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STRUCTURED BELIEF BASES

1. Introduction

In this paper we discuss a formal approach to belief representation which
stores proof-theoretic information together with formulae. It is illustrated
how this additional information can be used in the context of belief revision.
The general aims of this paper are the following three: First, we would like
to give a descriptive approach to belief revision, in contrast to a normative
one. Secondly, the given theory should avoid (the consequences of) logical
omniscience of beliefs. Finally, from a broader point of view, the presented
approach can be considered as a case study within the programme of proof-
theoretic semantics. In this programme, the question is raised whether and
how proof-theoretic information can be used as a basis for semantics.

For these purposes we will start with belief bases, i.e., sets of sentences,
but provide the sentences with additional structure. Therefore, we would
like to call the formal representation structured belief bases. The structure
should collect information how a particular sentence finds its way into the
belief. This information is provided by proof-theoretic considerations and
will be used for the analysis of belief revision.

In this analysis we will introduce a crucial splitting: The operations of
perception and thought. While the former one is modeled by a (trivial) ad-
dition of a new sentence to a structured belief base, together with the in-
formation that (the belief expressed by) the sentence was “perceived”, the
latter one tries to give a fine-grained account to the combinations of beliefs,
especially the addition of new derived beliefs.

© 2002 by Nicolaus Copernicus University



46 Reinhard Kahle

With respect to belief revision these distinction is essential for the case
of contradictory beliefs. Since we assume that it is not possible to perceive
a contradiction directly, the inconsistency of a belief has to be realized by
thought. This trivial and seemingly minor observation leads us firstly to
the conclusion, that a belief revision is usually caused by the realization of
an inconsistency only. In our approach we will model such a realization
by a derivation. Therefore, secondly, it seems to be quite natural that the
sentence used for the belief revision has to be taken from those which are
directly involved in such a derivation.

From a technical point of view, our approach has a particular advantage
compared with most of the standard belief revision theories based on AGM

and related frameworks: The operations defined here are local in the sense
that the operations will depend on concrete objects, namely proofs, but not
on abstract totalities, like all consistent subsets of a given set, which are, in
practice, hard to grasp.

Using this locality, finally, the approach ensures a certain understanding
of the paradigm of minimal change. This paradigm is one of the essential
requirements demanded for every theory of belief revision.

The structure of the paper is as follows. In the next section we shortly
address the formal background. Then we introduce structured beliefs. In
section 4 we discuss how the realization of an inconsistency results in a belief
revision. The following section is devoted to a description of the resulting
contraction procedure. Sections 6–8 contain brief discussions of the relation
to the AGM approaches for belief revision, the problem of logical omniscience
and the truth maintenance systems. In the final section we discuss our
approach with respect to the aims given at the beginning of this introduction
and possible refinements and extensions.

2. The formal background

We will work in classical propositional logic. The terminological and nota-
tional conventions are as usual, cf. e.g. [Han98, Neb98]. However, for the
proof-theoretic considerations our approach is based on the derivability rela-
tion instead of the (model-theoretic) consequence relation.

Starting with a set of atomic formulae, the language should be closed
under the usual propositional connectives ¬ (negation), ∧ (conjunction), ∨
(disjunction) and → (implication). As metavariables for arbitrary formu-
lae we use Greek letters ϕ, ψ, . . . . As a distinguished formula we need
⊥ representing falsity, i.e., ⊥ implies (semantically as well as syntactically)
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every formula. Assuming a standard axiomatization of propositional logic
in a Hilbert-style calculus we have a derivability relation ⊢ ϕ. For a set of
formulae we use calligraphic capitals A, B, . . . .

A belief base is given by a set A of formulae. In particular, it does not
have to be closed under logical consequences. Let us call a belief base A
inconsistent if it contains ⊥, we call it contradictory if ⊥ is contained in the
deductive closure of A, i.e., ⊥ can be derived by use of formulae from A. For
a descriptive approach to beliefs, one can hardly avoid to consider the case
of contradictory beliefs which are not inconsistent in the defined sense. The
easiest example for such a belief could be the set {ϕ,¬ϕ}. Such a belief base
can be considered as one where the inconsistency is not realized.

3. Structured beliefs

A key problem for our analysis of belief revision is the question, how or why
a sentence was added to a belief base. Here, we would like to distinguish two
reasons:

• Perception and

• Thought.

In the case of perception there could be different sources, like seeing or hear-
ing something. Here, we will not discuss the difference between sources, but
assume that all perceived beliefs are incorporated in the belief base in the
same way.

Next to perception, there is the possibility that a belief was not directly
perceived but derived from the given beliefs. In this case we would like to
say that the new belief was caused by thought.

On the formal side, by a thought we mean a derivation. Therefore, given
a belief base A, ϕ can be added as a new belief to A if one finds a derivation
A ⊢ ϕ of ϕ from A.

But, in contrast to the usual approaches to beliefs, we would like to
build in such a “history” of a belief into the representation. Therefore, let us
introduce the notion of structured beliefs. In the definition we will use B as a
metavariable for proofs, in particular Bϕ for a proof of the formula ϕ. Since
we work in a Hilbert-style calculus, proofs can be represented as sequences
of formulae, including the empty sequence which will be used for perceived
formulae.
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Definition 1. A structured belief base A is a finite set of tuples 〈ϕ,Bϕ〉,
such that

1. AA := {ϕ | ∃B.〈ϕ,B〉 ∈ A} is a belief base not containing ⊥.

2. If 〈ϕ,Bϕ〉 ∈ A, then Bϕ is either the empty sequence — expressing that
ϕ is a belief caused by perception — or a proof of ϕ from A′

A′ , the belief
base associated with A

′ := A \ {〈ϕ,Bϕ〉} where A
′ is a structured belief

base.

A tuple 〈ϕ,Bϕ〉 is called structured belief.

The condition that A
′ has to be a structured belief base rules out “non-

wellfounded” beliefs. Otherwise, for example, {ϕ ∧ ψ,ϕ, ψ} could be a belief
base for a structured belief base in which every formula is derived by use of
the others. Since we consider finite sets of beliefs only, the recursive definition
of structured belief bases is obviously well-founded.

With respect to the operation of thought we have to stress the following
points: It is not the idea to add to a belief A every ϕ which is derivable from
AA, but just those which are actually derived. In this view, our approach
is subjective, i.e., depends on the person who is believing something. Thus,
the problem what is or has to be derived is by no means deterministic. And
we will not give “rationality criterions” from which one can determinate a
particular ϕ which has to be derived. However, there could be some condi-
tions which at least restrict the possible ones. One of them is, for instance,
the condition that ϕ is indeed derivable from AA. Unfortunately, in reality,
there will be more than enough examples where people getting by “thought”
new “insights” which are not derivable from their beliefs. But let us leave
these cases aside.

4. Revision caused by inconsistency

Given the notion of structured belief base and the operations of adding new
beliefs by perception or thought we can model beliefs just by use of addi-
tion — up to the moment ⊥ is derived. Thus, we claim that a revision of a
structured belief base is caused only when ⊥ is explicitly derived. It was build
in in our definition that ⊥ can not be an element of a belief base. Therefore,
if one is deriving it from the given beliefs — realizing the inconsistency —
this derivation forces a belief revision.

Of course, such a revision should convert the belief in a new, consistent
one. Here, we have reached the point where a usual belief revision approach
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starts. However, in comparison with the standard approaches we have some
kind of “history” available: We can ask for the derivation of ⊥. And this
derivation will be turned out as the key element in our analysis of belief
revision.

Since we use a Hilbert-style calculus for the formal representation, such
a derivation can be given as a sequence B⊥ = 〈ϕ1, ϕ2, . . . , ϕn〉 where ϕn is
⊥ and for each 1 ≤ i ≤ n, ϕi is either an element of AA or derivable from
ϕ1, . . . , ϕi−1. Since we have derived ⊥ the set of formulae {ϕ1, ϕ2, . . . , ϕn−1}
is a contradictory set. If we leave out the formulae derived within the proof,
it is clear that also the set C⊥ = {ϕi |ϕi ∈ B⊥ and ϕi ∈ AA} is contradictory.

It is possible that there are other proofs of an inconsistency using other
formulae of AA, but, in our terminology, such ones are not realized, at least
not at the same moment. Also, there could be formulae in C⊥ which are not
really involved in the proof of ⊥. That means, ⊥ could be provable from
C⊥ \{χ} for a χ ∈ C⊥. But, again, we would like to say that such a simplified
proof of the inconsistency is not realized.

Now, the proposed belief revision has to choose an element ψ of C⊥ and
to “remove” it (more exactly the tuple 〈ψ,Bψ〉〉) from A. If we define this
removal by the simple contraction A \ {〈ψ,Bψ〉}, we have at least destroyed
the given proof of ⊥. However, this is a quite weak result. Of course, there
are at least two other desirable conditions:

(⋆) There should be no other proof of ⊥,

(⋆⋆) All consequences added to A because of the presence of ψ should be
removed, too.

Both conditions are quite problematic, and it turns out that we cannot really
hope for a full realization of them. But before we turn to these considerations
let us briefly discuss the significance of C⊥.

We have to emphasize that the restriction to the set C⊥ is indeed an
important step. Compared with the structured belief base A, and the “un-
structured” belief base AA, the set C⊥ could be much much smaller.

From a conceptional point of view, the biggest advantage is probably,
that C⊥ can be obtained by a local operation, just considering a single, given
derivation. This locality, which avoids totalities like the deductive closure
or the intersection of all consistent subsets, is a major goal of our analy-
sis. As far as possible, the defined operations should depend on existential
conditions which can be exemplified and not on universal conditions which
would require to grasp complex totalities. Moreover, C⊥ contains already
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some rather concrete information. We have C⊥ ⊢ ⊥. Let C⊥ consist of the
formulae ψ1, . . . , ψm. Thus, we have ⊢ ψ1 ∧ . . . ∧ ψm → ⊥ which is equiva-
lent with ⊢ ¬ψ1 ∨ . . . ∨ ¬ψm. From this elementary equivalence, we get the
justification to pick one of the ψi for the belief revision.

Note, that we only suggest to remove the chosen formula ψ (together with
its proof) from A. Alternatively, we could also require, to add the negation
of ψ to the new belief. Both variants could be maybe distinguished as a weak
and a strong revision. But, as long as only ψ is removed, ¬ψ is derivable from
C⊥ \ {ψ}, following trivially from the fact that C⊥ is inconsistent (at least if
we work with classical logic). Thus, in accordance with our general analysis
the addition of ¬ψ has to be carried through an additional thought. A
more substantial reservation against strong revision comes with the following
considerations. The fulfilling of the two additional conditions (⋆) and (⋆⋆)
given above could result in further contractions, even with other elements of
C⊥. In such a case, at the end of the revision procedure we could have the
situation that ψ and χ have to be taken away from the original structured
belief base. But in this case, we only get the information ¬ψ ∨ ¬χ from the
inconsistency of C⊥. From this point of view, a strong revision, realized by
adding ¬ψ and ¬χ, could possibly too strong.

5. Let us contract

Now we would like to discuss a contraction operation on A which fulfills, at
least partially, the two conditions (⋆) and (⋆⋆) given above.

For the contraction one should choose a formula ψ of C⊥ such that
D := C⊥ \ {ψ} is, hopefully, no longer contradictory. But even if D is still
contradictory, there is the question whether the inconsistency is realized. If
not, one would probably proceed by contracting ψ. But if an inconsistency
of D is realized, i.e., if one finds by thought a proof D ⊢ ⊥, the whole revision
should start with D instead of C⊥. That means, when we have made a choice
of ψ in C⊥, either an inconsistency of C⊥ \ {ψ} is realized and we go on with
a revision based on this set, or it is not realized and we start a contraction
with ψ. Therefore, the condition (⋆) is only fulfilled in the way that no other
realized inconsistencies will be left, but not that we end up with a consistent
belief in any case. Additionally, we have to think of inconsistencies derivable
with other formulae in AA. But, again, we will say that such inconsistencies
are not realized.

Now, let us first discuss the case that the chosen formula ψ was not
perceived but added to A by thought. In this case, it seems to be quite
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inadequate to start the contraction with this formula. Instead, one has to
choose another formula from the derivation of ψ. This can be done in the
same way as before using the information attributed to the formulae. This
procedure has to be iterated up to the moment, we have finally chosen a
formula which was once added to A by perception.

Thus, let a perceived formula ψ of A be chosen which is considered as
responsible for the realized inconsistency of a A. As discussed above, in the
first step we contract ψ only. In particular, new beliefs should be added only
afterwards by thought. But, secondly, we have to try to fulfill the second
conditions (⋆⋆) demanding that formulae which “come from ψ” have to be
removed form A too. In principle, we could now go on with the standard
contraction operations worked out in the AGM context, cf. e.g. [Fuh97]. How-
ever, then our analysis would just help to single out a particular formula ψ
from a inconsistent belief. But, the concept of structured belief base even
allows to give a more perspicuous procedure for the contraction. We have
just to check those formulae which entered the belief by a derivation which
used ψ. Thus, from the (intermediate) new belief A \ {〈ψ,Bψ〉} we have to
contract the elements of the set {χ | 〈χ,Bχ〉 ∈ A ∧ ψ ∈ Bχ}. Of course,
this procedure has to be iterated. Working with finite beliefs this algorithm
has to stop and we have a new belief in which the proof of the realized in-
consistency does not any longer exists, and in which together with a former
perceived formula ψ all its derived beliefs are removed.

In general, the procedure of contraction can be refined in several respects,
and we will address some ideas in the discussion below. However, here it was
our aim to illustrate how one can use the additional information provided by
structured beliefs. In this view, the given analysis has to be understood as
a qualitative example, only.

6. AGM and related approaches

For belief revision the framework of AGM named after the authors Alchour-
rón, Gärdenfors and Makinson of the seminal paper [AGM85] is nowadays
chosen as a standard approach. The study of belief bases goes back to Al-
chourrón and Makinson [AM82] and was extensively discussed by Hansson
in his dissertation [Han91], cf. also [Han98, Neb98, Han99].

In some sense, our operations are closely related to contraction operations
known in the AGM context. In terms of Hansson our operation is an instance
of external revision as it is described in [Han91, p. 5]: “The first of these is
external revision, in which the incorporation of a new belief takes place as
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follows: (1) add the new belief to the belief base, and (2) if the belief base is
now inconsistent, make it consistent by the rejection of some old belief(s).”
Also, the procedure given here does not exclude non-prioritized reception of
epistemic input, i.e., it allows that the sentence considered as responsible for
an inconsistency could be the last perceived one.

The choice of a sentence used in a contraction of a contradictory be-
lief is somehow related to the procedure of safe contraction, introduced by
Alchourrón and Makinson [AM85, AM86], but operating on belief bases,
cf. [Fuh91, Nay94]. However, we have to emphasize, that the formalizations
of safe contraction require model-theoretic considerations. As noted, our ap-
proach is restricted to a purely proof-theoretic view of belief revision. In a
certain sense, our approach can be considered as a special form of safe con-
traction (on belief bases), when the ordering relation used in safe contraction
is built by use of the proof-theoretic information.

7. Logical omniscience

Up to now, we have not said anything about the problem of logical omni-
science. However, it should become clear that the given approach does not
respect logical equivalence in any form. If a formula ϕ is involved in a partic-
ular proof B this does not imply that an equivalent formula ϕ′ is involved in
the proof. Moreover, since we demand that all beliefs have to be derived from
perceptions, it is clear that equivalent formulae are added to a belief only,
if the equivalence is derived. And it is quite clear that one will not derive
all logical consequences of a given set of formulae. From this point of view,
one of the main objection against theories of beliefs which are deductively
closed, namely the impossibility to deal with mathematical sentences, does
not apply here.

The problem of logical omniscience in the usual approaches to belief re-
vision and knowledge representation is well-known and well-discussed. For
instance, chapter 9 of [FHMV95] serves as a good reference for a discussion of
alternative approaches in knowledge representation. But all of them, explicit
representation of knowledge, nonstandard logic, impossible worlds, awareness,
and local reasoning, are heavily based on the perspective of Kripke structures.

The idea of explicit representation of knowledge is “instead of defining
knowledge in terms of possible worlds, we let knowledge be defined directly.
Intuitively, we think of each agent’s knowledge as being explicitly stored in a
database of formulas.” [FHMV95, p. 313]. In its syntactic variant, it comes
close to the idea of belief bases. Moreover, Fagin & al. even discuss the
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possibility of a proof-theoretic extension based on limited deduction systems:
“As another example, a deduction system might be capable of certain limited
reasoning about equality. For example, from A = B and B = C, it might
be able to deduce that A = C; however, given the information that f(1) = 1
and that f(x) = x·f(x−1), it might not be able to deduce that f(4) = 24. In
both of these cases, agents have a base set of formulae and an incomplete set
of inference rules” [FHMV95, p. 315f]. From this perspective, our approach
can be seen as an extension which shifts the focus to the derivability relation
and the information given by it.

From the other approaches, only local reasoning is related to our ap-
proach. Here, reasoning is divided in different frames of mind which are al-
lowed to be incompatible. Nevertheless that beliefs within a frame are closed
under logical consequence, in general they do not have be closed under con-
junction. A very illustrative and adequate example is given by “the two great
theories physicists reason with [...] the theory of quantum phenomena and
the general theory of relativity” [FHMV95, p. 343]. In the proof-theoretic
account this could be reflected by marking the basic beliefs with flags (e.g., a
“quantum” and a “relativity” flag). Nevertheless, that the physicists are well
aware of the inconsistency of both sets of axioms, they can work perfectly
using only axioms from one or the other class and respect carefully that in
no derivation axioms from both sets are used.

In general, compared with the several semantic approaches to overcome
logical omniscience, our approach gives by the proof(s) of a formula an ad-
ditional tool ad hand which is more fine-grained then the semantic interpre-
tation of a formula, and which has more explanatory power.

8. Truth maintenance systems

There is another framework which is indeed very closely related to our ap-
proach: Truth maintenance systems. They were introduced by John Doyle
[Doy79] in the area of artificial intelligence as implementations of problems
solvers which can deal with derivations. In general, the idea is closely related
to the approach presented here. Together with a formula, the justification
for the formula is stored. The justification is a representation of its proof
consisting of the used axioms and rules. The aim of truth maintenance sys-
tems is summarized in a text book on artificial intelligence [RN95, p. 326]
as follows: “A truth maintenance system or TMS is a program that keeps
track of dependencies between sentences so that retraction (and some other
operations) will be more efficient. A TMS actually performed four important
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jobs. First, a TMS enables dependency-directed backtracking, to avoid the
inefficiency of chronological backtracking. A second and equally important
job is to provide explanations of propositions. A proof is one kind of ex-
planation [. . . ]. [. . . T]he third job of a TMS [is]: doing default reasoning.
[. . . ] Finally, TMSs help in dealing with inconsistencies. If adding P to the
knowledge base results in a logical contradiction, a TMS can help pinpoint
an explanation of what the contradiction is.” In particular, the last point
is directly related to our aims, cf. e.g., the description of the handling of
inconsistencies in [McA90]. Although that the principle idea is quite similar
to ours, the intention of the formalisms seems to be rather different. While
truth maintenance systems are introduced and studied for implementation
of problem solvers, we would like to give a descriptive approach to belief re-
vision. While the development of truth maintenance systems was dominated
by implementation and complexity issues, cf. e.g., the refined assumption-
based TMS [dK86], we would like to focus on the role of proof-theoretic
information given by a derivation which allows for explanations of various
phenomena in “natural intelligence”. However, it seems to be an omission
that the results, discussions and experiences from the field of truth main-
tenance systems did not find their way into the philosophical discussion (at
least to our knowledge) and it appears to be worth to study the relation more
closely.

9. Discussion

In this section we will discuss various aspects of the proposed analysis. First
of all, we have to stress that the given presentation shows a qualitative anal-
ysis, only. The main steps can be summarized as follows:

1. We consider structured beliefs by adding information about the source of
a belief.

2. The two main sources are perceptions and derivations.

3. A belief revision is only enforced when an inconsistency of the beliefs is
realized by an actual derivation of ⊥.

4. A responsible formula ψ has to be chosen from this derivation for the
revision procedure.

5. Was ψ a derived formula, one has to choose a responsible formula from its
proof, and iterate this procedure up to the case that the chosen formula
was perceived.
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6. This formula has to be contracted from the structured belief base A.
Therefore, we remove ψ and contract hereditary all formulae which were
derived by use of ψ.

Each of these steps can probably be refined by its own. But we would like to
emphasize on two points: First, the access to an additional information, in
particular proofs referring to concrete formulae. The second point is the lo-
cality of the operation: A concrete proof is a finite object and easy to handle.

In addition, it is a standard belief revision paradigm that revisions should
be minimal. But, both, the set C⊥ and the contraction operation with a cho-
sen formula, can be considered as minimal with respect to the given derivation
of ⊥. Nevertheless that the derivation ⊥ does not have to be minimal, the set
C⊥ (and therefore the formula for the contraction operation) is obviously not
arbitrarily chosen. Finally, the contraction operation removes only formulae
from the belief base which are involved in a realized contradiction and its
consequences (as along as they are realized as consequences, see below).

The proofs involved in our analysis are not only useful with respect to
the operation of belief revision. They give the approach the descriptive
character, which was one of our initial aims. We claim that indeed the proofs
stored in the structured belief bases control the belief revision operation. In
addition, they can serve as an appropriate account to justification. They
are the answer, if one is asked “Why do you believe ϕ?”. This fact was also
one of the motivations for the set up of truth maintenance systems. So,
we can distinguish knowledge, classically defined as true and justified belief,
by judging the given proof of the belief. In particular, we can reject an
incidentally true belief ϕ as knowledge, if the given “proof” is defective. But
such an approach to knowledge has to be worked out in more detail elsewhere.

The crucial role of proofs in our account makes clear in which form the
approach can be considered as an example within the programme of proof-
theoretic semantics. There exist a closely related approach to necessity, out-
lined in [Kah99]. For the general programme of proof-theoretic semantics we
refer to the forthcoming volume [KSH0x].

In the following we will briefly address some potential refinements and
extension of our approach.

First, we have to discuss a seemingly defect of the approach, at least with
respect to the desired locality. In the last step of the procedure described
above we require that all formulae which were derived by use of ψ have to
be removed. In principle, this universal quantifier would require to check all
elements of A with respect to the use of ψ. In accordance with the general
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approach, we could improve this step by removing only those formulae for
which it is realized that ψ is involved in the derivation. However, even this
is not a local operations since we have to consider the totality of realized
derivations. The problem could be resolved by extending the structured
beliefs and adding a third component to a formula ψ containing a list of all
formulae which have used this formula in its derivation (and this is probably
the way to deal with it in a refined version of the approach). However, in the
given approach one can even use this problem to describe another effect which
obviously happens in the procedure of belief revision: One does not really
remove all formulae which he has derived from ψ, but only those for which he
realizes or remembers that it was derived by use of ψ. Thus, beliefs contain
often remnants of “incomplete” revisions what, obviously, causes troubles
when they are used later on in thoughts.

There are some operations we left out of consideration here. One is for-
getting. The interesting case is that in structured belief base, one can forget
not a formula but, maybe, the attached information only. This is probably
the case when someone claims: “I know ϕ, but I don’t remember why.” An-
other operation can be described (slightly disrespectfully) by an expression
used in computer memory management: Garbage collection. In this case,
one is just reflecting his beliefs (not necessarily caused by a realization of an
inconsistency). During such a reflecting process one can refine the deriva-
tions of formulae or derive more abstract one which allows to produce a more
“efficient” representation of belief, etc. On that occasion one can even real-
ize inconsistencies or find overlooked formulae from a former belief revision
which should be removed.

Finally, a refined approach should probably attribute the perceived beliefs
by weights measuring the reliability of the perception. Such weights, which
are obviously completely subjective, could play an important role in the
choice of the responsible formula for an inconsistency.

In general, the question which information should be collected and how
it has to be stored is a topic for itself.

We will close this discussion by addressing two points with respect to the
formal representation. First, we have used a Hilbert-style calculus for the
representation. But the analysis should not depend on the chosen calculus.
The important notion we need is the notion of use. It has to be clear what
it means that a formula is used in a proof. A discussion of this notion can
be found in the proof-theoretic account to necessity as it is given in [Kah99].
Probably, Gabbay’s framework of Labelled Deductive Systems [Gab96] could
support the representation of the formal concepts we need in our approach.
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The second point concerns the underlying logic. We already addressed
the possibility of limited reasoning as mentioned in [FHMV95]. But more-
over, when modeling beliefs, there is no hope to assume that people really
use logic to derive theirs beliefs. Therefore, on can think of replacing the
logical derivability relation ⊢ by (probably rather strange) subjective deriv-
ablity relations |∼. These could involve the well-known amateur mistakes,
e.g., allowing to derive ¬ψ from ϕ → ψ and ¬ϕ. But this, of course, is a
wide sphere outside the scope of this paper.
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