) ,provided y is not free in A

L6 ¬∃xA ⊃ ∀x¬A

L7 ∃xA(x|y) ⊃ (txtyA ⊃ txA(x|y))

L8 ∃x¬A(x|y) ⊃ (txA(x|y) ⊃ txtyA)

MP if ⊢ A ⊃ B then ⊢ B

MG if ⊢ A then ⊢ txA and ⊢ ¬tx¬A.2

Notice that L7, L8 are quite technical and, as they stand, have not appeared
earlier (compare them with P9, P10 which do not hold for all terms).

We see that some axioms of L-system resemble, if not directly coincide
with, axioms and theorems of classical logic. One can easily check that
if we put for t either the universal or the existential quantifier we get a
classical law or a classical rule of deduction. All formulas that we mentioned
earlier as common properties of names and quantifiers are theorems of L-
logic. Moreover, the following formulas are theses of L-logic:

L9 (¬txC ⊃ tx¬C) ∨ (tx¬C ⊃ tx¬C)

L10 (txA ∧ ¬∀xA) ∧ (¬txB ∧ ∃xB) ⊃ (¬txC ≡ tx¬C)

L11 (txA ∧ ¬∀xA) ∧ (¬txB ∧ ∃xB) ⊃ ((txC ∧ txD) ≡ tx(C ∧ D))3

L12 (txA ∧ ¬∀xA) ∧ (¬txB ∧ ∃xB) ⊃ (sxtyC ≡ tysxC)

L13 (txA ∧ ¬∀xA) ∧ (¬txB ∧ ∃xB) ⊃ (txtyC ≡ txC(x|y))

2 This rule of inference can be replaced by the ordinary rule of generalization: if ⊢ A

then ⊢ ∀xA, but then we must also add an additional axiom P12.
3 Actually, L9 and L10 follow from the following theorems:

(txA ∧ ∀xA) ⊃ (¬txC ⊃ ¬C)

(¬txB ∧ ∃xB) ⊃ (tx¬C ⊃ ¬txC)

(¬txB ∧ ∃xB) ⊃ (txC ∧ txD) ⊃ tx(C ∧ D)

tx(C ∧ D) ⊃ (txC ∧ txD)
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Roughly speaking, theses L10–L13 say that if a term coincides neither
with the universal nor existential quantifier then its scope does not matter
and this is what we exactly expect from individual constants.

The semantic for L-logic, L-semantic, is quite similar to that for classical
first-order language following standards of Tarski’s semantics. By a model,
we mean a pair m = [D, I] where D is a non-empty set called the domain
of interpretation, I is a function defined on terms and predicates called the
interpretation:

(a) For an individual constant a, I(a) = {{d}}, where d ∈ D, I(∀) = {D},
I(∃) = ℘(D) − {∅} (here ℘(D) is the power set of D);

(b) I(P ) ⊆ Dn, for n-argument predicate symbol P

An assignment in D is a function V which assigns to every variable an element
of D. given V , by V [d/x] we mean the function which is just like V , except
possibly V [d/x]x = d.

Truth conditions for atomic formulas, for negation and implication, are
the same as in classical semantics.

‖Py1...yn‖
m
V =

{

1 iff [V (y1), ..., V (yn)] ∈ I(P ),

0 otherwise;
(1)

‖x = y‖m
V =

{

1 iff V (x) = V (y),

0 otherwise.

‖¬A‖m
V = 1 − ‖A‖m

V(2)

‖A ⊃ B‖m
V = max[1 − ‖A‖m

V , ‖B‖m
V ](3)

‖txA‖m
V = 1 iff

∨

X∈I(t) X ⊂ IV (xA),(4)

where IV (xA) = d ∈ D : ‖A‖m
V [d/x] = 1

In particular, the formula txPx is true in m iff there exists X ∈ I(t) such that
X ⊆ I(P ). Notice first that quantifiers receive in L-semantics independent
interpretations what could be understood as categorematic treatment of these
expressions. And their interpretations are of the same kind as interpretations
of individual constants, i.e., both are subsets of ℘(D).4 Thus we may say

4 This semantical idea is not quite new. It can be found in Richard Montague’s works,
cf. Montague [1974]. See also: Dowty [1981]. The idea of treating quantifier expressions as
categorematic, i.e., as representing a kind of entities called ’quantifier objects’ goes back
to medieval logic. However, Frege’s approach to quantifiers as second-order concepts may
also be associated with categorematic reading these expressions.
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that names and quantifiers belong to the same semantic category according
to L-semantics. Notice also that the condition (4) retains the usual meaning
of the universal and existential quantifiers. A formula is valid iff it is true in
every model with respect to any assignment.

Undoubtly, L-logic is, in some reasonable sense, equivalent to the classical
logic.5 Accordingly we can conclude that quantifiers and constants can be
treated as expressions of the same syntactic category in a broadly conceived
classical logic. And individual constants are distinguished on the deductive
level. But is this all we can obtain from the uniform categorical treatment
of these two groups of expressions? One can consider L-logic as excessively
complicated. This complication may not seem as overweighing its richer
logical contents.

It turns out, however, that the L-logic, even if not considered as partic-
ularly interesting, can reveal a wider logical perspective. Let us have a look
again at the deductive system and semantics of L-logic. Axioms M7 and M8
are strikingly unnatural and their content is unclear. Why don’t drop these
axioms then? What will result we call M -logic:

M1 Classical truth functional tautologies

M2 ∀x(A ⊃ B) ⊃ (txA ⊃ txB)

M3 A ⊃ ∀xA, provided x is not free in A

M4 ∀xA ⊃ A(y|x)

M5 txA ⊃ tyA(y|x), provided y is not free in A

M6 ¬∃xA ⊃ ∀x¬A

MP if ⊢ A ⊃ B and ⊢ A then ⊢ B

MG if ⊢ A then ⊢ txA and ⊢ ¬tx¬A.

5 Let us define the translation T of formulas of L-language onto formulas of classical
language:

(a) T (A) = A, if A is an atomic formula;
(b) T (¬A) = ¬T (A);
(c) T (A ∧ B) = T (A) ∧ T (B);
(d) T (axA) = T (A(a|x));
(e) T (QxA) = QxT (A), for a quantifier Q.

Then for every formula A of L-language: A is a thesis of L-system iff T (A) is classical thesis.
Obviously, a classical formula can be the translation of many different but equivalent
formulas of L-language.
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Perhaps the effect of this impoverishment of L-logic is not directly seen. But
it will become much more clear when we equip M -logic with a semantics.
Let us remember that in L-semantics interpretations of constants and quan-
tifiers were of the same kind in the sense that they were subsets of ℘(D). But
obviously there are a lot of other subsets of ℘(D) which are unexploited in
L-semantics, i.e., cannot be interpretations of individual constants or quan-
tifiers. So let us assume that the first condition of interpretations will look
now in the following way (L-language becomes M -language):

(a∗) I(t) ⊆ ℘(D), I(t) 6= ∅ and I(t) 6= {∅}; in particular I(∀) = {D},
I(∃) = ℘(D) − {∅}.

Thus (a∗) extends the category of terms. It means that almost all subsets
of ℘(D) can be interpretations of terms in M -semantics.6 So what kind of
terms are they supposed to be? And what do they represent or stand for?
Without any danger of getting involved in ontological commitments we may
assume that interpretations of terms represent some sort of entities. This
makes easier further discussions.

Consider some examples. Suppose that t is a term such that I(t) = {set
of Poles, set of Popes}. Then it turns out that t (or, more precisely, the entity
represented by t) possesses, in the sense determined by the truth condition
(4), the following properties: being a Pole, being a Pope, being a human, et.
but not properties of being tall, being nervous, etc. So t may be conceived
here as the description the Polish Pope. If I(t) = {set of idlers, set of
students} then t may be treated as a generic term the lazy student and the
object correlated with it, according to M -semantics, possesses the properties
of being lazy, being student, being human, etc. At the same time, it does
not possess many other properties, like being a cat, being a girl, being a boy,
etc. Similarly, {set of circles, set of squares} can be identified with the round

square which according to the semantics is square, is round, is geometrical
figure but it is neither green nor non-green. Consider now example of a
different kind. The set {X ⊂ D : |X| > 5} can be interpreted as at least five

things; the set {X ⊂ D : |X| > |D − X|} as most things.
Thus M -logic can be understood in various ways depending on how we

understand terms. First, we may provide definite description which differ-
entiate meanings or senses of descriptions. We see that the cardinal born in

Wadowice interpreted as {the set of cardinals, the set of people born in Wad-
owice} according to M -semantics is distinct then the Polish Pope, i.e., the

6 We exclude ∅ and {∅} mainly for some technical reasons.
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cardinal born in Wadowice possesses different properties: being a cardinal,
being born in Wadowice, but neither being a Pole, nor being a Pope).7 At the
same time we have semantic and syntactic means to render the fact that the

Polish Pope and the cardinal borne in Wadowice is the same person: notice
that the intersection of elements of both interpretations is the same: {Karol

Wojtyła}. This means that both descriptions refer to Karol Wojtyła and,
what is important, the identity of reference is expressible in M-language.8

We may consider M -logic as a logic of non-existent objects and this is
perhaps the most important interpretation of it. The problem of non-existent
objects is certainly one of the most recalcitrant problems of contemporary
analytic philosophy, especially challenging for logic. So in particular, the
theory of description, free logics, and more recently Meinongian logics are
devised to cope with this problem. Unlike the classical theory of descrip-
tion which makes trivial any predication concerning non-existent object, in
M -logic some predications are true, some are false, in accordance with our
intuitions (see the example above). At the same time, M -logic fulfills the
classical definition of free logics.9 But perhaps most of all, M -logic is akin
in its ontological spirit to Meinong’s theory of objects and can be used as
a basic logic for developing so-called Meinongian logic. Roughly speaking,
according to Meinong every class of properties constitutes an object and we
see that in M -semantics sets of extensionally represented properties, i.e.,

7 One can say that the difference in meaning of the Polish Pope and the cardinal born in

Wadowice can be satisfactorily rendered on the ground of possible worlds semantics because
in some worlds these descriptions may denote different objects. Consider, however, another
example: the number greater than ten and smaller than twelve and the prime number

consisting of two identical digits assuming that natural numbers are only members of the
domain. These two descriptions refer in all possible worlds to the number eleven and thus
they are indistinguishable with respect to their meanings (intensions) on the ground of
possible world semantics. On the other hand, as represented in M -semantics by: {the
set of numbers greater than ten, the set of numbers smaller than twelve} and {the set of
prime numbers, the set of numbers consisting of two identical digits} the objects of these
descriptions possess different properties, i.e. those which are mentioned in the descriptions.

8 In M -language the identity of reference of two terms s and t is expressed by a quite
complicated formula: ∃x(sy(x = y) ∧ ty(x = y)) ∧ sx¬sy(x 6= y) ∧ tx¬ty(x 6= y).

9 Ernano Bencivenga defines the free logic in the following way:

A free logic is a formal system of quantification theory, with or without
identity, which allows for some singular terms in some circumstances to be
thought of as denoting no existing object, and in which quantifiers are in-
variably thought of as having existential import. Bencivenga [1986]

Also Karel Lambert, who is recognized as the founder of free logics, agreed that M -logic
can be classified as a free logic; private conversation.
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represented as sets of individuals, are interpretations of terms.10 Our ex-
amples also show that terms can be interpreted as generalized quantifiers.11

Of course, the logic does not accommodate all generalized quantifiers in the
most straightforward manner.

Thus one can see that M -logic allows for various kinds of expressions to
be subjects of sentences. Accordingly, if we agree on categorematic character
of these expressions — such a character is expressed directly by M -semantics
anyway — then we can say that the logic allows for a various kinds of entities
including a broad category of non-existent one. But does that mean that M -
logic is ontologically committed to the existence of these objects? Hardly.
If we accept Quinean criterion of ontological commitment: to be is to be
the value of bound variable, then M -logic is committed exactly to the same
entities as classical first-order logic, i.e., to existing individuals only. So, it
is not surprising M -logic fulfills the widely accepted Bencivenga’s definition
of free logics.

Let us turn back to skipped axioms L7, L8. As we noticed, their role
in L-logic was to exclude all terms except names and (classical) quantifiers.
So one can wonder whether it is possible to distinguish individual constants
from other terms on the ground of M -logic. The answer is that it is, but only
when M -logic is equipped with identity introduced in the classical way.12 Im-
portantly, in the extended M -logic the formula txty(x = y) ∧ (¬txty(x 6= y)
expresses the fact that t is a proper name and, what follows, when we re-
place the predecessor in P10–P13 by this formula then the resulting formulas
will be also theses. It is worth emphasizing that identity also enable us to
distinguish among terms still another categories of expressions.

10 See: Paśniczek [1998].
11 The notation of generalized quantifiers was defined for the first time by Andrzej

Mostowski but it was treated for a long time as a non-essential generalization of the notion
of classical quantifier. Nowadays studies of generalized quantifiers are very extensive. On
the one hand, the notion of generalized quantifiers turns out to be of particular importance
for metalogic. On the other hand, this notion is now frequently applied by linguists in
analyses of determiners and noun phrases. Cf. Mostowski [1957], Barwise, Cooper [1981],
Chierchia, McConnel-Ginet [1990], Sher [1991], Westerstahl [1989].

12 I.e. adjoin to M -system axioms:

Mi x = y

Mii x = y ⊃ (A ⊃ A(y‖x))

(A(y‖x) is a formula which results from freely substituting every or only some occurrences
of x by y), and the following condition:

‖x = y‖m

V = 1 iff V (x) = V (y), ‖x = y‖m

V = 0 otherwise.
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