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TRUTH VS. PROVABILITY –

PHILOSOPHICAL AND HISTORICAL

REMARKS

1. Since Plato, Aristotle and Euclid the axiomatic method was considered
as the best method to justify and to organize mathematical knowledge. The
first mature and most representative example of its usage in mathematics
were Elements of Euclid. They established a pattern of a scientific theory
and in particular a paradigm in mathematics. Since Euclid till the end of
the nineteenth century mathematics was developed as an axiomatic (in fact
rather a quasi-axiomatic) theory based on axioms and postulates. Proofs of
theorems contained several gaps — in fact the lists of axioms and postulates
were not complete, one freely used in proofs various “obvious” truths or
refered to the intuition. Consequently proofs were only partially based on
axioms and postulates. In fact proofs were informal and intuitive, they were
rather demonstrations and the very concept of a proof was of a psychological
(and not of a logical) nature. Note that almost no attention was paid to
the precization and specification of the language of theories — in fact the
language of the theories was simply the unprecise colloquial language. One
should also note here that in fact till the end of the nineteenth century
mathematicians were convinced that axioms and postulates should be simply
true statements, hence sentences describing the real state of affairs (in the
mathematical reality). It seems to be connected with Aristotle’s view that a
proposition is demonstrated (proved to be true) by showing that it is a logical
consequence of propositions already known to be true. Demonstration was
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conceived here of as a deduction whose premises are known to be true and a
deduction was conceived of as a chaining of immediate inferences.

Add that the Euclid’s approach (connected with Platonic idealism) to the
problem of the development of mathematics and the justification of its state-
ments (which found its fulfilment in the Euclidean paradigm), i.e., justifica-
tion by deduction (by proofs) from explicitly stated axioms and postulates,
was not the only approach and method which was used in the ancient Greek
(and later). The other one (call it heuristic) was connected with Democritean
materialism. It was applied for example by Archimedes who used not only
deduction but any methods, such as intuition or even experiments (not only
mental ones), to solve problems. Though the Euclidean approach won and
dominated in the history, one should note that it formed rather an ideal and
not the real scientific practice of mathematicians. In fact rigorous, deduc-
tive mathematics was rather a rare phenomenon. On the contrary, intuition
and heuristic reasoning were the animating forces of mathematical research
practice. The vigorous but rarely rigorous mathematical activity produced
“crises” (for example the pythagoreans’ discovery of the incommensurabil-
ity of the diagonal and side of a square, Leibniz’s and Newton’s problems
with the explanation of the nature of infinitesimals, Fourier’s “proof” that
any function is representable in a Fourier series, antinomies connected with
Cantor’s imprecise and intuitive notion of a set).

Basic concepts underlying the Euclidean paradigm have been clarified
on the turn of the nineteenth century. In particular the intuitive (and
rather psychological in nature) concept of an informal proof (demonstra-
tion) was replaced by a precise notion of a formal proof and of a conse-
quence. Several events and achievements contributed to the revision of the
Euclidean paradigm, in particular the origin and the development of set
theory (G. Cantor), arithmetization of analysis (A. Cauchy and K. Weier-
strass, R. Dedekind), axiomatization of the arithmetic of natural numbers
(G. Peano), non-Euclidean geometries (N. I. Lobachewsky, J. Bolayi, C. F.
Gauss), axiomatization of geometry (M. Pasch, D. Hilbert), the develop-
ment of mathematical logic (G. Boole, A. de Morgan, G. Frege, B. Russell).
Beside those “positive” factors there was also a “negative” factor, viz., the
discovery of paradoxes in set theory (C. Burali-Forti, G. Cantor, B. Russell)
and of semantical antinomies (G.D. Berry, K. Grelling). They forced the
revision of some basic ideas and stimulated in particular metamathematical
investigations. One of the directions of those foundational investigations was
the program of David Hilbert and his Beweistheorie. Note at the very begin-
ning that “this program was never intended as a comprehensive philosophy
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of mathematics; its purpose was instead to legitimate the entire corpus of
mathematical knowledge” (cf. Rowe, 1989, p. 200). Note also that Hilbert’s
views were changing over the years, but always took a formalist direction.

2. Hilbert sought to justify mathematical theories by means of formal
systems, i.e., using the axiomatic method. He viewed the latter as holding
the key to a systematic organization of any sufficiently developed subject.
This idea was very well stated already in a letter of 29th December 1899 to
G. Frege where Hilbert explained his motives of axiomatizing the geometry
and wrote (cf. Frege 1976, p. 67):

I was forced to construct my systems of axioms by a necessity: I
wanted to have a possibility to understand those geometrical proposi-
tions which in my opinion are the most important results of geometrical
researches: that the Parallel Postulate is not a consequence of other
axioms, and similarly for the Archimedean one, etc.1

In “Axiomatisches Denken” Hilbert wrote:

When we put together the facts of a given more or less comprehensive
field of our knowledge, then we notice soon that those facts can be
ordered. This ordering is always introduced with the help of a certain
network of concepts in such a way that to every object of the given
field corresponds a concept of this network and to every fact within
this field corresponds a logical relation between concepts. The network
of concepts is nothing else than the theory of the field of knowledge.2

(p. 405)

By Hilbert the formal frames were contentually motivated. First-order
theories were viewed by him together with suitable non-empty domains,
Bereiche, which indicated the range of the individual variables of the theory
and the interpretations of the nonlogical vocabulary. But Hilbert, as a math-
ematician, was not interested in establishing precisely the ontological status

1 Ich bin zu der Aufstellung meines Systems von Axiomen durch die Not gezwungen: ich
wollte die Möglichkeit zum Verständnis derjenigen geometrischen Sätze geben, die ich für
die wichtigsten Ergebnisse der geometrischen Forschungen halte: dass das Parallelenaxiom
keine Folge der übrigen Axiome ist, ebenso das Archimedische etc.

2 Wenn wir die Tatsachen eines bestimmten mehr oder minder umfassenden Wissens-
gebiete zusammenstellen, so bemerken wir bald, daß diese Tatsachen einer Ordnung fähig
sind. Diese Ordnung erfolgt jedesmal mit Hilfe eines gewissen Fachwerkes von Begriffen

in der Weise, daß dem einzelnen Gegenstande des Wissensgebietes ein Begriff dieses Fach-
werkes und jeder Tatsache innerhalb des Wissensgebietes eine logische Beziehung zwischen
den Begriffen entspricht. Das Fachwerk der Begriffe ist nicht Anderes als die Theorie des
Wissensgebietes.
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of mathematical objects. Moreover, one can say that his program was calling
on people to turn their mathematical and philosophical attention away from
the problem of the object of mathematical theories and turn it toward a
critical examination of the methods and assertions of theories. On the other
hand he was aware that once a formal theory has been constructed, it can
admit various interpretations. Recall here his famous sentence from a letter
to G. Frege quoted already above:

Yes, it is evident that one can treat any such theory only as a net-
work or schema of concepts besides their necessary interrelations, and
to think of basic elements as being any objects. If I think of my points
as being any system of objects, for example the system: love, law,
chimney-sweep [. . . ], and I treat my axioms as [expressing] intercon-
nections between those objects, then my theorems, e.g. the theorem of
Pythagoras, hold also for those things. In other words: any such theory
can always be applied to infinitely many systems of basic elements.3

The essence of the axiomatic study of mathematical truths was for him to
clarify the position of a given theorem (truth) within the given axiomatic
system and the logical interconnections between propositions.4

Hilbert sought to secure the validity of mathematical knowledge by syn-
tactical considerations without appeal to semantic ones. The basis of his
approach was the distinction between the unproblematic, ‘finitistic’ part of
mathematics and the ‘infinitistic’ part that needed justification. Finitistic

3 Ja, es ist doch selbsverständlich eine jede Theorie nur ein Fachwerk oder Schema
von Begriffen nebst ihren nothwendigen Beziehungen zu einander, und die Grundelemente
können in beliebiger Weise gedacht werden. Wenn ich unter meinen Punkten irgendwelche
Systeme von Dingen, z.B. das System: Liebe, Gesetz, Schornsteinfeger [. . . ] denke und
dann nur meine sämtlichen Axiome als Beziehungen zwischen diesen Dingen annehme, so
gelten meine Sätze, z.B. der Pythagoras auch von diesen Dingen. Mit anderen Worten:
eine jede Theorie kann stets auf unendliche viele Systeme von Grundelementen angewandt
werden.

4 He wrote in (1902/03, p. 50): “Under the axiomatic study of any mathematical truth
I understand a study whose aim is not to discover new or more general propositions with
the help of given truths, but a study whose purpose is to determine a position of a given
theorem within the system of known truths and their logical connections in such a way that
one can clearly see which assumptions are necessary and sufficient to justify the considered
truth.” (Unter der axiomatischen Erforschung einer mathematischen Wahrheit verstehe
ich eine Untersuchung, welche nicht dahin zieht, im Zusammenhange mit jener Wahrheit
neue oder allgemeinere Sätze zu entdecken, sondern die vielmehr die Stellung jenes Satzes
innerhalb des Systems der bekannten Wahrheiten und ihren logischen Zusammenhang in
der Weise klarzulegen sucht, dass sich sicher angeben lässt, welche Voraussetzungen zur
Begründung jener Wahrheit notwendig und hinreichend sind.)
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mathematics deals with so called real propositions, which are completely
meaningful because they refer only to given concrete objects. Infinitistic
mathematics on the other hand deals with so called ideal propositions that
contain reference to infinite totalities. Hilbert proposed to base mathematics
on finitistic mathematics via proof theory (Beweistheorie). The latter was
planned as a new mathematical discipline in which one studies mathemati-
cal proofs by mathematical methods. Its main goal was to show that proofs
which use ideal elements (in particular actual infinity) in order to prove re-
sults in the real part of mathematics always yield correct results. One can
distinguish here two aspects: consistency problem and conservation prob-
lem. The consistency problem consists in showing (by finitistic methods, of
course) that the infinitistic mathematics is consistent; the conservation prob-
lem consists in showing by finitistic methods that any real sentence which
can be proved in the infinitistic part of mathematics can be proved also in the
finitistic part. One should stress here the emphasis on consistency (instead
of correctness).

To realize this program one should formalize mathematical theories (even
the whole of mathematics) and then study them as systems of symbols gov-
erned by specified and fixed combinatorial rules. The advantage of this ap-
proach was the fact that references to ideal objects were replaced by reason-
ings of a purely finitary character, reasonings applied not to mathematical
entities themselves but to the symbols of a formal language in which the con-
cepts had been axiomatized, i.e., by syntactical considerations without appeal
to the semantic ones. Another advantage was the fact that, as P. Bernays put
it, “the problems and difficulties that present themselves in the foundations
of mathematics can be transferred from the epistemological-philosophical to
the properly mathematical domain”.

The formal axiomatic system should satisfy three conditions: it should
be complete, consistent and based on independent axioms. The consistency
of a given system was the criterion for mathematical truth and for the very
existence of mathematical objects.5 It was also presumed that any consistent
theory would be categorical, that is, would (up to isomorphism) characterize
a unique domain of objects. This demand was connected with the complete-
ness.

5 Cf. Hilbert’s letter to G. Frege of 29th December 1899 where he claimed that: “If the
arbitrary given axioms do not contradict one another with all their consequences, then
they are true and the things defined by the axioms exist.” (Wenn sich die willkürlich
gesetzten Axiome nicht einander widersprechen mit sämtlichen Folgen, so sind sie wahr,
so existieren die durch die Axiome definierten Dinge.) (cf. Frege, 1976, p. 66).
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The meaning and understanding of completeness by Hilbert plays a cru-
cial rôle from the point of view of our subject. Note at the beginning that
in the Grundlagen der Geometrie completeness was postulated as one of the
axioms (the axiom was not present in the first edition, but was included
first in the French translation and then in the second edition of 1903). In
fact the axiom V(2) stated that: “Elements of geometry (i.e., points, lines
and planes) form a system of things that does not admit any extension pro-
vided all the mentioned axioms are preserved”.6 In Hilbert’s lecture at the
Congress at Heidelberg in 1904 (cf. 1905a) one finds such an axiom for the
real numbers. Later there appears completeness as a property of a system.
In lectures “Logische Principien des mathematischen Denkens” (1905, p. 13)
Hilbert explains the demand of the completeness as the demand that the ax-
ioms suffice to prove all “facts” of the theory in question. He says: “We will
have to demand that all other facts of the given field are consequences of the
axioms.”7 On the other hand one can say that Hilbert’s early conviction as
to the solvability of every mathematical problem — expressed for example in
his 1900 Paris lecture (cf. Hilbert 1901) and repeated in his opening address
“Naturerkennen und Logik” (cf. Hilbert, 1930a) before the Society of German
Scientists and Physicians in Königsberg in September 1930 — can be treated
as informal reflection of his belief in completeness of axiomatic theories. In
Paris Hilbert said:

The conviction of the solvability of any mathematical problem is for us
a strong motive in this work; we hear the whole time the call: There is
a problem, look for a solution. You can find it by a pure thinking; there
is no Ignorabimus in the mathematics.8 (Hilbert, 1901, p. 298)

6 “Die Elemente (Punkte, Geraden, Ebenen) der Geometrie bilden ein System von
Dingen, welches bei Aufrechterhaltung sämtlicher genannten Axiome keiner Erweiterung
mehr fähig ist.”

In last editions of Grundlagen, beginning with the seventh edition from 1930, Hilbert
replaced this axiom by the axiom of linear completeness stating that: “Points of a line form
a system which admits no extension provided the linear order of the line (Theorem 6),
the first congruence axioms and Archimedean axioms (i.e., axioms I1–2, II, III1, V1) are
preserved.” (Die Punkte einer Geraden bilden ein System, welches bei Aufrechterhaltung
der linearen Anordnung (Satz 6), des ersten Kongruenzaxioms und des Archimedischen
Axioms (d.h. der Axiome I1–2, II, III1, V1) keiner Erweiterung mehr fähig ist.)

7 Wir werden verlangen müssen, dass alle übrigen Thatsachen des vorgelegten Wissens-
bereiches Folgerungen aus den Axiomen sind.

8 Diese Überzeugung von der Lösbarkeit eines jeden mathematischen Problems ist uns
ein kräftiger Ansporn während der Arbeit; wir hören in uns den steten Zuruf: Da ist

das Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn in der

Mathematik gibt es kein Ignorabimus!.
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And in Königsberg he said:

For the mathematician there is no Ignorabimus, and, in my opinion,
not at all for natural science either. [. . . ] The true reason why [no one]
has succeeded in finding an unsolvable problem is, in my opinion, that
there is no unsolvable problem. In contrast to the foolish Ignorabimus,
our credo avers: We must know, We shall know.9

In his 1900 Paris lecture Hilbert spoke about completeness in the follow-
ing words:

When we are engaged in investigating the foundations of a science, we
must set up a system of axioms which contains an exact and complete
description of the relations subsisting between the elementary ideas of
that science. The axioms so set up are at the same time the definitions
of those elementary ideas; and no statement within the realm of the
science whose foundations we are testing is held to be correct unless
it can be derived from those axioms by means of a finite number of
logical steps.10 (Hilbert, 1901, second problem, pp. 299–300)

One can assume that the phrase “exact and complete description” (genaue
und vollständige Beschreibung) is equivalent to the requirement that this
description is complete in the sense that it allows to decide the truth or
falsity of every statement of the given theory. Semantically such complete-
ness follows from categoricity, i.e., from the fact that any two models of a
given axiomatic system are isomorphic; syntactically it means that every
sentence or its negation is derivable from the given axioms. Hilbert’s own
axiomatizations were complete in the sense of being categorical. But notice
that they were not first-order, indeed his axiomatization of geometry from
Grundlagen as well as his axiomatization of arithmetic published in 1900
were second-order. Each of those system had a second-order Archimedean

9 Für den Mathematiker gibt es kein Ignorabimus, und meiner Meinung nach auch
für die Naturwissenschaft überhaupt nicht. [. . . ] Der wahre Grund, warum es [niemand]
nicht gelang, ein unlösbares Problem zu finden, besteht meiner Meinung nach darin, daß
es ein unlösbares Problem überhaupt nicht gibt. Statt des törichten Ignorabimus heiße im
Gegenteil unsere Losung: Wir müssen wissen, Wir werden wissen.

10 Wenn es sich darum handelt, die Grundlagen einer Wissenschaft zu untersuchen,
so hat man ein System von Axiomen aufzustellen, welche eine genaue und vollständige
Beschreibung derjenigen Beziehungen enthalten, die zwischen den elementaren Begriffen
jener Wissenschaft stattfinden. Die aufgestellten Axiome sind zugleich die Definitionen
jener elementaren Begriffe, und jede Aussage innerhalb des Bereiches der Wissenschaft,
deren Grundlage wir prüfen, gilt uns nur dann als richtig, falls sie sich mittels einer
endlichen Anzahl logischer Schlüsse aus den aufgestellten Axiomen ableiten läßt.
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axiom and both had a “completeness axiom” stating that the structure under
consideration was maximal with respect to the remaining axioms.11

The demand discussed here would imply that a system of axioms complete
in this sense is possible only for sufficiently advanced theories. On the other
hand Hilbert called for complete systems of axioms also for theories being
developed. In “Mathematische Probleme” he wrote:

[. . . ] wherever mathematical concepts emerge from epistemological
considerations or from geometry or from theories of science, mathe-
matics aquires the task of investigating the principles lying at the basis
of these concepts and defining [. . . ] these through a simple and com-
plete system of axioms.12 (p. 295)

One should also add here that Hilbert admitted the possibility that a
mathematical problem may have a negative solution, i.e., that one can show
the impossibility of a positive solution on the basis of a considered axiom
system. In “Mathematische Probleme” he wrote:

Occasionally it happens that we seek the solution under insufficient
hypotheses or in an incorrect sense, and for this reason we do not
succeed. The problem then arises: to show the impossibility of the
solution under the given hypotheses, or in the sense contemplated [. . . ]
and we perceive that old and difficult problems [. . . ] have finally found
fully satisfactory and rigorous solutions, although in another sense than
that originally intended. It is probably this important fact along with
other philosophical reasons that give rise to the conviction [. . . ] that
every definite mathematical problem must necessarily be susceptible
of an exact settlement, either in the form of an actual answer to the
question asked, or by a proof of the impossibility of its solution and
therewith the necessary failure of all attempts.13 (p. 297)

11 Note that this axiom was not even properly a second-order axiom.
12 [. . . ] wo immer von erkenntnistheoretischer Seite oder in der Geometrie oder aus den

Theorien der Naturwissenschaft mathematische Begriffe auftauchen, erwächst der Mathe-
matik die Aufgabe, die diesen Begriffen zugrunde liegenden Prinzipien zu erforschen und
dieselben durch einfaches und vollständiges System von Axiomen [. . . ] festzulegen.

13 Mitunter kommt es vor, daß wir die Beantwortung unter ungenügenden Voraussetzun-
gen oder in unrichtigem Sinne erstreben und infolgedessen nicht zum Ziele gelangen. Es
entsteht dann die Aufgabe, die Unmöglichkeit der Lösung des Problems unter den gegebe-
nen Voraussetzungen und in dem verlangten Sinne nachzuweisen. [. . . ] alte schwierige
Probleme [. . . ] eine völlig befriedigende und strenge Lösung gefunden haben. Diese merk-
würdige Tatsache neben anderen philosophischen Gründen ist es wohl, welche in uns eine
überzeugung entstehen lässt [. . . ] daß ein jedes bestimmte mathematische Problem einer
strengen Erledigung notwendig fähig sein müsse, sei es, daß es gelingt die Beantwortung
der gestellten Frage zu geben, sei es, daß die Unmöglichkeit seiner Lösung and damit die
Notwendigkeit des Mißlingens aller Versuche dargetan wird.
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In Hilbert’s lectures from 1917–18 (cf. Hilbert, 1917–18) one finds com-
pleteness in the sense of maximal consistency, i.e., a system is complete if
and only if for any non-derivable sentence, if it is added to the system then
the system becomes inconsistent.14

In his lecture at the International Congress of Mathematicians in Bologna
in 1928 Hilbert stated two problems of completeness, one for the first-order
predicate calculus (completeness with respect to validity in all interpreta-
tions, hence the semantic completeness) and the second for a system of
elementary number theory (formal completeness, in the sense of maximal
consistency, i.e. Post-completeness, hence the syntactical completeness) (cf.
Hilbert, 1930).

The emphasis on the finitary and syntactical methods together with the
demand of (and belief in) the completeness of formal systems seems to be by
Hilbert the source and reason of the fact that, as Gödel put it

[. . . ] formalists considered formal demonstrability to be an analysis of
the concept of mathematical truth and, therefore were of course not in
a position to distinguish the two. (Wang, 1974, p. 9)

Indeed, the informal concept of truth was not commonly accepted as a defi-
nite mathematical notion at that time.15 Gödel wrote in a crossed-out pas-
sage of a draft of his reply to a letter of the student Yossef Balas:

[. . . ] a concept of objective mathematical truth as opposed to demon-
strability was viewed with greatest suspicion and widely rejected as
meaningless. (Wang 1987, pp. 84–85)

It is worth comparing this with a remark of R. Carnap. He writes in his
diary that when he invited A. Tarski to speak on the concept of truth at
the September 1935 International Congress for Scientific Philosophy, “Tarski
was very sceptical. He thought that most philosophers, even those working in
modern logic, would be not only indifferent, but hostile to the explication of
the concept of truth”. And indeed at the Congress “[. . . ] there was vehement

14 Hilbert wrote in (1917–18, p. 152): “Let us now turn to the question of completeness.
We want to call the system of axioms under consideration complete if we always obtain
an inconsistent system of axioms by adding a formula which is so far not derivable to
the system of basic formulas.” (Wenden wir uns nun zu der Frage der Vollständigkeit.
Wir wollen das vorgelegte Axiomen-System vollständig nennen, falls durch die Hinzufü-
gung einer bisher nicht ableitbaren Formel zu dem System der Grundformeln stets ein
widerspruchsvolles Axiomensystem entsteht.)

15 Note that there was at that time no precise definition of truth — this was given in
1933 by A. Tarski (cf. Tarski, 1933).
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opposition even on the side of our philosophical friends” (cf. Carnap, 1963,
pp. 61–62).

All these explains in some sense why Hilbert prefered to deal in his meta-
mathematics solely with the forms of the formulas, using only finitary rea-
soning which were considered to be save — contrary to semantical reasonings
which were non-finitary and consequently not save. Non-finitary reasonings
in mathematics were considered to be meaningful only to the extent to which
they could be interpreted or justified in terms of finitary metamathematics.16

On the other hand there was no clear distinction between syntax and
semantics at that time. Recall for example that, as indicated earlier, the
axiom systems came by Hilbert often with a built-in interpretation. Add
also that the very notions necessary to formulate properly the difference
syntax-semantics were not available to Hilbert.

3. The problem of the completeness of the first-order logic, i.e., the fourth
problem of Hilbert’s Bologna lecture, was also posed as a question in the book
by Hilbert and Ackermann Grundzüge der theoretischen Logik (1928). It was
solved by Kurt Gödel in his doctoral dissertation (1929, cf. also 1930) where
he showed that the first-order logic is complete, i.e., every true statement
can be derived from the axioms. Moreover he proved that, in the first-order
logic, every consistent axiom system has a model. More exactly Gödel wrote
that by completeness he meant that “every valid formula expressible in the
restricted functional calculus [. . . ] can be derived from the axioms by means
of a finite sequence of formal inferences”. And added that this is equivalent
to the assertion that “Every consistent axiom system [formalized within that
restricted calculus] [. . . ] has a realization” and to the statement that “Every
logical expression is either satisfiable or refutable” (this is the form in which
he actually proved the result). The importance of this result is, according to
Gödel, that it justifies the “usual method of proving consistency”.

In fact the completeness theorem shows in a sense an equivalence of truth
and demonstrability, an equivalence of semantical and syntactical approach.
It shows that the logical methods admitted by the notion of derivability are
appropriate and sufficient. One should notice here that the notion of truth
in a structure, central to the very definition of satisfiability or validity, was
nowhere analyzed in either Gödel’s dissertation or his published revision of it.
There was in fact a long tradition of use of the informal notion of satisfiability
(compare the work of Löwenheim, Skolem and others).17

16 Cf. Gödel’s letter to Hao Wang dated 7th December 1967 — see Wang 1974, p. 8.
17 In Gödel’s doctoral dissertation (1929) one finds the following explanation concerning
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Some months later, in 1930, Gödel solved three other problems posed by
Hilbert in Bologna by showing that arithmetic of natural numbers and all
richer theories are essentially incomplete (provided they are consistent) (cf.
Gödel, 1931). It is interesting to see how did Gödel arrive at this result.
Hao Wang, on the basis of his discussions with Gödel, reports this in the
following way (see 1981):

[Gödel] represented real numbers by formulas [. . . ] of number theory
and found he had to use the concept of truth for sentences in number
theory in order to verify the comprehension axiom for analysis. He
quickly ran into the paradoxes (in particular, the Liar and Richard’s)
connected with truth and definability. He realized that truth in number
theory cannot be defined in number theory and therefore his plan [. . . ]
did not work.

Gödel himself wrote on his discovery in a draft reply to letter dated 27th
May 1970 from Yossef Balas, then a student at the University of Northern
Iowa (cf. Wang, 1987, pp. 84–85). Gödel indicated there that it was precisely
his recognition of the contrast between the formal definability of provabil-
ity and the formal undefinability of truth that led him to his discovery of
incompleteness. One finds also there the following statement:

[. . . ] long before, I had found the correct solution of the semantic
paradoxes in the fact that truth in a language cannot be defined in
itself.

the considered problem: “Let S be a system of functions f1, f2, . . . , fk (all defined in the
same universal domain), and of individuals (belonging to the same domain), a1, a2, . . . ,
al, as well as propositional constants, A1, A2, . . . , Am. We say that this system, namely

S = (f1, f2, . . . , fk; a1, a2, . . . , al; A1, A2, . . . , Am),

satisfies the logical expression if it yields a proposition that is true (in the domain in
question) when it is substituted in the expression. From this we see at once what we
must understand by satisfiable in a certain domain, by satisfiable alone (there is a domain
in which the expression is satisfiable), by valid in a certain domain (the negation is not
satisfiable), and by valid alone.” (Wir sagen von einem System (sämtlich in demselben
Denkbereich definierter) Funktionen, f1, f2, . . . , fk, und (ebenfalls demselben Denkbereich
angehörenden) Individuen, a1, a2, . . . , al, sowie Aussagen, A1, A2, . . . , Am — von diesem
System

S = (f1, f2, . . . , fk; a1, a2, . . . , al; A1, A2, . . . , Am)

sagen wir, daß es den logischen Ausdruck erfülle, wenn es in denselben eingesetzt einen (in
dem betreffenden Denkbereich) wahren Satz ergibt. Daraus erfolgt sich ohneweiteres, was
unter erfüllbar in einem bestimmten Denkbereich, erfüllbar schlechthin (= es gibt einen
Denkbereich, in dem der Ausdruck erfüllbar ist), allgemein giltig in einem bestimmten
Denkbereich (= Negation nicht erfüllbar), allgemein giltig schlechthin verstanden werden
soll.)
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On the base of this quotation it is sometimes argued that Gödel ob-
tained the result on the undefinability of truth independently of A. Tarski
(cf. Tarski, 1933; German translation — 1936, English translation — 1956).
One should add that Tarski proving the undefinability of truth had the pre-
cise definition of this concept whereas Gödel used only an intuitive (and
consequently imprecise) notion of truth. Hence there arises a problem: in
which sense one can say that Gödel obtained the result of the undefinability
of truth.18

Note also that Gödel was convinced of the objectivity of the concept of
mathematical truth. In a latter to Hao Wang (cf. Wang, 1974, p. 9) he wrote:

I may add that my objectivist conception of mathematics and meta-
mathematics in general, and of transfinite reasoning in particular, was
fundamental also to my other work in logic. How indeed could one think
of expressing metamathematics in the mathematical systems them-
selves, if the latter are considered to consist of meaningless symbols
which acquire some substitute of meaning only through metamath-
ematics [. . . ] it should be noted that the heuristic principle of my
construction of undecidable number theoretical propositions in the for-
mal systems of mathematics is the highly transfinite concept of ‘ob-
jective mathematical truth’ as opposed to that of ‘demonstrability’ (cf.
M. Davis, The Undecidable, New York 1965, p. 64 where I explain the
heuristic argument by which I arrive at the incompleteness results),
with which it was generally confused before my own and Tarski’s work.

In this situation one should ask why Gödel did not mention the unde-
finability of truth in his writings. In fact, Gödel even avoided the terms
“true” and “truth” as well as the very concept of being true (he used the term
“richtige Formel” and not the term “wahre Formel”). In the paper ‘Über for-
mal unentscheidbare Sätze . . . ’ (1931) the concept of a true formula occurs
only at the end of Section 1 where Gödel explains the main idea of the proof
of the first incompleteness theorem (but again the term “inhaltlich richtige
Formel” and not the term “wahre Formel” appears here). Indeed, talking
about the construction of a formula which should express its own unprov-
ability invokes the interpretation of the formal system. At the very end of
the introductory section one finds the following remarks:

The method of proof just explained can clearly be applied to any formal
system that, first, when interpreted as representing a system of notions
and propositions, has at its disposal sufficient means of expression to

18 For the problem of the priority in proving the undefinability of the concept of truth
see Woleński (1991) and Murawski (1998).
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define the notions occurring in the argument above (in particular, the
notion “provable formula”) and in which, second, every provable formula
is true in the interpretation considered. The purpose of carrying out
the above proof with full precision in what follows is, among other
things, to replace the second of the assumptions just mentioned by a
purely formal and much weaker one.19 (Gödel, 1931, pp. 175–176;

English translation: Gödel, Collected Works, vol. I, p. 151)

[Add that the “purely formal and much weaker” assumption mentioned
by Gödel was the assumption of the ω-consistency, i.e., the assumption that
for any formula ϕ(x) with one free variable, if in the considered theory the
sentences

ϕ(0), ϕ(1), ϕ(2), . . . , ϕ(n), . . . (n ∈ N)

are provable then the formula ∃x¬ϕ(x) is not provable in it.]
On the other hand the term “truth” occurred in Gödel’s lectures on the

incompleteness theorems at the Institute for Advanced Study in Princeton
in the spring of 1934.20 He discussed there, among other things, the relation
between the existence of undecidable propositions and the possibility of defin-
ing the concept “true (false) sentence” of a given language in the language
itself. Considering the relation of his arguments to the paradoxes, in particu-
lar to the paradox of “The Liar”, Gödel indicates that the paradox disappears
when one notes that the notion “false statement in a language B” cannot be
expressed in B. Even more, ‘the paradox can be considered as a proof that
“false statement in B” cannot be expressed in B.’ In the footnote 25 (added
to the version published in Davis, 1965) Gödel wrote:

For a closer examination of this fact see A. Tarski’s papers published
in: Trav. Soc. Sci. Lettr. de Varsovie, Cl. III, No. 34, 1933 (Polish)
(translated in: Logic, Semantics, Metamathematics. Papers from 1923
to 1938 by A. Tarski, see in particular p. 247 ff.) and in Philosophy and
Phenom. Res. 4 (1944), pp. 341–376. In these two papers the concept
of truth relating to sentences of a language is discussed systematically.
See also: R. Carnap, Mon. Hefte f. Math. u. Phys. 4 (1934), p. 263.

19 Die eben auseinandergesetzte Beweismethode läßt sich offenbar auf jedes formale Sys-
tem anwenden, das erstens inhaltlich gedeutet über genügend Ausdrucksmittel verfügt, um
die in der obigen Überlegung vorkommenden Begriffe (insbesondere den Begriff “beweis-
bare Formel”) zu definieren, und in dem zweitens jede beweisbare Formel auch inhaltlich
richtig ist. Die nun folgende exakte Durchführung des obigen Beweises wird unter an-
derem die Aufgabe haben, die zweite der eben angeführten Voraussetzungen durch eine
rein formale und weit schwächere zu ersetzen.

20 Notes of Gödel’s lectures taken by S.C. Kleene and J.B. Rosser were published in
Davis’ book in 1965 (cf. Gödel, 1934).
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The reasons for the incompleteness results were also explicitly mentioned
in Gödel’s reply to a letter of A.W. Burks. This reply is quoted in von
Neumann’s Theory of Self-Reproducing Automata. Gödel wrote:

I think the theorem of mine which von Neumann refers to is not that
on the existence of undecidable propositions or that on the length of
proofs but rather the fact that a complete epistemological description
of a language A cannot be given in the same language A, because the
concept of truth of sentences of A cannot be defined in A. It is this
theorem which is the true reason for the existence of the undecidable
propositions in the formal systems containing arithmetic. I did not,
however, formulate it explicitly in my paper of 1931 but only in my
Priceton lectures of 1934. The same theorem was proved by Tarski
in his paper on the concept of truth published in 1933 in Act. Soc.
Sci. Lit. Vars., translated on pp. 152–278 of Logic, Semantics and
Metamathematics. (pp. 55–56)

What were the reasons of avoiding the concept of truth by Gödel? An
answer can be found in a crossed-out passage of a draft of Gödel’s reply to
a letter of the student Yossef Balas (mentioned already above). Gödel wrote
there:

However in consequence of the philosophical prejudices of our times
1. nobody was looking for a relative consistency proof because [it]
was considered axiomatic that a consistency proof must be finitary in
order to make sense, 2. a concept of objective mathematical truth
as opposed to demonstrability was viewed with greatest suspicion and
widely rejected as meaningless.

Hence it leads us to the conclusion formulated by S. Feferman in (1984)
in the following way:

[. . . ] Gödel feared that work assuming such a concept [i.e., the concept
of mathematical truth — R.M.] would be rejected by the foundational
establishment, dominated as it was by Hilbert’s ideas. Thus he sought
to extract results from it which would make perfectly good sense even
to those who eschewed all non-finitary methods in mathematics.

Though he tried to avoid concepts not accepted by the foundational es-
tablishment, Gödel’s own philosophy of mathematics was in fact platonist.
He was convinced that:

It was the anti-Platonic prejudice which prevented people from getting
my results. This fact is a clear proof that the prejudice is a mistake.

(Wang Hao, 1996, p. 83)
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Note that A. Tarski was free of such limitations. In fact in the Lvov-
Warsaw School no restrictive initial preconditions were assumed before the
proper investigation could start. The main demands were clarity, anti-
speculativeness and scepticism towards many fundamental problems of tra-
ditional philosophy. The principal method that should be used was logical
analysis. The Lvov-Warsaw School was not so radical in its criticism of
metaphysics as the Vienna Circe.21

Tarski pointed out on many occasions that mathematical and logical
research should not be restricted by any general philosophical views. In
particular he wrote in (1930):

In conclusion it should be noted that no particular philosophical stand-
point regarding the foundations of mathematics is presupposed in the
present work.

And in (1954) he wrote:

As an essential contribution of the Polish school to the development
of metamathematics one can regard the fact that from the very begin-
ning it admitted into metamathematical research all fruitful methods,
whether finitary or not.

Hence Tarski, though indicating his sympathies with nominalism, freely
used in his logical and mathematical studies the abstract and general notions
that a nominalist seeks to avoid.

It is known that Tarski showed not only the undefinability but — and
this is his main merit here — he gave the precise inductive definition of sat-
isfiability and truth. In connection with this one should ask whether Gödel
saw the necessity to give an analysis of the concept of truth (note that in his
doctoral dissertation Über die Vollständigkeit des Logikkalküls (1929) and in
his paper ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’
(1930) on the completeness of the first-order predicate calculus the notion
of the validity was understood in an informal way what was in fact a long
tradition — cf. Löwenheim and Skolem). The answer is affirmative. Indeed,
in a letter to R. Carnap of 11th September 1932 he wrote:

Ich werde auf Grund dieses Gedankens im II. Teil meiner Arbeit eine
Definition für ‘wahre’ geben und ich bin der Meinung, daß sich die
Sache anders nicht machen läßt und daß man den höheren Induktio-
nenkalkül nicht semantisch [d.h. damals syntaktisch!] auffassen kann.22

21 See, for example, Woleński (1989) and (1995).
22 Quotation according to Köhler, 1991.
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Köhler explains in (1991) that “II. Teil meiner Arbeit” means here the
joint project of Gödel together with A. Heyting to write a survey of the cur-
rent investigations in mathematical logic for Springer-Verlag (Berlin). Heyt-
ing wrote his part while the part by Gödel was never written (the reasons
were his problems with the health). One can assume that Gödel planned to
develop there a theory of truth based on the set theory.

Gödel’s theorem on the completeness of first-order logic and his discovery
of the incompleteness phenomenon together with the undefinability of truth
vs. definability of formal demonstrability showed that formal provability
cannot be treated as an analysis of truth, that the former is in fact weaker
than the latter. It was also shown in this way that Hilbert’s dreams to justify
classical mathematics by means of finitistic methods cannot be fully realized.
Those results together with Tarski’s definition of truth (in the structure) and
Carnap’s work on the syntax of a language led also to the establishing of
syntax and semantics in the 1930s.

On the other hand it should be added that Gödel shared Hilbert’s “ratio-
nalistic optimism” (to use Hao Wang’s term) insofar as informal proofs were
concerned. In fact Gödel retained the idea of mathematics as a system of
truth, which is complete in the sense that “every precisely formulated yes-or-
no question in mathematics must have a clear-cut answer” (cf. Gödel, 1970).
He rejected however — in the light of his incompleteness theorem — the idea
that the basis of these truths is their derivability from axioms. In his Gibbs
lecture of 1951 Gödel distinguished between the system of all true mathemat-
ical propositions from that of all demonstrable mathematical propositions,
calling them, respectively, mathematics in the objective and subjective sense.
He claimed also that it is objective mathematics that no axiom system can
fully comprise.

4. Gödel’s incompleteness theorems and in particular his recognition
(before Tarski) of the undefinability of the concept of truth indicated a certain
gap in Hilbert’s programme and showed in particular, roughly speaking, that
(full) truth cannot be established (achieved) by provability and, generally, by
syntactic means. The former can be only approximated by the latter. Hence
there arose a problem: how should one extend Hilbert’s finitistic point of
view?

Hilbert in his lecture in Hamburg in December 1930 (cf. Hilbert, 1931)
proposed to admit a new rule of inference to be able to realize his program.
This rule is similar to the ω-rule, but it has rather informal character and
a system obtain by admitting it would be semi-formal. In fact Hilbert pro-
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posed that whenever A(z) is a quantifier-free formula for which it can be
shown (finitarily) that A(z) is a correct (richtig) numerical formula for each
particular numerical instance z, then its universal generalization ∀xA(x) may
be taken as a new premise (Ausgangsformel) in all further proofs.

In Preface to the first volume of Hilbert and Bernays’ monograph Grund-
lagen der Mathematik (1934/1939) Hilbert wrote:

[. . . ] the occasionally held opinion, that from the results of Gödel
follows the non-executability of my Proof Theory, is shown to be erro-
neous. This result showes indeed only that for more advanced consis-
tency proofs one must use the finite standpoint in a deeper way than
is necessary for the consideration of elementary formalism.23

Gödel pointed in many places that new axioms are needed to settle both
undecidable arithmetical and set-theoretic propositions. In the footnote 48a

(evidently an afterthought) to (1931) he wrote:

As will be shown in Part II of this paper, the true reason for the
incompleteness inherent in all formal systems of mathematics is that
the formation of ever higher types can be continued into the transfinite
[. . . ] while in any formal system at most denumerably many of them
are available. For it can be shown that the undecidable propositions
constructed here become decidable whenever appropriate higher types
are added (for example, the type ω to the system P). An analogous
situation prevails for the axiom system of set theory.24

(English translation taken from Heijenoort, 1967, p. 610)

In (193?), handwritten notes in English, evidently for a lecture, one finds the
following words of Gödel:

[. . . ] number-theoretic questions which are undecidable in a given for-
malism are always decidable by evident inferences not expressible in

23 [. . . ] die zeitweilig aufgekommene Meinung, aus gewissen neueren Ergebnissen von
Gödel folge die Undurchführbarkeit meiner Beweistheorie, als irrtümlich erwiesen ist.
Jenes Ergebnis zeigt in der Tat auch nur, daß man für die weitergehenden Widerspruchs-
freiheitsbeweise den finiten Standpunkt in einer schärferen Weise ausnutzen muß, als dieses
bei der Betrachtung der elementaren Formalismen erforderlich ist.

24 Der wahre Grund für die Unvollständigkeit, welche allen formalen Systemen der
Mathematik anhaftet, liegt, wie im II. Teil dieser Abhandlung gezeigt werden wird, darin,
daß die Bildung immer höcherer Typen sich ins Transfinite fortsetzen läßt [. . . ] während
in jedem formalen System höchstens abzählbar viele vorhanden sind. Man kann nämlich
zeigen, daß die hier aufgestellten unentscheidbaren Sätzen durch Adjunktion passender
höcherer Typen (z.B. des Types ω zum System P ) immer entscheidbar werden. Analoges
gilt auch für das Axiomensystem der Mengenlehre.
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the given formalism. As to the evidence of these new inferences, they
turn out to be exactly as evident as those of the given formalism. So
the result is rather that it is not possible to formalise mathematical ev-
idence even in the domain of number theory, but the conviction about
which Hilbert speaks [i.e., the conviction of the solvability of every
well formulated mathematical problem — R.M.] remains entirely un-
touched. Another way of putting the result is this: It is not possible
to mechanise mathematical reasoning, i.e., it will never be possible to
replace the mathematician by a machine, even if you confine yourself
to numer-theoretic problems. (p. 164)

In (1931?, p. 35) he stated that “[. . . ] there are number-theoretic problems
that cannot be solved with number-theoretic, but only with analytic or,
respectively, set-theoretic methods”.25 And in (1933, p. 48) he wrote: “there
are arithmetic propositions which cannot be proved even by analysis but only
by methods involving extremely large infinite cardinals and similar things”.
In (1951) Gödel stated that:

In order to prove the consistency of classical number theory (and a for-
tiori of all stronger systems) certain abstract concepts (and the di-
rectly evident axioms referring to them) must be used, where “abstract”
means concepts which do not refer to sense objects, of which symbols
are a special kind. [. . . ] Hence it follows that there exists no ra-
tional justification of our precritical belief concerning the applicability
and consistency of classical mathematics (nor even its undermost level,
number theory) on the basis of a syntactical interpretation. (p. 318)

In (1970) Gödel proposed “cultivating (deepening) knowledge of the abstract
concepts themselves which lead to the setting up of these mechanical sys-
tems”. In (1972) (this paper was a revised and expanded English version
of (1958)) Gödel claimed that concrete finitary methods are insufficient to
prove the consistency of elementary number theory and some abstract con-
cepts must be used in addition. He wrote:

Since finitary mathematics is defined [. . . ] as the mathematics of con-
crete intuition, this seems to imply that abstract concepts are needed
for the proof of consistency of number theory. [. . . ] By abstract con-
cepts, in this context, are meant concepts which are essentially of the
second or higher level, i.e., which do not have as their content properties
or relations of concrete objects (such as combinations of symbols), but

25 [. . . ] es [gibt] zahlentheoretische Probleme, die sich nicht mit zahlentheoretischen
sondern nur mit analytischen bzw. mengentheoretischen Hilfsmitteln lösen lassen.
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rather of thought structures or thought contents (e.g., proofs, meaning-
ful propositions, and so on), where in the proofs of propositions about
these mental objects insights are needed which are not derived from a
reflection upon the combinatorial (space-time) properties of the sym-
bols representing them, but rather from a reflection upon the meanings
involved. (pp. 271–273)

In the paper (1946) Gödel explicitely called for an effort to use progres-
sively more powerful transfinite theories to derive new arithmetical theorems.
He wrote there:

Let us consider, e.g., the concept of demonstrability. It is well known
that, in whichever way you make it precise by means of a formalism,
the contemplation of this very formalism gives rise to new axioms which
are exactly as evident and justified as those with which you started,
and that this process of extension can be iterated into the transfinite.
So there cannot exist any formalism which would embrace all these
steps; but this does not exclude that all these steps (or at least all
of them which give something new for the domain of propositions in
which you are interested) could be described and collected together in
some non-constructive way. (p. 151)

These remarks correspond with the words of R. Carnap who wrote in
(1934):

[. . . ] all that is mathematical can be formalized; yet the whole of math-
ematics cannot be grasped by one system but an infinite series of still
richer and richer languages is necessary.26 (p. 274)

One can compare the above remarks with those of Turing from his paper
(1939). In the introduction to this paper Turing wrote:27

The well-known theorem of Gödel (1931) shows that every system of
logic is in a certain sense incomplete, but at the same time it indicates
means whereby from a system L of logic a more complete system L′ may
be obtained. By repeating the process we get a sequence L, L1 = L′,
L2 = L

′

1
, . . . each more complete than the proceeding. A logic Lω may

then be constructed in which the provable theorems are the totality of
theorems provable with the help of logics L, L1, L2, . . . Proceeding
in this way we can associate a system of logic with any constructive

26 [. . . ] alles Mathematische ist formalisierbar; aber die Mathematik ist nicht durch Ein

System erschöpfbar, sondern erfordert eine Reihe immer reicherer Sprachen.
27 See also Feferman (1962) and (1988) where Turing’s idea and its development are

discussed.
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ordinal. It may be asked whether such a sequence of logics of this kind
is complete in the sense that to any problem A there corresponds an
ordinal α such that A is solvable by means of the logic Lα.

Also Zermelo proposed to allow infinitary methods to overcome restric-
tions revealed by Gödel. According to Zermelo the existence of undecidable
propositions was a consequence of the restriction of the notion of proof to
finitistic methods (he said here about “finitistic prejudice”). This situation
could be changed if one used a more general “scheme” of proof. Zermelo had
here in mind an infinitary logic, in which there were infinitely long sentences
and rules of inference with infinitely many premises. In such a logic, he
insisted, “all propositions are decidable!”28 He thought of quantifiers as in-
finitary conjunctions or disjunctions of unrestricted cardinality and conceived
of proofs not as formal deductions from given axioms but as metamathemat-
ical determinations of the truth or falsity of a proposition. Thus syntactic
considerations played no rôle in his thinking.

5. Above the process of the development of the consciousness of the
difference between provability and truth in mathematics has been analysed.
The rôle of Gödel’s incompleteness theorems in this process was stressed and
the attempts to overcome the limitations disclosed by those theorems by ad-
mitting new infinitary methods (instead of finitary ones only) in the concept
of a mathematical proof was indicated. To close this considerations let us
note that the very distinction between provability and truth in mathematics
presupposes some philosophical assumptions. In fact for pure formalists and
for intuitionists there exists no truth/proof problem. For them a mathemat-
ical statement is true just in case it is provable, and proofs are syntactic or
mental constructions of our own making. In the case of a platonist (realist)
philosophy of mathematics the situation is different. One can say that pla-
tonist approach to mathematics enabled Gödel to state the problem and to
be able to distinguish between proof and truth, between syntax and seman-
tics.29

28 Note that that time was not yet ripe for such an infinitary logic. Systems of such a
logic, though in a more restricted form than demanded by Zermelo, and without escaping
incompleteness, were constructed in the mid-fifties in works of Henkin, Karp and Tarski
(cf. Barwise, 1980 and Moore, 1980).

29 Note that, as indicated above, Hilbert was not interested in philosophical questions
and did not consider them.
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