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A DEDUCTIVE-REDUCTIVE

FORM OF LOGIC:

general theory and intuitionistic case

Abstract. The paper deals with reconstruction of the unique reductive
counterpart of the deductive logic. The procedure results in the deductive-
reductive form of logic. This extension is illustrated on the base of intuition-
istic logics: Heyting’s, Brouwerian and Heyting-Brouwer’s ones.

1. Introduction

Usually considered logics express a deductive reasoning. No matter what is
the way of their formalisation, consequence operation, consequence relation,
natural deduction, and others always formalise procedures which increase the
sets of accepted formulas.

However, there exists a possibility of reconstruction of the reductive coun-
terpart of the deductive logic. This reductive part should formalise a reason-
ing, decreasing sets of accepted formulas.

The motivation to extend logic to its deductive-reductive form may be of
various types. The most essential resides in the fact that usually, a consid-
ered logic is a part of a greater consistent whole. Moreover, this deductive-
reductive whole cannot be reduced to its already existing deductive part.
Further, such extended logic may constitute a base of a natural formalisation
of non-monotonic reasoning. The non-monotonicity would be here obtained
as a result of two monotonic procedures used alternatively: step “foreward”,
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increasing the set of beliefs which may be realised thanks to the deductive
part of logic; step “backward”, decreasing the set of beliefs, made due to the
reductive part of the same logic. The final result is similar to the procedures
of our everyday thinking.

Let L be a propositional language with L, a set of all formulas. In the pa-
per the deductive logic is represented by the well-known Tarski consequence
operation C: 2L → 2L, see [4]. Thanks to this operation, for any set X we
can find the set of all consequences of sentences from X. In other words, C
gives a set of all sentences we should accept because we have already ac-
cepted some others. The reductive counterpart of C will be E: 2L → 2L –
an elimination operation, informing us which sentences we should refuse be-
cause we have already accepted only some sentences. More precisely, let us
assume that we have accepted sentences composing the set X. At the same
time, we have refused all sentences from L−X – the complement of X to the
set of all formulas. However, there is possible to use a deduction procedure
on this set. This procedure shows which sentences should be accepted as
false because we have already accepted falsehood of some sentences. In such
a way the set X is reduced. Moreover, let us note that as all formulas from
X are the base of a deductive reasoning, the set X cannot be the base for
a reductive procedure. Obviously, formulas from X cannot be reasons for
removing any of them. The only base for the reductive reasoning for some
set X can be the formulas from L−X. It coincides with the assumption that
the elimination operation applied to the set X is in some sense a complement
of the consequence operation employed to L − X.

Thus, the logic determined on language L in its deductive-reductive form
is a triple

(L,C,E)

where for any X ⊆ L
E(X) = L − Cd(L − X)

with Cd : 2L → 2L an operation dual to the finitary and disjunctive conse-
quence operation C. A consequence operation C is disjunctive (see [5]), if for
any finite set X and for any endomorphism e of L there exists α ∈ L such that

C(eα) =
⋂

{C(eβ) : β∈X}.1

Let us also recall the definition of Cd formulated by Wójcicki in [5]:

α ∈ Cd(X) iff
⋂

{C(β) : β∈Xf} ⊆ C(α) for some finite Xf ⊆ X.

1 For simplicity, C(δ) will be written instead of C({δ}).
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Let us see that if at least one tautology of C is not included in X, then
this tautology belongs to L − X, and Cd(L − X) = L. It means that
E(X) = ∅. Moreover, Cd satisfies Tarski’s conditions for finitary, disjunc-
tive consequence operation, and because of this fact operation E satisfies for
any X,Y ⊆ L four following conditions

(E1) E(X) ⊆ X

(E2) X ⊆ Y implies E(X) ⊆ E(Y)

(E3) E(X) ⊆ EE(X)

(E4) E(X) =
⋂

{E(Y) : X⊆Y and Y is a cofinite set}

It is clear that the condition (E4) has an equivalent form:

(E41) α 6∈ E(X) iff α 6∈ E(L−{β1, . . . , βn}) for some β1, . . . , βn 6∈ X

for any X ⊆ L, α ∈ L.
Function E: 2L → 2L satisfying (E1)–(E3) will be called an elimination

operation on the language L. An elimination operation E satisfying the
condition (E4) is called cofinitary. Moreover, if E: 2L → 2L is an elimination
operation on L, then function C ′ : 2L → 2L given by

C′(X) = L − E(L − X)

for any X ⊆ L; is a consequence operation on L.
An elimination operation E is structural, if for any endomorphism e of

the language L and for any X ⊆ L

(E5) e(L − E(X)) ⊆ L − E(L − e(L − X))

Complexity of the condition (E5) follows from the fact that the operation
E reduces the set X. Applying some endomorphism cannot expand the set
X, but must correspond to the contraction of formulas. In other words, a
structural elimination operation removes some formulas with all their substi-
tutions. For formal explanation, let us use the fact mentioned just before the
condition (E5). Since L−E(L−X) = C′(X), eC′(L−X) ⊆ C′(e(L−X)) is an
equivalent form of (E5). Let Y = L − X, then eC′(Y) ⊆ C′(eY). Of course,
the last inclusion expresses structurality of the consequence operation C′.

The defined elimination operation is of general character and does not
decide about the way it can be applied in the formalisation of the reductive
reasoning. For instance we can provide arguments for replacing the definition:
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E(X) = L − Cd(L−X) by E(X) = L − Cd(L−C(X)). It is justified since,
as it turns out, if even one tautology is missing in the set X, E(X) = ∅.
For this reason it is better to consider E(C(X)), than E(X). But, on the
other hand, this is not a sufficient precaution: as the case of intuitionism
reveals, E(C(X)) would be an empty set if C(X) does not contain some
formula and its negation. The situation is paralel to that of consequence
operation. Here it is also better to consider C(E(X)) than C(X) because if
only one countertautology occurs in X, then C(X) = L. While there are no
countertautologies in E(X). Obviously C(E(X)) does not guarantee the full
success, either, since it suffices to consider the case of intuitionism to notice
that the occurrence of two formulas in E(X) of which one is the negation of
the other results in C(E(X)) = L.

The operation C is applied to any set X (not only to E(X), i.e. X without
counter-tautologies of C). Likewise operation E should be defined in such a
way that it could be applied to any set X (not only to C(X)).

The above considerations confirm the general character of the elimina-
tion operation and its intended full duality to the consequence operation.
Evidently, if we aim at the formalisation of some reductive reasoning we may
apply this generally defined elimination operation to given sets either sub-
stituting X with its different extentions in the definition, or replacing the
set L − X by some disjoint with X set in the same definition. However, the
general theory of elimination operation cannot provide ready-made solutions
of such problems.

Similarly to Cd, we can define Ed, an operation dual to the given cofini-
tary and conjunctive (also see [5]) elimination operation E on L, as follows:

α 6∈ Ed(X) iff E(L−α) ⊆
⋃

{E(L−β) : β 6∈ Xcf for some cofinite Xcf ⊇ X}

where X ⊆ L is any set of formulas. Obviously, Ed is a cofinitary elimination
operation on L. Moreover, for any X ⊆ L

Cdd = C and Edd = E.

The diagram from Figure 1 can be obtained: with lines symbolizing mutual
definabilities. Obviously, the connection between C and Ed is the following:

C(X) = L − Ed(L − X)

for any X ⊆ L. Not difficult examination shows that starting from the finitary
consequence operation C and using the definitions given above, we can first
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Ed E

C Cd

• •

• •

Figure 1.

build Cd, then E, Ed, and finally C’ which is equivalent to C. Similarly,
starting from E and passing through all operations Ed, C, and Cd we return
to E. It means that for a given C (respectively, E), the reconstruction of E
(respectively, C) is unique.

It is a well-known fact that every consequence operation is mutually de-
finable by some class H of valuations h: L → {0, 1}. In our case, i.e. when C
is finitary, disjunctive and structural,

α ∈ C(X) iff ∀h ∈ H(h(X) ⊆ {1} implies h(α) = 1);

α ∈ Cd(X) iff ∀h ∈ H(h(X) ⊆ {0} implies h(α) = 0).

From the connections above it directly follows that similar mutual definability
is characteristic for the just defined elimination operations and class H of
valuations h: L → {0, 1} defined with respect to value v as,

α ∈ E(X) iff ∃h ∈ H(h(L − X) ⊆ {0} and h(α) = 1);

α ∈ Ed(X) iff ∃h ∈ H(h(L − X) ⊆ {1} and h(α) = 0).

For the matrix characterization, let Matr(C) be a class of matrices M =
(A,D) for C, with A an algebra similar to L and D ⊆ L. Obviously, if for
X ⊆ L, E(X) = L − C(L − X), then

E(L) =
⋃

{L − TRM : M ∈ Matr(C)};

Ed(L) =
⋃

{L − TRM : M ∈ Matr(Cd)},

where TRM is the set of formulas satisfied by matrix M for any homo-
morphism h ∈ Hom(L,A). It turns out, however, that the duality rela-
tion between C and E operations occurs in a general case, as well. Matrix
M = (A,D) together with Hom(L,A) defines the matrix consequence oper-
ation:

α ∈ CM(X) iff ∀h ∈ Hom(L,A)
(

h(X) ⊆ D implies h(α) ∈ D
)

.

Then,
C(X) =

⋂

{CM(X) : M ∈ Matr(C)}.
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Also, a matrix elimination operation can be defined:

α ∈ EM(X) iff ∃h ∈ Hom(L,A)
(

h(L − X) ⊆ D and h(α) 6∈ D
)

.

Then, similarly:

E(X) =
⋃

{EM(X) : M ∈ Matr(C)}.

After remarks above, one can say that there are reconstructed two logics in
deductive-reductive form: the deductive-reductive logic of truth

(L,E,C)

and the deductive-reductive logic of falsehood

(L,Ed,Cd)

composing the one whole. Indeed, C(∅), E(L), Cd(∅) and Ed(L) are respec-
tively: the set of tautologies, the set of non-countertautologies, the set of
countertautologies and the set of non-tautologies of the one and same logic.

For any X ⊆ L and α ∈ L the expressions α ∈ C(X), α ∈ Cd(X), α 6∈ E(X)
and α 6∈ Ed(X) settle some relations between the formula α and the set X.
These relations can be modelled by two relations of the inference ⊢, ⊢d and
two relations of rejection ⊣, ⊣d, respectively. Then we can write X ⊢ α,
X ⊢d α and X ⊣ α, X ⊣d α, respectively. In the two first cases X is a set of
premises, α is a conclusion. In the next two cases X is a set of premises but
α is a rejected formula. For ⊢ and ⊢d the set of all consequences of the set X
depends only on X. As it was already mentioned, such a situation may not
have place in the case of elimination relations. Elimination of some formulas
from the set X needs not to depend on the formulas from X. Therefore, the
expression α 6∈ E(X) will have its counterpart in the relation of the rejection
X ⊣ α understood as L − X ⊢d α. Similarly, α 6∈ Ed(X) has its counterpart
in X ⊣d α, understood as L − X ⊢ α. Thus, for any X ⊆ L and α ∈ L,

X ⊣ α iff L − X ⊢d α

and

X ⊣d α iff L − X ⊢ α.

2. Some basic notions of elimination operation

Let E be an elimination operation defined over L. We say after [6] that if an
elimination operation is cofinitary and structural, then it is called standard.
Similarly to [6] let us introduce some additional notions.
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Definition 1. Let E be an elimination operation over L. For X,Y ⊆ L,

1. X and Y are equivalent under E iff E(X) = E(Y);

2. X is axiomatizable under E iff X is equivalent under E to L − Y, where
Y is a finite set;

3. X is sufficient under E iff E(X) 6= ∅;

4. X is an E-theory, if X = E(X). ThE denotes the set of all E-theories.

Thus, the empty set ∅ = E(∅) is the smallest E-theory called trivial or
insufficient. The biggest E-theory is E(L).2

Proposition 1. For any elimination operation E, ThE is an open system
and (ThE,⊆) is a complete lattice.

Proof. Obviously
⋃

X ∈ ThE for any X ⊆ ThE thus, the first part of
the theorem is proved. For the proof of the second part it is sufficient to
notice that supX =

⋃

X and infX =
⋃

{Y ∈ ThE : Y ⊆
⋂

X}, for any
X ⊆ ThE.

Definition 2. A subset X ⊆ 2L is an open base for an elimination operation
E, if for any X ⊆ L, E(X) =

⋃

{Y∈X : Y ⊆ X}.

Obviously, ThE is an open base for an elimination operation E. As in the case
of a consequence operation, for any two elimination operations E1 and E2,

E1 = E2 iff ThE1
= ThE2

.

Definition 3. Let X ⊆ 2L and X ⊆ L. Ex(X) =
⋃

{Y ∈ X : Y ⊆ X}.

Proposition 2. For any X ⊆ 2L and X ⊆ L the following properties hold:

(a) Ex is an elimination operation on L (called “determined by X”).

(b) ThEx
is the least open system including X.

(c) If X is an open system, then ThEx
= X.

(d) X is an open base for Ex.

Proof. (a) Very easy.
(b) By Proposition 2, ThEx

is an open system. Moreover, Ex(X) = X
for any X ∈ X. Thus, we have to prove that every open system including X

2 If C is a consequence operation, then every set closed under C will be called a C-
theory. ThC denotes the set of all C-theories and Th∗

C, the set of all relatively maximal
C-theories.
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contains ThEx
. Let Y be an open system such that X ⊆ Y. If X ∈ ThEx

,
then X =

⋃

{Y∈X : Y ⊆ X}. Because Y is an open system,
⋃

Z ∈ Y for
any Z ⊆ X. Thus, X ∈ Y.

(c) One inclusion follows from b. If X ∈ X, then E(X) =
⋃

{Y∈X : Y ⊆
X} = X.

(d) Directly from definitions 2 and 3.

Minimal elements of the set ThE−{∅} will be called minimal E-theories.
Thus, T is a minimal E-theory, if it is sufficient and there is no E-theory
properly contained in T.

Definition 4. Let E be an elimination operation on L, α ∈ L and X ⊆ L.
X is an E-theory minimal relatively to α, if two following conditions are
satisfied:

(a) α ∈ X;

(b) α 6∈ E(X − β) for any β ∈ X.

An E-theory minimal relatively to some formula is called relatively minimal.

Proposition 3. Let E be an elimination operation over L and X ⊆ L. X
is a minimal E-theory iff X is an E-theory which is minimal relatively to
each of its formulas from X.

Proof. It is sufficient to notice that the right side of the theorem says that
removing any formula from a theory which is minimal relatively to each of
its formulas, leads to the empty set.

Definition 5. Let E be an elimination operation on L and X ⊆ L. X is a
join irreducible E-theory, if for any X ⊆ ThE, X =

⋃

X implies X ∈ X.

Proposition 4. Let E be an elimination operation on L and X ⊆ L. X is
a relatively minimal E-theory iff X is a join irreducible E-theory.

Proof. (⇒) Let an E-theory X be minimal relatively to α. Then for any
X ⊆ ThE, if

⋃

X ⊆ X and X 6= Y for any Y ∈ X, then α 6∈ Y for any Y ∈ X.
Thus X is join irreducible.

(⇐) Now assume that an E-theory X is not relatively minimal. Thus,
for any α ∈ X there exists βα ∈ X such that α ∈ E(X − βα). Obviously,
E(X − βα) 6= X for any α ∈ X. Simultaneously, X =

⋃

{E(X − βα) : α ∈ X},
thus X is not a join irreducible E-theory.

Dual-to-Lindenbaum Lemma. Let E be a cofinitary elimination operation
on L. For any sufficient E-theory T and for any α ∈ T, there exists an E-
theory T0 minimal relatively to α such that T0 ⊆ T.
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Proof. Assume that the assumptions of this lemma are satisfied for some
formula α and for some E-theory T. Thus, α ∈ T. Let us express the set
of all formulas L as a sequence: α1, α2, . . . , αn, . . . . Now let us define the
sequence of E-theories Tn as follows: if α 6∈ E(T

n−1
−αn), then Tn = Tn−1;

in other case Tn = E(T
n−1 − αn). Notice that E(

⋂

Tn) =
⋂

Tn. Indeed,
assume that β 6∈ E(

⋂

Tn), then because E is cofinitary and all E-theories Tn

form a chain, there exists k such that β 6∈ E(T
k
) = Tk ⊇

⋂

Tn. Thus,
⋂

Tn

is an E-theory minimal relatively to α such that
⋂

Tn ⊆ T.

Let us notice that every open base for an elimination operation E must
contain Th∗

E − the set of all relatively minimal E-theories. Thus, if some
elimination operation has as the least open base X, then X = Th∗

E. By
Dual-to-Lindenbaum Lemma we obtain, moreover, the following property:

Proposition 5. The set of all relatively minimal E-theories is the least open
base for E.

Proof. This theorem directly follows from the Dual-to-Lindenbaum Lemma
and from the proposition 4.

Now, let us consider the following property satisfied by certain elimination
operations:

(E6) There exists α ∈ L such that E(L − α) = ∅.

Proposition 6. If a cofinitary elimination operation E satisfies the con-
dition (E6), then for every sufficient E-theory T there exists a minimal E-
theory contained in T.

Proof. Let an elimination operation E satisfy all assumptions of this theo-
rem and let E(X) 6= ∅ for some X ⊆ L. Moreover, let α ∈ L be such formula
that E(L − α) = ∅. Of course, α ∈ X. Thus, by the Dual-to-Lindenbaum
Lemma, there exists an E-theory T minimal relatively to α. So, α 6∈ E(T−β)
for any β ∈ T. Because T 6= ∅ and E(T − β) = ∅ for any β ∈ T, T is a
minimal E-theory.

3. Provability in the deductive-reductive form of logic

Natural differences between the deductive and reductive parts of logic should
be appropriately expressed by their axiomatization. Indeed, we should be
able to say what a formula has to be accepted even if nothing has been
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accepted so far. Similarly, we need to be able to say what a formula has to
be rejected even if nothing has been rejected until now. Thus, an axiom (a
rule with empty set of premises) of a deductive logic (D-axiom) will be of
the following form:

∅ ⊢ α

and an axiom of a reductive logic (R-axiom) will take the following form:

L ⊣ α.

Thus, an R-axiom says that a formula α has to be rejected even if no other
formula has been rejected so far. The case of rules of inference is similar. A
deduction rule is of the form ∅ + {α1, . . . , αk} ⊢ β, in short

{α1, . . . , αk} ⊢ β,

the reductive rules should be of shape

L − {α1, . . . , αk} ⊣ β.

Thus, as expected, we will have a separate set of axioms and a separate
set of rules for each kind of reasoning. The fact that some formula α is a
D-axiom (thesis) will be written: ⊢ α which is an abbreviation of ∅ ⊢ α.
The rule stating that a formula α follows from a set of formulas Γ has usual
form, viz., Γ ⊢ α. In the case of an elimination reasoning, a formula α is an
R-axiom (antithesis) if L ⊣ α, i.e., α is removed from the set of all formulas
or in other words, α cannot be justified even by the set of all formulas.
Similarly, an analogous rule for elimination will state that a formula α is not
justified by a set of formulas Γ, Γ ⊣ α, i.e., α should be removed from Γ.
More precisely, elimination rules will be of the form: Γ−∆ ⊣ α, which means
that removing all formulas of the set ∆ from the set Γ removes α from Γ.

In the consequence theory it is the notion of “proof” which plays the key
role. The elimination operation is closely connected with a dual notion of
“disproof”.

Let A⊣ be an axiom set for elimination and R⊣ be a set of rules of

elimination. A formula α is called disprovable from X by means of rules

from R⊣, if and only if there exists in L − X a finite sequence of formulas

α1, . . . , αk, called a disproof of α from X by means of R⊣, such that

– α = αk and

– for any i ∈ {1, . . . , k}, αi ∈ A⊣∪ (L−X) or for some Y ⊆ {α1, . . . , αk−1},
L − Y ⊣ αi is an instance of some rule from R⊣.

A formula α is called confirmed for X by means of R⊣ if there exists no

disproof of α from X by means of R⊣ in L − X.
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4. The deductive-reductive form of intuitionistic

logic over a language with implication

Let LH denote the standard language

LH = (LH,¬,∧,∨,→)

for the intuitionistic propositional logic. Consider the intuitionistic logic
(L,CH) given by the following D-axioms (schemata 1CH

–10CH
) and D-rule

MPCH
:

1CH
∅ ⊢ α → (β → α)

2CH
∅ ⊢ (α → (β → γ)) → ((α → β) → (α → γ))

3CH
∅ ⊢ (α ∧ β) → α

4CH
∅ ⊢ (α ∧ β) → β

5CH
∅ ⊢ (α → β) → ((α → γ) → (α → (β ∧ γ)))

6CH
∅ ⊢ α → (α ∨ β)

7CH
∅ ⊢ β → (α ∨ β)

8CH
∅ ⊢ (α → γ) → ((β → γ) → ((α ∨ β) → γ))

9CH
∅ ⊢ (α → ¬β) → (β → ¬α)

10CH
∅ ⊢ ¬(α → α) → β

MPCH
{α,α → β} ⊢ β

Let us take an algebra A = (A,¬,∩,∪,→) similar to LH and a non-empty
set S partially ordered by ≤. Let every s ∈ S be associated with a subset
Ds ⊆ A. It is a well-known fact that the semantics adequate for (L,CH) is
the class of generalized matrices M = (A, {Ds : s∈S}) which are CH-models
(or equivalently, EH-models), i.e., where for any a, b ∈ A and any s ∈ S:

(i+) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(¬+) ¬a ∈ Ds iff for any t ≥ s, a 6∈ Dt;
(∩+) a ∩ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(∪+) a ∪ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(→+) a → b ∈ Ds iff for any t ≥ s, a 6∈ Dt or b ∈ Dt.

Thus, for the matrix consequence operation CM, where

(CM) α ∈ CM(X) iff ∀h∈Hom(LH,A) ∀s∈S
(∀β∈X h(β) ∈ Ds implies h(α) ∈ Ds),

it holds the well-known completeness theorem, viz.,

α ∈ CH(X) iff α ∈ CM(X), for any CH-model M, X ⊆ LH, and α ∈ LH.
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Following the ideas presented in the Introduction, we now consider the
logic (LH,Cd

H
) defined by Wójcicki. Directly from Wójcicki’s definition of Cd

it follows that the semantics adequate for (LH,Cd
H
) is the class of Cd

H
-models

(also called Ed
H
-models), i.e. all such matrices M that for any a, b ∈ A, s ∈ S:

(i−) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(¬−) ¬a ∈ Ds iff for some t ≤ s, a 6∈ Dt;
(∩−) a ∩ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(∪−) a ∪ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(→−) a → b ∈ Ds iff for some t ≤ s, a 6∈ Dt and b ∈ Dt;

For both kinds of models one can define the following four matrix operations:

α ∈ C+
M

(X) iff ∀h∈Hom(LH,A) ∀s∈S
(∀β∈X h(β) ∈ Ds implies h(α) ∈ Ds).

α ∈ C−

M
(X) iff ∀h∈Hom(LH,A) ∀s∈S

(∀β∈X h(β) 6∈ Ds implies h(α) 6∈ Ds).
α 6∈ E+

M
(X) iff ∀h∈Hom(LH,A) ∀s∈S

(∀β∈LH − X h(β) 6∈ Ds implies h(α) 6∈ Ds).
α 6∈ E−

M
(X) iff ∀h∈Hom(LH,A) ∀s∈S

(∀β∈LH − X h(β) ∈ Ds implies h(α) ∈ Ds).

Obviously, every Cd
H
-model may be obtained from a CH-model in which

all sets of designated values become sets of nondesignated values, and vice
versa − this is the semantical sense of Wójcicki’s definition of Cd

H
. Then,

for any CH-model M, α ∈ C+

M
(X) iff for any Cd

H-model M, α ∈ C−

M
(X);

for any CH-model M, α ∈ C−

M
(X) iff for any Cd

H-model M, α ∈ C+

M
(X);

for any CH-model M, α 6∈ E+

M
(X) iff for any Cd

H-model M, α 6∈ E−

M
(X);

for any CH-model M, α 6∈ E−

M
(X) iff for any Cd

H-model M, α 6∈ E+

M
(X).

If a CH-model is understood as a model for the logic of truth, then a Cd
H-

model should be understood as a model of the logic of falsehood. Let us
emphasize that both kinds of models are generated by the same syntax: the
axiom schemata 1CH

-10CH
and MPCH

. Indeed, it is sufficient to observe
that when proving the completeness theorem for (LH,CH) one can build
simultaneously a canonical CH-model and a canonical Cd

H
-model. In the first

case, sets of designated values are built of CH-theories, while in the second
case of complements of CH-theories. Unfortunately, it is not possible to
axiomatize (LH,Cd

H
), the logic given by the class of all Cd

H
-models in a such

simple way as for the case of (LH, CH). The problem is opposite direction of
the partial order relation ≤ in conditions: (i−) and (¬−), (→−). It seems that
there is no such connective, different from implication which could play the
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role of implication, i.e., the inference in (LH,Cd
H
) would be possible thanks

to this additional connective. Then, the relation ≤ would have the same
direction in the interpretation condition for the new connective as in (i−),
and so, it would be evident that Cd

H
-model is a model for a deductive logic.

However, it is not difficult to axiomatize the reductive logic (LH,E+
M

) given
by the class of all Cd

H-models. The syntax consists of the R-rule MTEd

H

:

LH − {α,α → β} ⊣ β

and axiom schemata 1CH
-10CH

with the expression “∅ ⊢ ” replaced by “LH ⊣ ”.
Then, 1CH

–10CH
become R-axioms.

For a simple proof of the completeness theorem, saying that

α 6∈ Ed
H(X) iff α 6∈ E+

M
(X) for every Cd

H
-model M

see [1]3. In such a way, one logic, defined in syntactical terms as a pair con-
sisting of a language and a consequence operator, determines two semantic
objects: the deductive part of the logic of truth and the reductive part of
the logic of falsehood. In spite of the lack of standard axiomatizations, let
us formulate the next two completeness theorems:

α ∈ Cd
H(X) iff α ∈ C+

M
(X) for every Cd

H
-model M.

α 6∈ EH(X) iff α 6∈ E+
M

(X) for every CH-model M.

It turns out that the class of all CH-models as well as the class of all
Cd

H
-models define CH, EH, Cd

H
and Ed

H
. However, it is the most natural to

define CH and EH by CH-models, while Cd
H
, Ed

H
by Cd

H
-models. Moreover,

EH(X) = LH − Cd
H(L

H
− X) and Ed

H(X) = LH − CH(L
H
− X)

and hence:

CH(∅) ⊆ EH(L
H
), Cd

H
(∅) ⊆ Ed

H
(L

H
),

CH(∅) ∩ Ed
H
(L

H
) = ∅, Cd

H
(∅) ∩ EH(L

H
) = ∅,

CH(∅) ∪ Ed
H(LH) = LH, Cd

H(∅) ∪ EH(LH) = LH.

Thus, there is given a syntactical characterization of two deductive-reductive
forms of logics defined over the Heyting language: (LH,CH,EH) − the intu-
itionistic logic of truth and (LH,Cd

H
,Ed

H
) − the intuitionistic logic of false-

hood. CH(∅), Cd
H
(∅), EH(L

H
), and Ed

H
(L

H
) are the set of tautologies, the

set of countertautologies, the set of non-countertautologies and the set of
non-tautologies of the same intuitionistic logic, respectively.

3 In [1], for simplicity, the symbol “Ed” is replaced by “E”.
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However, only the consequence operation CH and the elimination opera-
tion of Ed

H
have natural, simple axiomatizations.

The deductive-reductive form of logic enables a better understanding
of the character of the logic. As an example let us consider a complete
interpretation of the negation connective. CH- and Cd

H
-models establish a

distinction between the truth and the non-falsity, and between the falsehood
and the non-truth of a sentence. Indeed, semantics of the deductive-reductive
intuitionistic logic makes possible to fully determine the value of a sentence.
The condition (¬+) determines when a sentence α is false, namely, when it
is never accepted, neither now nor in future. Evidently the same condition
says when α is not false; when it is possible that in future the sentence will
be accepted. Hence the fact that a sentence is not accepted at present does
not imply its falsehood. According to the condition (¬−), α is true when
it was accepted in past, which due to the condition (i−), means that it is
also accepted at present. In other words, α is true if starting since certain
point (in past) it has been accepted. It seems that this deeper, i.e. related to
time comprising past, understanding of truth is closer to life. Thus we may
say that α is not true if it has never happened that α was accepted. Such
a simple analysis shows that neither the non-falsity considered here can be
identified with the truth nor can the non-truth with the falsehood.

The first and the third condition below follow from the definition of a
Cd

H
-model while the second and the last condition follow from the definition

of a CH-model:

α is true in s, if ∃t≤s, α is accepted in t

α is not false in s, if ∃t ≥ s, α is accepted in t

α is not true in s, if ∀t≤s, α is not accepted in t

α is false in s, if ∀t ≥ s, α is not accepted in t

It seems that the perspective of the past in the semantics is not artificial and
cannot be defined or replaced by a perspective of the future.

5. The deductive-reductive form of intuitionistic

logic over a language with coimplication

This section deals with the intuitionistic logic, in which the implication con-
nective is replaced by coimplication. It appears that as one can easily define
a deductive form of the logic of truth by implication, coimplication is a nat-
ural connective for the deductive logic of falsehood. Given the Brouwerian

© 2002 by Nicolaus Copernicus University



A deductive-reductive . . . : general theory 73

language
LB = (LB,∼,∧,∨,↽),

let us consider the consequence operation Cd
B

given by the following D-axiom
schemata 1

Cd

B

− 10
Cd

B

and D-rule MP
Cd

B

:

1Cd

B

∅ ⊢ (α ↽ β) ↽ α

2Cd

B

∅ ⊢ ((γ ↽ α) ↽ (β ↽ α)) ↽ ((γ ↽ β) ↽ α)

3Cd

B

∅ ⊢ (α ∧ β) ↽ α

4Cd

B

∅ ⊢ (α ∧ β) ↽ β

5
Cd

B

∅ ⊢ ((γ ↽ (α ∧ β)) ↽ (γ ↽ β)) ↽ (γ ↽ α)

6Cd

B

∅ ⊢ α ↽ (α ∨ β)

7Cd

B

∅ ⊢ β ↽ (α ∨ β)

8Cd

B

∅ ⊢ (((α ∨ β) ↽ γ) ↽ (β ↽ γ)) ↽ (α ↽ γ)

9Cd

B

∅ ⊢ (∼ β ↽ α) ↽ (∼α ↽ β)

10Cd

B

∅ ⊢ β ↽ ∼(α ↽ α)

MP
Cd

B

{β, α ↽ β} ⊢ α

A semantics for such a defined elimination operation Cd
B

is the class of
Cd

B
-models (Ed

B
-models), i.e. all structures M (introduced in the previous

section) that for any a, b ∈ A, s ∈ S:

(i−) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(∼−) ∼ a ∈ Ds iff for any t ≥ s, a 6∈ Dt;
(∩−) a ∩ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(∪−) a ∪ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(↽−) a ↽ b ∈ Ds iff for any t ≥ s, a ∈ Dt or b 6∈ Dt.

CB-model (EB-model), a model dual in Wójcicki’s sense to Cd
B
-model, is

a structure M such that for any a, b ∈ A, s ∈ S:

(i+) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(∼+) ∼ a ∈ Ds iff for some t ≤ s, a 6∈ Dt;
(∩+) a ∩ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(∪+) a ∪ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(↽+) a ↽ b ∈ Ds iff for some t ≤ s, a ∈ Dt and b 6∈ Dt.

Obviously, the class of all CB-models defines a deductive logic of truth
CB, axiomatization of which creates difficulties analogous to those in the case
of axiomatization of Cd

H
. Shortly speaking, there is a lack of implication such

that in the definition of its interpretation the relation ≤ would appear with
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the same direction as in (i+). Moreover, it is evident that the conditions
(↽+) and (∼+) of the CB-model define nothing else than, coimplication and
weak negation, respectively.
As in the previous “implicational” case, also here the class of all CB-models
gives us a semantics adequate for the elimination operation EB, where EB is
axiomatized by R-rule MTEH

:

LB − {β, α ↽ β} ⊣ α

and axiom schemata obtained from 1Cd

B

-10Cd

B

by replacement of the expres-

sion “∅ ⊢ ” by “LB ⊣ ”.

Assume that the matrix consequence and elimination operations are defined
as in the previous section. Then,

α ∈ Cd
B
(X) iff α ∈ C+

M
(X) for every Cd

B
-model M;

α 6∈ Ed
B
(X) iff α 6∈ E+

M
(X) for every Cd

B
-model M;

α ∈ CB(X) iff α ∈ C+
M

(X) for every CB-model M;
α 6∈ EB(X) iff α 6∈ E+

M
(X) for every CB-model M.

Let us emphasize that simple axiomatizations of (LB, CB) and (LB,Ed
B
) are

unknown, at least to our knowledge.

Similarly to the Heyting’s case, there is obtained a syntactical character-
ization of two deductive-reductive forms for (LB,CB,EB) − the intuitionistic
logic of truth and (LB,Cd

B
,Ed

B
) − the intuitionistic logic of falsehood, both

defined over the Brouwerian language.

To the contrary to the intuitionistic logic defined over the Heyting’s lan-
guage, the truth as well as the non-truth are described by Cd

B
-model using the

perspective of the future. CB-model with the interpretation of ∼ related to
the past characterizes the falsehood and non-falsity of a sentence. A sentence
α is true when it is never refused either now or in the future. Thus, α is not
true when it is possible that in the future the sentence will be refused. From
(∼+) it follows that α is false when it was refused in the past which, due to
the condition (i+), means that it is also refused at present. α is not false if
it has never happened that α was refused. Also here, neither the non-falsity
can be identified with the truth nor the non-truth with the falsehood. Thus,

α is false in s, if there exists t ≤ s such that α is refused in t;
α is not true in s, if there exists t ≥ s such that α is refused in t;
α is not false in s, if for all t ≤ s, α is not refused in t;

α is true in s, if for all t ≥ s, α is not refused in t.
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6. The Heyting-Brouwer logic completes the puzzle

The examples of the two logics considered so far show that implication is
a natural connective for the logic of deduction since it is very convenient
to define two axioms of Hilbert as well as to define other connectives. The
connective of coimplication has a similar role in case of reduction. It seems
to be natural for the formalisation of logics of reduction. However, in none
of these cases the set of connectives is sufficient for the symultaneous re-
construction of two logics in their syntactical forms: the deductive-reductive
logic of truth and the deductive-reductive logic of falsehood. Fortunately,
both a CH-model with an appropriate CB-model as well as a Cd

H
-model with

a corresponding Cd
B
-model seem to be, respectively, two parts of the same

whole. Indeed, a combination of CH- and CB-models will give us a CHB-
model (EHB-model). Similarly, a combination of Cd

H
- and Cd

B
-models will

result in a joint Cd
HB

-model (Ed
HB

-model).

Thus, let us take an algebra A = (A,¬,∼,∩,∪,→,↽) similar to the
language

L = (L,¬,∼,∧,∨,→,↽)

and a non-empty set S partially ordered by ≤. As previously, let every s∈S
be associated with a subset Ds ⊆ A. A structure M = (A, {Ds : s∈S}) is a
CHB-model if for any a, b ∈ A and for any s ∈ S,

(i+) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(¬+) ¬a ∈ Ds iff for any t ≥ s, a 6∈ Dt;
(∼+) ∼ a ∈ Ds iff for some t ≤ s, a 6∈ Dt;
(∩+) a ∩ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(∪+) a ∪ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(→+) a → b ∈ Ds iff for any t ≥ s, a 6∈ Dt or b ∈ Dt;
(↽+) a ↽ b ∈ Ds iff for some t ≤ s, a ∈ Dt and b 6∈ Dt.

A structure M as above is a Cd
HB

-model if for any a, b ∈ A and for any s ∈ S,

(i−) a ∈ Ds implies for any t ≥ s, a ∈ Dt;
(¬−) ¬a ∈ Ds iff for some t ≤ s, a 6∈ Dt;
(∼−) ∼ a ∈ Ds iff for any t ≥ s, a 6∈ Dt;
(∩−) a ∩ b ∈ Ds iff a ∈ Ds or b ∈ Ds;
(∪−) a ∪ b ∈ Ds iff a ∈ Ds and b ∈ Ds;
(→−) a → b ∈ Ds iff for some t ≤ s, a 6∈ Dt and b ∈ Dt;
(↽−) a ↽ b ∈ Ds iff for any t ≥ s, a ∈ Dt or b 6∈ Dt.
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It turns out that there exists a logic defined over L, called the Heyting-
Brouwer logic (HB) and elaborated by C.Rauszer in [2], [3]4, for which the
class of all CHB-models is an adequate semantics. The axiomatics for CHB is
an axiom set for the intuitionistic logic enlarged with the following schemata:

∅ ⊢ α → (β ∨ (α ↽ β))

∅ ⊢ (α ↽ β) → ∼(α → β)

∅ ⊢ ((α ↽ β) ↽ γ) → (α ↽ (β ∨ γ))

∅ ⊢ ¬(α ↽ β) → (α → β)

∅ ⊢ (α → (β ↽ β)) → ¬α

∅ ⊢ ¬α → (α → (β ↽ β))

∅ ⊢ ((β → β) ↽ α) → ∼α

∅ ⊢ ∼α → ((β → β) ↽ α)

for α, β, γ ∈ L, together with the inference rules: Modus Ponens and α ⊢
¬∼α.

Rauszer presents also HBd − a logic dual to HB, defined by the class of
all Cd

HB
-models, see [3]. The axiomatization of Cd

HB
is the following:

1
Cd

HB

∅ ⊢ ((β ↽ γ) ↽ (α ↽ γ)) ↽ ((β ↽ α) ↽ γ)

2Cd

HB

∅ ⊢ ((γ ↽ α) ↽ (γ ↽ β)) ↽ (β ↽ α)

3Cd

HB

∅ ⊢ (α ∧ β) ↽ α

4
Cd

HB

∅ ⊢ (α ∧ β) ↽ β

5Cd

HB

∅ ⊢ ((γ ↽ (α ∧ β)) ↽ (γ ↽ β)) ↽ (γ ↽ α)

6Cd

HB

∅ ⊢ α ↽ (α ∨ β)

7
Cd

HB

∅ ⊢ β ↽ (α ∨ β)

8Cd

HB

∅ ⊢ (((α ∨ β) ↽ γ) ↽ (β ↽ γ)) ↽ (α ↽ γ)

9Cd

HB

∅ ⊢ ((γ ↽ (α ∨ β)) ↽ ((γ ↽ β) ↽ α)

10Cd

HB

∅ ⊢ ((γ ↽ β) ↽ α) ↽ (γ ↽ (α ∨ β))

11Cd

HB

∅ ⊢ ((β → α) ∧ β) ↽ α

12Cd

HB

∅ ⊢ (∼α ↽ ∼β) ↽ (β ↽ α)

13Cd
HB

∅ ⊢ ((β ∧ γ) → α) ↽ (γ → (β → α))

14Cd

HB

∅ ⊢ ¬(β ↽ α) ↽ (β → α)

15Cd

HB

∅ ⊢ (α ↽ β) ↽ ∼(α → β)

16Cd

HB

∅ ⊢ ∼α ↽ ((β → β) ↽ α)

4 In the both cited papers, the coimplication connective is named “difference”.
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17Cd

HB

∅ ⊢ ((β → β) ↽ α) ↽ ∼α

18Cd

HB

∅ ⊢ ¬α ↽ (α → (β ↽ β))

19Cd

HB

∅ ⊢ (α → (β ↽ β)) ↽ ¬α

and inference rules: α ↽ β, β ⊢ α and ∼¬α ⊢ α, for any α, β, γ ∈ L.

Thus, the deductive-reductive forms of Heyting-Brouwer logics of truth
and falsehood are, respectively, the triples:

(L,CHB,EHB) and (L,Cd
HB,Ed

HB)

where the axiomatics for Ed
HB

consists of two R-rules: L − {α,α → β} ⊣ β

and L − {¬∼α} ⊣ α, and all axioms for CHB with “∅ ⊢” replaced by “L⊣”.
The axiomatics for EHB consists of two R-rules: L − {β, α ↽ β} ⊣ α and
L − {∼¬α} ⊣ α, and all axioms for Cd

HB
with “∅ ⊢ ” replaced by “L ⊣ ”.

7. Summary

The intuitionistic logic is a specially useful basis for the analysis of the re-
ductive counterpart for the deductive logic and for the logic of falsehood. To
the contrary to the classical logic, it is necessary to consider a connective
of the coimplication for the reconstruction of the intuitionistic logic of false-
hood. Semantical investigations show that Heyting’s intuitionistic logic and
Brouwerian intuitionistic logic are, respectively, some parts of the logic of
truth and of the logic of falsehood of the one and the same logic. It means
that the Heyting-Brouwer logic combines both logics in the one whole. The
connective of implication and the connective of coimplication play the funda-
mental role for the inference in the logic of truth and in the logic of falsehood,
respectively.
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