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CHARTING THE LABYRINTH

OF BELL-TYPE THEOREMS

Abstract. The objective of the paper is to present a comprehensive picture
of Bell-type theorems, by giving both the theorems and the proofs of them.
Special care is given to specifying the assumptions of the arguments and
their physical or metaphysical significance. Taking the EPR argument as a
point of departure, the paper discusses four probabilitic Bell-type theorems,
which are then followed by two versions on non-probailitic (GHZ) arguments.
The final section provides the reader with a classification of the assumptions,
which specifies which assumption is used in which proof.
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1. Introduction

Since the inception of Bell theorem in 19641, which proves that no deter-
ministic local model can reproduce (theoretical) predictions of quantum me-
chanics (QM), there has been a profusion of related proofs, all of them at-
tempting to put a limitation on the possibility of reconstructing quantum
mechanical predictions along classical lines. A typical proof of this kind de-
rives a testable proposition from some or other classical assumptions (pos-
sibly taken together with a fact about QM systems), and shows that the
proposition is violated by a theoretical prediction of QM. Such a proposition
can have the form of either a statistical inequality or a testable equation.
Now, a significant fact is that most of these propositions have been tested,
the wide consensus being that the they are also empirically violated. This
empirical violation is readily interpreted as the indication that quantum
mechanics is correct and classical completions of it leads to a clash with
experimental data. The consensus mentioned above lives happily with a mi-
nority trend that sees a loophole in the tests, and suggests how to improve
the experiments.2 The minority rights already asserted, we will only scarcely
draw on the issue of the decisiveness of the tests, our main goal here be-
ing the charting of a map of the Bell-type arguments. It is perhaps worth
explaining why we think this charting is needed. The answer points to a
logical feature common to Bell-type arguments, namely the structure of an
indirect proof. A proposition, shown successively violated, is deduced from
assumptions that have classical underpinnings, the violation clearly indicat-
ing that at least one of these assumptions must go. To find out which one,
one may set out the task of deriving the proposition from some other set
of assumptions, hoping that by repeating this procedure a single culprit re-
sponsible for the violation will be found. This vision is surely too optimistic

1 Bell J., “On the Einstein-Podolski-Rosen paradox”, Physics 1 (1964), 195–200.
2 To get acquainted with the arguments of those skeptical about the actual out-

come of the tests, the reader is advised to consult Brody T.: The Philosophy Behind
Physics, Springer Verlag, Berlin 1993, chs. 15–18 and Huelga S., Ferrero M., Santos E.:
“Loophole-free test of the Bell inequality”, Phys Rev A 51(6), 1995, p. 5008. The tests
are described in Aspect A., Grangier P., Roger G., “Experimental tests of realistic local
theories via Bell’s Theorem”, Phys. Rev. Lett. 47, 460–467 and Aspect A., Grangier P.,
Roger G., “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperi-
ment”, Phys. Rev. Lett. 48, 91–94. A more philosophically oriented survey of the tests is
in Readhead M., Incompleteness Nonlocality and Realism, Clarendon Press, Oxford 1987.
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Charting the Labyrinth of Bell-Type Theorems 95

since what all the present proofs yield, is rather distinct sets of assumptions
that result in the troublesome proposition, than a single assumption. Nev-
ertheless, the fact that we have various sets of the premises sheds light on
why the propositions are violated and, consequently, what the world is like.
For this reason, investigations of this sort are sometimes believed to belong
to empirical metaphysics. The research is also of utmost importance for the
minority mentioned above since by obtaining clarity about the premises, we
gain more insight into whether or not the test of a Bell-type proposition
had a loophole, for we may ask whether the setup of the test ensured the
premises to hold.

Since a work on Bell-type theorems that does not draw on Einstein,
Podolski, Rosen (EPR) argument of 19353, is like Hamlet without Ophelia,
we shall start with a sketch of their reasoning that attempted to show that
QM is incomplete. In order to avoid heavy weapons of the theory, we will,
however, work with Bohm’s version of the EPR argument.4 This should
prepare the stage for the presentation of Bell-type theorems. In what follows,
we will analyze four statistical inequalities, and later on two versions of the
so-called GHZ proofs that end with deriving a non-statistical observable
equation. Needless to say, we will give extra care to spelling out the premises
of the derivations.

2. EPR argument – Bohm’s version

Let us consider a pair of 1/2 spin particles prepared in the singlet spin
state ϕ,

ϕ =
1√
2
(| +〉 | −〉− | −〉 | +〉),(1)

where | +〉 and | +〉 are eigenstates of the operator representing the mea-
surement of the spin projection on a given direction, say z-direction, of a
single particle and the states correspond to outcomes +1 and −1 of the mea-
surement, respectively and no outcomes other than +1 and −1 are possible
(see Fig. 1). Now, the salient feature of (1) is that, given that measurement
of the spin projection on any direction of one particle yields some outcome,
the measurement of the spin projection on this very direction, as performed
on the other particle, will certainly yield the opposite outcome. In other

3 Einstein A., Podolski B., Rosen N.: Phys. Rev. A 47 (1935), p. 777.
4 Bohm A.: Quantum Theory, Prentice-Hall, Englewood Cliffs NJ, 1951.
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Fig. 1. The successive phases of the setup of EPR-Bohm and (Bell 1)–(Bell 4). The source
emits pairs of particles, with each pair in the spin singlet state. When the particles from
a given pair are widely separated, the direction i and j of the spin measurement are set.
(In the EPR-Bohm Gedanken experiment the directions are the same, i.e., i = j). Finally,
each counter yields a definite signal, either +1 or −1. If i = j, right signals and left signals
are perfectly anti-correlated.

words, knowing the result of measurement on the first particle, we may with
certainty predict the result of respective measurement on the other particle.
Moreover, we may think of these measurements as being performed when
the particles are widely separated in space, so that a result at one wing
of the setup could not be communicated with a subliminal velocity to the
result at the other wing. Now, the wisdom of classical physics has it that a
particle has a definite property, including a property corresponding to ‘the
projection of spin on a given direction’, before the measurement takes place,
and this is precisely what quantum mechanics denies. The argument of EPR
attempts to show, taking as an example the setup above, that a particle has
a property corresponding to the spin projection long before measurement is
carried out, and since QM refuses to ascribe this property to the particle be-
fore the measurement, it is deemed incomplete. To get hold on the argument
we need to elucidate its two crucial premises, which are as follows:

Einsteinian separability

If two space-time region are such that no signal travelling with speed no
greater than the speed of light can be transmitted between them, the factual
situation at one region is independent from the factual situation at the other
region.

© 1997 by Nicolaus Copernicus University



Charting the Labyrinth of Bell-Type Theorems 97

Einsteinian reality criterion

If one can predict with certainty a value of a physical quantity pertaining to
a system without by any means disturbing the system, then there exists an
element of reality corresponding to the quantity in question.

To set these premises in train in the example considered, we need to
introduce a particular timing between the event of measuring the spin pro-
jection of the particle on the left hand side and the event of measuring the
spin projection on the right hand side. These two events are held to be
spatially separated so that the act of setting a direction on which the spin
projection is to be measured and the decision of the experimenter to choose
this particular setting cannot be transmitted to the event of registering an
outcome in the other wing of the setup. Accordingly, the two events “in the
left wing, the experimenter’s decision plus the act of setting a direction plus
an outcome” and “in the right wing, the outcome of the measurement of the
spin projection on some direction” are spatially separated, and hence (Ein-
steinian) separable. Now, the correlations between the measured outcomes
guarantee that the experimenter can advance certainly true predictions of
the following sort:

Given that I obtained result +1 of the measurement of the spin projection
on direction i, the result of measuring the spin projection on direction i in
the other wing of the setup must be −1.
And, since both the events are spatially separated, the prediction above is
made without disturbing the system in the right wing of the setup, so that
the reality criterion allows us to pass to:

Given that I obtained result +1 of the measurement of the spin projection
on direction i, there is an element of reality corresponding to outcome −1
of the measurement of the spin projection on direction i in the other wing
of the setup.

Logically speaking, to obtain from this a statement to the effect that
there is such-and-such an element of reality, we need to argue that the
clause beginning with “given that” of the above sentence is irrelevant to
the truth-value of the main clause. After all, the sentence above as well
as Einsteinian separability is compatible with a somehow conspiratory vi-
sion of pre-established (Melabranchean?) harmony according to which the
experimenter is “made to choose” a given direction in one region and the
respective element of reality, pertaining to the other subsystem, is brought
to being in the second region, both region being spatially separated. This
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vision makes also clear that the existence of the element of reality before
the measurement is not proved yet. An attempt to eliminate this lofty pos-
sibility is to stress that the experimenter is essentially free to measure the
spin projection on whatever direction she pleases. Thus, imagine him an-
nouncing the counterfactual statements below, “counterfactual” since he is
not making any observation.

If I measured spin projection Si on direction i and result +1 were observed,
an element of reality would exist that corresponds to outcome −1 of the
measurement of Si, as performed in the other wing of the setup.

If I measured spin projection Sj on direction j and result −1 were observed,
an element of reality would exist that corresponds to outcome +1 of the
measurement of Sj, as performed in the other wing of the setup.

Now, since the experimenter’s decision is essentially free and the event of
his setting a given direction with the subsequent observation of an outcome
cannot be signaled to the event of observing the outcome in the other wing
of the setup, similarity of this situation to some everyday reasoning suggests
that long before measurements on the left wing of the setup, there exist ele-
ments of reality corresponding to outcomes of the measurements (pertaining
to the other wing of the setup) of spin projection on any direction. That is,
we have come to the conclusion that is contrary to the wisdom of QM, i.e.,
a particle has a full set of definite properties of the form: the spin projection
on i, the spin projection on j, the spin projection on k, and so on. It should
be clear, however, that the reasoning above is not a logical derivation. As
a matter of fact, it is done in terms of counterfactual statements, which
is rather troublesome, since such statements are known for the propensity
to generate a logical paradox. The reasoning may nevertheless be justified
by its already mentioned similarity to a more down-to-earth counterfactual
arguments. Consider for instance the following set of counterfactuals.

If I had exercised in the morning, there would have been (an element of
reality of) a crash at Tokyo stock exchange today.

If I had eaten scrambled eggs in the morning, there would have been a su-
pernova’s blast in OXZ galaxy.

If I had read a local newspaper in the morning, Steamsters would have gone
on strike,

with the understanding that I have been essentially free in choosing the
actions stated in the antecedent, and these actions have had no bearing
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Charting the Labyrinth of Bell-Type Theorems 99

whatsoever on the states of affairs expressed by the implicants. If this is
granted, you are likely to conclude that Tokyo stock exchange collapsed
today, a supernova has exploded in OXZ galaxy and Steamsters have gone
on strike. So much for the earthy misfortunes — we had better return to
intricacies of QM.
Since we use the EPR argument only to prepare the stage for the Bell-

-type theorems, we do not attempt here a deeper analysis of it, referring the
reader to the existing extensive literature. At this point it is worth stressing
that the argument and its conclusion of incompleteness of QM divided the
founding fathers of the 20th century physics. Nevertheless, already in the
40’s, as physicists witnessed an overwhelming empirical adequacy of QM
and did not suspect that the debate over elements of reality can have an ex-
perimentally testable consequence, the EPR argument was relegated to pure
philosophy, with only a few physicists in the foundational studies working on
it. It required a genus of one of them, John S. Bell, to show that Einstein’s
position, with elements of reality ascribed to a system prior to measurement,
has a testable consequence.

3. Bell 1

In the EPR-Bohm setup, we will be considering measurements of the spin
projection on some directions that are performed on two distant particles,
the compound system “particle 1 and particle 2” being in singlet state ϕ
from (1). Contrary to the EPR situation, however, we will investigate mea-
surements along different directions, not necessarily parallel. To fix the no-
tation, by A(i) we understand the result of the measurement on particle 1
of the spin projection on i, and by B(j) the result of the measurement on
particle 2 of the spin projection on j, where a result can be either +1 or −1.
We will calculate correlation factors (expectation values) of the following
kind:

E(i, j) = lim
N→∞

∑
N A(i)B(j)

N
(2)

Turning now to the premises, we first bring in the idea that an actual
outcome of the measurement is determined by both the setting of the direc-
tion and the value of some parameter, say λ, so that

A(i, λ) = ±1 and B(j, λ) = ±1 .(3)

Since this assumption boils down to eradicating chance from QM, param-
eters that satisfy it are called deterministic. As soon should become clear,
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the question what mathematical objects, real numbers, vectors or others,
λ stands for, is irrelevant. We will assume after Bell, however, that λ has
a continuous range. One may argue that results of left and right measure-
ments should be rather determined by two different parameters, say λ1 and
λ2, nevertheless this case is already covered by a single parameter, since λ
can stand for a two-dimensional vector, with each dimension responsible for
results in a single wing.
The second assumption, clear from the form of A = A(i, λ) is that an

actual outcome is determined by both a direction set and a value of the
parameter, but does not directly depend on a direction setting in the other
wing of the setup. We will refer to this as locality requirement. In symbols,

A(i, j, λ) = A(i, λ), B(i, j, λ) = B(j, λ).

We need further to put some constraints on the functioning of the pa-
rameter. In fact, by saying that a result should be independent from the
remote setting, we already put a limitation on λ, namely that a value it has
at a given measurement should be independent from direction settings. We
need to exclude an even more outré possibility, of there being some conspir-
acy between the experimenter’ s decision to measure what she pleases and
a value taken by λ on this particular occasion. A value of the parameter is
independent of this decision and the decision is not by any means influenced
by the value of λ. In other words, we require that neither experimenter’s
decision nor a setting of a direction tamper with values of the parameter,
which we call non-contextuality assumption.
Finally, we will take advantage of one physical assumption, that is, strict

anti-correlations, which, if QM is correct, obtain between results of the mea-
surements of the spin projection on pairs of particles in the singlet state, if
the same direction is set in both the wings of the setup. To recall, the strict
anti-correlations means that measurements of the spin projection on both
the particles, given the same directions are set, yield opposite outcomes.
We will now present the proof of (Bell 1) inequalities. We assume that

σ(λ) is the probability density of λ, that is, it satisfies:
∫
Ω
σ(λ) dλ = 1 ,(4)

where Ω is the set of values that λ can take. Expressed in terms of the
probability density, the correlation factor (2) reads now as:

E(i, j) =

∫
Ω
A(i, λ)B(j, λ)σ(λ) dλ .(5)
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Eqs. (3) and (4) imply that E(i, j) cannot be less than 1. Taking advantage
of the strict anti-correlations,

E(i, j) = −1 for same direction i = j only if A(i, λ) = −B(i, λ).5

Given the assumption of non-contextuality, this allows one to re-write (5)
as follows:6

E(i, j) = −
∫
Ω
A(i, λ)A(j, λ)σ(λ) dλ .(6)

Consider now the following expression:

E(i, j) − E(i, k) = −
∫
Ω
[A(i, λ)A(j, λ) −A(i, λ)A(k, λ)]σ(λ) dλ.

Since A(j, λ)A(j, λ) = 1, by multiplying by it the integral above, we have:

E(i, j) − E(i, k) =
∫
Ω
A(i, λ)A(j, λ)[A(j, λ)A(k, λ) − 1]σ(λ) dλ.

And, since factor A(i, λ)A(j, λ) in this integral is equal to ±1 and the second
factor is not positive, we have the following inequality:

|E(i, j) − E(i, k)| ¬
∫
Ω
[1−A(j, λ)A(k, λ)]σ(λ) dλ

which, given (4), (5) and (6) simplifies to:

(Bell 1) |E(i, j) − E(i, k)| ¬ 1 + E(j, k).

This is the final form of (Bell 1). We add a few comments. First, the
inequality is not satisfied by quantum predictions, since QM estimation of
the correlation factors, if the directions are set in the plane orthogonal to
the path of the particles, is:

E(i, j) = − cos∢(i, j),

where ∢(i, j) is the angle between directions i and j. Setting i, j and k such
that ∢(i, j) = 30◦, ∢(i, k) = 30◦ and ∢(j, k) = 60◦ we have:

√
3 = |− cos 30◦ − cos 30◦| > 1− cos 60◦ = 1/2

which contradicts (Bell 1).

5 More precisely, the equality may not hold, but then the set of λ for which it does not
hold, has zero measure.
6 The last result comes from considering measurement with same directions, and now

we are applying this result to any possible combination of directions.
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It is instructive to give more thought to the parameter. Perhaps a nat-
ural way to construe the parameter is to claim that a quantum mechanical
state is not a complete description of a physical state, since it refers to
rather an (idealized) ensemble of identically prepared systems than a single
system. On this construal, to fix a state of an individual pair in the quan-
tum mechanical singlet state ϕ, we need to additionally specify a value of
parameter λ. Moreover, the specification is thought of as restoring determin-
ism: a value of λ taken together with the state of standard QM determines
results of the measurement of spin projections. This vision is shattered by
(Bell 1) that rules out the ensemble interpretation with local deterministic
and non-contextual parameters. However, it is clear that there is no logical
link between (Bell 1) and the ensemble interpretation. If you take a now
more standard view that a quantum state refers to a single system, but add
that the state is not a complete description, (Bell 1) puts a heavy constraint
on ways of making the description complete by concluding that no local
deterministic and non-contextual parameters will do the job.

To see how non-contextuality works it is advantageous to put the proof
in a different perspective. In the presence of the strict anti-correlations,
non-contextuality allows one to argue as follows. If the same direction, say
j, were selected at both the wings of the setup, parameter λ must be such
thatB(j, λ) = −A(j, λ) holds. As a matter of fact, however, we have different
settings i and j. Nevertheless, the fact that in the left we have rather i than
j should not influence the value of λ and accordingly, we should still have
B(j, λ) = −A(j, λ). If that is so, the correlation factor from (5) is determined
by one function only, that is, either A(i, λ) or B(j, λ). Thus, if we deal with
three directions i, j and k, we may divide values of λ in eight classes in
respect to what results of measuring A(i), A(j) and A(k) are. For instance,
[+ + -] is the class of those values of λ that yield A(i, λ) = A(j, λ) = +1
and A(k, λ) = −1. We may now ask what fraction of all possible values of
λ a given class, say [+ + -], makes, and designate this fraction by η++−.

7

With this notation, using (6), the correlation factor is expressed as:

E(i, j) = −(+1)(+1)(η+++ + η++−)− (+1)(−1)(η+−+ + η+−−)
−(−1)(+1)(η−++ + η−+−)− (−1)(−1)(η−−+ + η−−−).

7 More precisely, η++− =
∫
Ω∗
σ(λ) dλ, where

Ω∗ = {λ : A(i, λ) = A(j, λ) = +1 and A(k, λ) = −1}.
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Now, calculating by ‘brute force’ |E(i, j) − E(i, k)| and 1 − E(j, k) and
noting that

1 = η+++ + η++− + η+−+ + η−++ + η−−+ + η−+− + η+−− + η−−−,

we arrive at (Bell 1).
Bell’s 1964 paper contains other results of note. First, it shows that local

deterministic non-contextual parameters work in some cases, notably, in the
cases of the measurement of the spin projection of a single spin 1/2 particle
and the measurement of spin projection on parallel directions of pairs of
particles in the singlet state (that is, EPR case). Second, it indicates how
(Bell 1) can be reproduced in other physical situations, and which conditions
should be satisfied for this to be possible.

4. Bell 2

What we call (Bell 2) is a technical variation of (Bell 1), the difference being
that the assumption of the strict anti-correlations is skipped in (Bell 2). The
inequality was first derived by J. F. Clauser, M. A. Horne, A. Shimony and
R. A. Holt.8 The motivation for this derivation comes from a need to block a
trivial answer to the violation of (Bell 1) that claims the inequality is violated
because in nature there are no perfect anti-correlations. The answer appears
to be unbeatable, since testing perfect anti-correlations is excessively hard.
To put this in other words, ingenious as (Bell 1) is, its testing is not much
experimentally feasible. (Bell 2) is a substantial improvement since its proof
does not appeal to the perfect anti-correlations.
As for the remaining assumptions of (Bell 1), they stay intact and the

proof goes quite similarly. We start with the following estimation:

|E(i, j) −E(i, k)| =
∫
Ω
|A(i, λ)B(j, λ) −A(i, λ)B(k, λ)|σ(λ) dλ

=

∫
Ω
|A(i, λ)B(j, λ)|[(1 −B(j, λ)B(k, λ)]σ(λ) dλ(7)

¬ 1−
∫
Ω
B(j, λ)B(k, λ)σ(λ) dλ.

Suppose now that there is some other direction, say j′, such that

E(j′, j) = 1− δ ,(8)

8 Clauser J. F., Horne M. A., Shimony A., Holt R. A., “Proposed experiment to test
local hidden-variable theories”, Phys Rev Lett 23 (15), 1969, p. 880.
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where 0 ¬ δ ¬ 1. We may divide set Ω into two sets, Ω+ and Ω− according
to this prescription:

λ ∈ Ω+ iff B(j, λ) = A(j′, λ);
λ ∈ Ω− iff B(j, λ) = −A(j′, λ).

And, since the above are exhaustive possibilities, Ω+ ∪ Ω− = Ω.
In the next step we need to calculate

∫
Ω−
σ(λ) dλ:

1− δ = E(j′, j) =
∫
Ω
A(j′, λ)B(j, λ)σ(λ) dλ

=

∫
Ω+

A(j′, λ)B(j, λ)σ(λ) dλ +

∫
Ω−

A(j′, λ)B(j, λ)σ(λ) dλ

=

∫
Ω+

σ(λ) dλ −
∫
Ω−

σ(λ) dλ

=

∫
Ω
σ(λ) dλ− 2

∫
Ω−

σ(λ) dλ

= 1− 2
∫
Ω−

σ(λ) dλ ,

and hence, ∫
Ω−

σ(λ) dλ = δ/2 .(9)

Given this, the second factor in inequality (7) can be estimated as below:

(10)

∫
Ω
B(j, λ)B(k, λ)σ(λ) dλ

=

∫
Ω+

A(j′, λ)B(k, λ)σ(λ) dλ −
∫
Ω−

A(j′, λ)B(k, λ)σ(λ) dλ

=

∫
Ω
A(j′, λ)B(k, λ)σ(λ) dλ − 2

∫
Ω−

A(j′, λ)B(k, λ)σ(λ) dλ

­ E(j′, k)− 2
∫
Ω−

|A(j′, λ)B(k, λ)|σ(λ) dλ = E(j′, k)− δ ,

where we used (9). Tying inequalities (7) and (10) and equation (8) together,
we obtain (Bell 2) inequality:9

(Bell 2) |E(i, j) − E(i, k)| ¬ 2− E(j′, k)− E(j′, j).
9 The inequality is sometimes written as |E(i, j)− E(i, k)|+ |E(j′, k) + E(j′, j)| ¬ 2.
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Recalling now that for directions set in the plane perpendicular to the
path of the particles, QM yields E(i, j) = − cos∢(i, j), we find that (Bell 2)
contradicts the prediction of QM, for instance, for the following settings:
∢(i, j) = 60◦, ∢(i, k) = 120◦, ∢(j′, k) = 150◦ and ∢(j′, j) = 210◦. Thus, the
assumption of the perfect anti-correlations being eliminated, the ramifica-
tions of (Bell 2) are twofold:

1. no deterministic local and non-contextual parameters permit a repro-
duction of QM predictions;

2. the conjunction of assumptions: deterministic dependence of outcomes on
parameters, locality and contextuality, is false, as it entails an empirically
falsified proposition.

The two next types of Bell inequalities will dig deeper in the meaning of
the assumptions and try to remove the strict determinism of (Bell 1) and
(Bell 2).

5. Bell 3

What we call (Bell 3), is an argument of van Fraassen10 in which it is initially
assumed that the parameters do not work deterministically but have only
a statistical bearing on outcomes of measurements. A salient feature of this
model is that in the presence of the assumption of the strict anti-correlations,
this stochastic dependence turns into full-fledged determinism, so we are
again in the framework of (Bell 1). The initially stochastic character of the
argument requires a more complicate notation, however. To set the stage,
we have two classes of outcomes, {A} and {B} of measurements on the left
and right wings of the setup, respectively, each outcome being either +1 or
−1. We will derive a testable constraint on joint probabilities of the form
P (LiA& RjB|Li;Rj), that is, the probability of the outcome on the left
(L) being A and the outcome on the right (R) being B, given the settings
on the left (L) and on the right (R) are i and j, respectively. Now, we
think of two outcomes of a given pair as being influenced by both, the
settings of measuring devices and parameter λ that describes the situation
in the common past of two outcomes. The values of λ vary from occasion to
occasion, and statistically influence outcomes.
Coming to the central assumption of the argument, it is the so-called

principle of common cause, introduced by Reichenbach11 to save causation

10 van Fraassen B.: Quantum Mechanics. An Empiricist View, Oxford, 1991.
11 Reichenbach H.: The Direction of Time, ed. by M. Reichenbach, Univ. of California
Press, 1956.
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in relativistic settings. It applies to stochastically correlated events, which
for some reasons can not be thought of as directly influencing each other,
where stochastic correlation between two classes of events, say {X} and
{Y }, means that P (X|Y ) 6= P (X). For such correlated events, a common
cause, say λ, is postulated that in general has only a statistical influence
on events. This means that P (X|λ) and P (Y |λ) can be neither 0 nor 1
and P (X|λ) > P (X) and P (Y |λ) > P (Y ). The correlation between X and
Y means that knowing that an event Y has occurred, you may estimate
the probability of the occurrence of Y . You may now ask: if I know that
such-and-such a common cause occurred and event X took place, will my
estimation of the probability of Y be any different from the estimation of
this probability as obtained merely on the basis of my knowledge that this
common cause occurred? The common cause principle answers this query in
the negative, which in probabilistic terms is rendered as:

P (X|Y ;λ) = P (X|λ) or, alternatively P (X & Y |λ) = P (X|λ)P (Y |λ).

The usual story that attempts to elucidate the principle invokes an at-
tempt to estimate the life expectancy of a smoker. Suppose that you spotted
a person smoking a cigarette, and since you know that smoking history and
life expectancy are correlated, your estimation of the probability that this
person will live longer than 70 years went down, from the respective proba-
bility for non-smokers to the probability calculated for smokers. In doing so,
you took your seeing the person with a cigarette as an indication of his hav-
ing been a smoker for some time. However, if you knew in advance that the
person has a smoking history, you estimation of his life expectancy would
not change as a result of your seeing him with a cigarette.
Returning to the argument, we begin with spelling out its premises. The

first is the statement of the perfect anti-correlations (and correlations):

COR P (Li± & Ri± |Li;Ri) = 0, P (Li± & Ri∓ |Li;Ri) = 1.

The status of the next statement is more delicate, since it is not directly
used in the derivation, though it provides a motivation for accepting some
other assumptions. It says that an outcome at one wing of the setup is statis-
tically independent of a remote setting; van Fraassen calls it surface locality.

SL P (LiA|Li;Rj) = P (LiA|Li), P (RjB|Li;Rj) = P (RjB|Rj).

The next assumption is an instance of the principle of the common cause
and it identifies common causes of outcomes of A and B with parameters
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from a set Λ. It states that the probability of obtaining an outcome at one
wing of the setup, given the settings of directions and the parameter, is in-
dependent from an outcome at the other wing of the setup.12 In symbols,
for the left wing:

CC P (LiA|RjB;Li;Rj;λ) = P (LiA|Li;Rj;λ),
or alternatively

CC′ P (LiA& RjB|Li;Rj;λ) = P (LiA|Li;Rj;λ)P (RjB|Li;Rj;λ).
The next assumption is motivated by SL, as it states that given a value

of the parameter, the remote setting has no influence on an outcome. For
this reason, van Fraassen dubs it hidden locality :13

HL
P (LiA|Li;Rj;λ) = P (LiA|Li;λ),
P (RjB|Li;Rj;λ) = P (RjB|Rj;λ).

The final assumption is to exclude a kind of conspiracy mentioned in sec-
tion 3: the setting of directions have no bearing on the parameters, and the
other way round, the choice of settings is no influenced by the parameters.
This is called hidden autonomy

HA P (λ|Li;Rj) = P (λ).
We already mentioned a rather peculiar status of surface locality SL. It

will not be used in the proof, and is regarded here as a well-confirmed fact
based on special relativity. SL can be derived from hidden locality HL and
hidden autonomy HA, but this does not exclude the possibility of HL or
HA being false. To comment on the proof that will follow, it splits into two
parts, the first establishing that parameters work deterministically and the
other deducing the inequality in a way similar to that sketched in the last
lines of section 3.
The proof starts with a statement of the perfect anti-correlations:

COR P (LiA& RiA|Li;Ri) = 0
from which it follows:

(11)
0 = P (LiA& RiA|Li;Ri;λ) = P (LiA|Li;Ri;λ)P (RiA|Li;Ri;λ)
= P (LiA|Li;λ)P (RiA|Ri;λ) = 0 ,

12 In literature it bears different names: factorizability (Shimony) outcome independence
(Jarett), causality (van Fraassen).
13 Jarett’s term is parameter independence.
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where we used CC and HL. The last equation shows that if one multiplicand
is 0, the other is 1 and vice versa. Suppose for example that P (LiA|Li;λ) =
0. Then P (Li−A|Li;λ) = 1. By the last line of the equation above, P (Ri−
A|Ri;λ) = 0, which leads to P (RiA|Ri;λ) = 1.
Given this fact, we may argue like at the end of section 3, dividing

parameters from Λ into classes, each class being responsible for pairs of
outcomes of a given kind. First, however, we make the following observation:

P (LiA& RjB|Li;Rj) =
∫
Ω
P (LiA& RjB|Li;Rj;λ)σ(λ|Li;Rj) dλ

=

∫
Ω
P (LiA|Li;λ)P (Lj −B|Lj;λ)σ(λ) dλ,

where we used COR, CC, HL and HA. In the next step we calculate:

P (L1 + & R2 + |L1;R2) =
∫
Ω
P (L1 + |L1;λ)P (L2 − |L2;λ)σ(λ) dλ

= η(+ −−) + η(+ −+) ,(12)

where we used fact (11) about determinism and expression η(+−−) stands
for the fraction of those parameters from Λ that yield P (L1 + |L1;λ) =
P (L2− |L2;λ) = P (L3− |L3;λ) = 1. In a similar vein, we obtain:

P (L2 + & R3 + |L2;R3) = η(+ +−) + η(− +−) ,(13)

P (L1 + & R3 + |L1;R3) = η(+ +−) + η(+ −−) .(14)

Now, by adding the sides of (12) and (13) and observing that the result
contains both the summands of (14), we have: (Bell 3) inequality:

(Bell 3)
P (L1 + & R2 + |L1;R2) + P (L2 + &R3 + |L2;R3)

­ P (L1 + & R3 + |L1;R3).

To assess the argument, it fails to spin out the implications of stochas-
tic dependence of outcomes on the parameter, since in the presence of the
strict anti-correlations, the dependence turns into deterministic one. And,
although this reduction to determinism is worth noting, the argument does
not shed more light on the issue of why the inequality is violated than the
proof of (Bell 1). We need an argument in which the statistical functioning
of the parameter is irreducible.
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6. Bell 4

What we call (Bell 4), is the inequality equivalent in form to (Bell 2), the
proof of which can be extracted from later papers of J. Bell.14 The already
“classic” philosophical analysis of the derivation was given by J. Jarrett.15

Our derivation draws heavily on the argument of M. Redhead.16 As before,
we will deal with the EPR-Bohm setup and consider measurements of the
spin projection on some directions of distant particles, each pair of the par-
ticles being in the singlet state ϕ. For a given pair of particles, the events of
registering outcomes A and B of the measurements are taken to be spatially
separated and the outcome can be either +1 or −1. There is some correla-
tion between classes {A} and {B} of outcomes; however, we do not assume
that these are strict correlations (anti-correlations). We are aiming at deriv-
ing a constraint on observable probabilities, the probabilities having form
P (LiA& RjB|Li;Rj) and read as “the probability of obtaining outcome A
on the left and outcome B on the right, given that the directions on the left
and the right are i and j, respectively”.
Now, we need to be more cautious as to what might produce the correla-

tions. To address this query it is helpful to draw the backward light cones of
the outcome-events for a pair of particles, and focus our attention on three
regions: the region of the common past of the events, say RAB, the region
RA obtained by removing RAB from the backward cone of A and the region
RB obtained by removing RAB from the backward cone of B (see Fig. 2).
There are many things that may be believed to exert influence on the

outcomes. First, there are directions, i and j, set when the particles are so
close to the respective measuring devices that the setting on one device can-
not be communicated with subliminal velocity to the remote outcome-event;
this is why i and j are located in RA and RB , respectively. There are also
many other physical entities that belong to those regions: (a part of) a mea-
suring device at the moment of, and immediately before, the measurement,
electrical currents and magnetic fields in the vicinity of an outcome-event at
the moment of, and immediately before, the measurement, and others. Thus,
we may describe a physical situation in RA by giving two factors: setting i

14 See Bell J. S., Speakable and Unspeakable in Quantum Mechanics, Cambridge UP,
1987.
15 Jarrett J., “On the physical significance of the locality conditions in the Bell argu-
ments”, Nous 18, p. 569.
16 Readhead M., Incompleteness Nonlocality and Realism, Clarendon Press, Oxford,
1987.
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Fig. 2. The outcome events A and B and their backward light cones. Region RAB is the
common past of the two outcomes. Region RA (RB) transmits to A (B) causal influences
from from RAB . In the past of each outcome there is the event of setting the correspond-
ing direction (i or j). The remaining physical situation in the regions are described by
parameters: µ ∈ Υ for RA, η ∈ Ξ for RB and λ ∈ Λ for RAB.

of direction and parameter µ ∈ Υ that accounts for the physical situation
(except from a setting of direction) in RA. Similarly, a physical situation in
RB is described by specifying a setting j of direction and parameter η ∈ Ξ
that accounts for the physical situation (except from a setting of direction)
in RB. As before, we do not commit ourselves as to what sort of mathemat-
ical objects parameters µ ∈ Υ and η ∈ Ξ may stand for. Turning now to the
common past of A and B, it comprises the source of the two particles, the
quantum mechanical state of the source, the physical situation in one wing
and the other wing of the setup in the appropriate pasts of outcome-events.
For each pair of particles, we will describe the physical situation in the com-
mon past of the outcome-events by giving a parameter λ ∈ Λ, again without
specifying what mathematical object λ is capable of standing for. To avoid
cumbersome notation we assume, however, that parameters from Λ encode
also quantum mechanical states of the source.

With this machinery, a typical (not testable) probability has the form

P (LiA& RjB|Li;µ;Rj; η;λ),

which is to be read as: the probability of left outcome being A and right
outcome being B given that the left direction is i, the parameter for region
RA is µ, the right direction is j, the parameter for region RB is η, and the
parameter for RAB is λ.

With the division of space-time into regions RA, RB and RAB, the crux
of the argument consists in the claim that an outcome at one wing of the
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setup should be influenced by neither the other outcome-event nor a physical
situation in the other spatially separated region. This constraint, which is
motivated by the prohibition of superluminal signalling, lies behind premises
of locality that follow.
The first premise arises from the observation that whatever the out-

come at one wing is, say A at the left wing, it is produced by the physical
situation in the backward light cone of it, here RA + RAB . Thus, if the in-
fluences are transmitted locally, that is, continuously from point to point
with a subliminal velocity, correlations between outcome-events should be
traceable to physical situations in common pasts of pairs of events A and B.
That is, although we may expect a correlation P (LiA|RjB;Li;Rj;µ; η) 6=
P (LiA|Li;µ;Rj; η), if we take into account the common pasts, the correla-
tion should vanish, i.e.,

LC P (Lia|RjB;Li;µ;Rj; η;λ) = P (Lia|Li;µ;Rj; η;λ).

In other words, whatever statistical influences of left outcomes on right out-
comes and vice versa are, they are screened off by the common pasts of pairs
of outcome-events. The condition goes by different names, like screening-off
condition, factorizability, or local causality, from which we choose the last
one (LC). The reader may recognize in it an instance of the familiar prin-
ciple of the common cause, although the argument for LC is rather diffrent
from the argument for CC.
The second premise says that, in the presence of hidden parameters,

outcomes in one wing of the setup should be statistically independent from
direction settings at the other wing. In symbols:

DL P (Lia|Li;µ;Rj; η;λ) = P (Lia|Li;µ; η;λ).

There is a rigorous proof, due to Jarrett17, that if this condition is vio-
lated, experimenters at two wings could communicate instantaneously.18 In
essence, the requirement is the condition of deep locality from section 5.
The final assumptions shed light on the parameters. Being a more elab-

orate version of HA of section 5, the first is the claim that there are no
statistical influences between the parameters and the settings of directions.

HA σ(µ& η& λ|Li;Rj) = σ(µ& η& λ).
17 Op. cit.
18 The proof may nevertheless contain a loophole; see Jones M., “What locality isn’t”, in:
Kafatos M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of Universe, Kluwer,
1989, p. 77.
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HA says that we may separate the description of the physical situation into
a description of directions settings and a description of the rest, so that
the choice of direction (and the agent or a device that makes it) at a wing
may be thought of as independent from the physics that is captured by a
relevant parameter (µ or η). Accordingly, it has also the meaning that the
experimenter (or a semi-random device that does the job) is in this sense
free to choose a direction setting. Once this condition had the status of a
condition of the possibility of experimental knowledge, at present, however,
it is seen somehow dubious.
To proceed to the proof, we start with the following transformations that

are permitted by the probability calculus:

P (LiA& RjB|Li;Rj)

=

∫
Λ
dλ

∫
Υ
dµ

∫
Ξ
dηP (LiA& RjB|Li;Rj;µ; η;λ)σ(µ& η& λ|Li;Rj)(15)

= P (LiA|Li;µ; η;λ)P (RjB|Rj;µ; η;λ)σ(µ& η& λ),

where we used LC, DL and HA.
Now, let us focus our attention on an arithmetical fact that for any real

numbers x, x′, y and y′ from interval [0,1] the following holds:

− 1 ¬ xy + x′y + xy′ − x′y′ − x− y ­ 0 .(16)

Making now substitutions:

x = P (LiA|Li;µ; η;λ),
y = P (RjB|Rj;µ; η;λ),
x′ = P (Li′A|Li′;µ; ηλ),
y′ = P (Rj′B|Rj′;µ; η;λ),

multiplying the sides of Inequality (16) by σ(µ& η& λ) and integrating over
respective ranges of λ, µ and η, we obtain the following Bell-type inequality:

− 1 ¬ P (LiA& RjB|Li;Rj) + P (Li′A& RjB|Li′;Rj)
(Bell 4) + P (LiA& Rj′B|Li;Rj′)− P (Li′A& Rj′B|Li′;Rj′)

−P (LiA|Li)− P (RjB|Rj) ­ 0 ,

where we used (15) and the fact that probability density σ(µ& η& λ) is
normalized to unity. Reflecting on the proof, the appeal to the three sets
of parameters (Λ, Υ and Ξ) representing physical situations in the three
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regions is an unnecessary complication. The proof will go with a single set
of parameters, each parameter describing jointly the situation in the sum of
the three regions. What is important, however, the description of the overall
physical situation is assumed to be given by two separate things: directions
settings and the rest being parametrized by a parameter. We will use this
observation in the next proofs of Bell-type theorems.

(Bell 4) is at present the most mature type of Bell-type theorems, and is
most often used in the present debate over the violation of Bell-type inequal-
ities. Although this paper is not intended to adjudicate between positions
involved, a brief survey of them seems to be in place. A prevailing opinion
sees the violation of (Bell 4) to be evidence for the break of local causality
LC. This means that the outcomes at one wing, say left, of the setup de-
pend stochastically not only on physical situations in the common pasts of
these outcome-events, but also on physical situations in spatially separated
regions. The break of local causality is nevertheless very subtle as it is not in
conflict with the special relativity’s prohibition of superluminal signalling.
In other words, the experimenters at the two wings cannot exploit the break
of LC to communicate instantaneously.19 The remaining problems is to un-
derstand what this violation of LC means, a majority of researchers being
in agreement that it reflects the holistic feature of QM systems. This answer
ties in nicely with a mathematical feature of quantum theory, namely its
holistic treatment of composite systems.

To say that LC is the main suspect does not mean that the other premises
are sacrosanct. We have already mentioned the problematic loophole in
Jarett’s proof of DL. However, only very few people are ready to reject
this locality condition.

There is also a growing discontent with HA, where we seem to be facing a
dilemma. On the one hand, a meaningfully talk about experimental science
requires a certain degree of freedom of experimenters to measure what they
like to measure, to set knobs of their devices in the way they please and
so on. Without this freedom, nature would be hiding things that we could
have no chance whatsoever to discover. On the other hand, however, the
experimenter that chooses a setting (or a device that does this) is a part
of nature and it is hard to see, at least in physicalist ontology, how the
choice can be made independently of the physical situation in the respective
space-time region.

19 Mermin N. D., “Hidden quantum non-locality”, in: Clifton R. (ed.), Perspectives on
Quantum Reality, Kluwer, 1996, p. 57.
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Finally, since (Bell 4) as well as its predecessors have the form of statis-
tical inequalities, there is always a simple (not to say, simplistic) way out of
the predicament. This relies on stubbornly rejecting the experimental viola-
tion of the inequalities by claiming that experimental data, that is, the ob-
tained statistics, does not faithfully represent the (theoretical) probabilities
involved in the inequalities. As was said, this position requires stubbornness,
since its proponent must sustain his skepticism no matter how big a sample
involved or how small statistical deviations are. There is still a more serious
motivation to eschew probability from arguments for Bell-type theorems,
that arises from a doubt about the applicability of standard (Kolmogoro-
vian) probability calculus in quantum mechanical discourse. Considering a
rather special language of the so-called experimental quantum propositions,
if we read the algebraic structure of this language from the underlying for-
malism of Hilbert spaces, this structure will be non-Boolean, the conse-
quence being that the probability assignable to these propositions is not
Kolmogorovian.20 And in this new generalized probability, some laws that
we have been using above, like the law of conditional probability, does not in
general hold. Now, this objection is removed and the skepticism mentioned
above alleviated by a more recent version of Bell-type theorems, called by
initials of its authors GHZ,21 that deduces a testable non-statistical equa-
tion. Thus, we turn now to these “Bell’s inequalities without inequalities”,
as they are sometimes called.

7. GHZ-Bell 1

Although this argument uses a setup different from that of EPR-Bohm, it
shares with (Bell 1) the same set of premises, the most important being the
assumption of deterministic hidden parameters. We start with sketching the
setup.22 The source provides spin 1 particles, the spin projection of these
particles being 0 (see Fig. 3). Subsequently, the particle decays into two spin
1 particle, the state of the pair being:

ϕI,II =
1√
2
(|+〉I |−〉II − |−〉I |+〉II),

20 Gudder S., Quantum Probability, Academic Press, 1988
21 Greenberger D., Horne M. A., Zeilinger A., “Going beyond Bell’s Theorem”, p. 69,
in: Kafatos M. (ed.), Bell’s Theorem, Quantum Theory, and Conceptions of Universe,
Kluwer, Dordrecht, 1989.
22 Op. cit.

© 1997 by Nicolaus Copernicus University



Charting the Labyrinth of Bell-Type Theorems 115
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R'A R'B R'C R'D
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Fig. 3. The setup of the GHZ theorems. A source provides a sipin −1 partice that decays
into two spin −1 particles, the quantum mechanical state of the pair being ϕI,II . Sub-
sequently each particle decays into two spin −1/2 aprticles. The events of settings the
directions as well as outcome events are spatially separated. Regions R′A, R

′

B , R
′

C and R
′

D

shed teh corresponding outcomes from the physical situation in R′ABCD .

where | +〉I and | −〉I are eigenstates of the observable of the spin projection
on z-direction of particle I corresponding to result +1 and −1, respectively,
and | +〉II and | −〉II are eigenstates of the observable of the spin projection
on z-direction of particle II corresponding to result +1 and −1, respectively.
Next, each particle decays into two spin 1/2 particles. We assume that

geometry of the setup guarantees that there is no exchange between orbital
momentum and spin, so that spin is conserved. With this assumption, the
state of the quadruple system is:

ϕ1,2;3,4 =
1√
2
(|+〉1 |+〉2 |−〉3 |−〉4 − |−〉1 |−〉2 |+〉3 |+〉4),

where | ±〉k is the eigenstate of the operator representing measurements
of the spin projection on z-direction of k-th particle that correspond to
outcomes +1/2 and −1/2, respectively. To guarantee the satisfaction of the
assumption above, the beams carrying particles 1 and 2 move in direction
−z, whereas those carrying particles 3 and 4 move in +z direction. Moreover,
beam 1 moves faster than beam 2 and beam 4 faster than beam 3, which is to
guarantee that if the devices measuring the spin projection of the particles
are appropriately located, then the four events of registering the outcomes
are spatially separated.
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Let the outcomes of the measurements performed on particles 1, 2, 3 and
4 be symbolised by A, B, C andD, respectively. To simplify the calculations,
although quantum mechanical spin projections of the particles are ±1/2 in
units of Planck constant, we also assume that each outcome is either −1 or
+1. Much in the spirit of (Bell 1), we assume that an outcome is determined,
given a direction setting, by a physical situation in the sum of the pasts
of the four outcome events, the description of a physical situation being
provided by a parameter λ ∈ Λ. The second claim is that an outcome of
measurement performed on one particle is independent from a direction set
in the measurement on any other particle from a given quadruple. Both the
assumptions are captured by the following notation:

A(i, λ) = ±1, B(j, λ) = ±1, C(k, λ) = ±1, D(l, λ) = ±1.

Consider now the measurement of the spin projection performed on all the
four particles from a quadruple, directions i, j, k and l being set in the
plane perpendicular to z-axis and characterized by angles α, β, γ and δ,
respectively. For this geometry, the quantum mechanical expectation value
E(i, j, k, l) is:

E(i, j, k, l) = − cos (α+ β − γ − δ),
the implication being that

E(i, j, k, l) = ±1 for (α+ β − γ − δ) = π, 0.

In the framework of deterministic parameters, this translates, for instance,
into the following constraint:

A(i, λ)B(j, λ)C(k, λ)D(l, λ) = 1 given that (α+ β − γ − δ) = π.

This constraint cannot be satisfied, however. To see this, we may keep the
two direction, say k and l fixed, while varying the remaining directions,
with the angles satisfying α + β − γ − δ = π. Given that the product
A(i, λ)B(j, λ)C(k, λ)A(l, λ) = 1, it follows that A(i, λ)B(j, λ) must be in-
dependent from the settings i and j. Repeating this argument for other
pairs of directions, we obtain that A(i, λ), B(j, λ), C(k, λ) and A(l, λ) are
independent from directions i, j, k and l, respectively, which is patently
false. Accordingly, the assumptions of deterministic parameters and locality
cannot be both true.
A student of the proof of GHZ-(Bell 1) may fall under a misapprehension

that the argument does not utilize the assumption of non-contextuality (or
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hidden autonomy). This is not so since we assumed above that the varying of
directions has no impact on parameters. Thus, the argument indeed has the
same set of assumptions as that of (Bell 1). Another delicate point is the (al-
legedly) non-stochastic character of it. In principle, GHZ-(Bell 1) pertains to
a single quadruple system, and accordingly it may be tested by performing
the described measurements on four particles produced in a two-step decay
of a spin 1 particle. In reality, however, it should be tested by performing a
series of joint measurements on a sample of quadruple systems. This bring us
to another experimental problem, of ensuring the occurrence of the prefect
correlations. To recall, this problem gave a motivation for the development
of (Bell 2). Nevertheless, in the early 90’s a new technique, called paramet-
ric down conversion technique, was developed that permits the production
of pairs of photons, photons from each pair exhibiting sharply correlated
momenta. A proposal of how to use these correlation to test a version of
GHZ-(Bell 1) that involves positions instead of spin projections was put for-
ward by Horne, Shimony and Zeilinger.23 The experiment was carried out by
Rarity and Tapster, 24 convincingly showing that GHZ-(Bell 1) is violated.

8. GHZ-Bell 3

The argument utilizes the premises of (Bell 3) to derive a testable equa-
tion in the framework of a quadruple system described above. Like (Bell 3),
it starts with replacing determinism by stochastic dependence, however, in
the presence of the strict correlations, this stochastic dependence of out-
comes on parameters turns into the deterministic dependence.25 With A,
B, C and D standing as before for outcomes of measurements performed
on the respective particles, let R′ABCD designate the common past of these
outcome-events and R′A, R

′
B, R

′
C and R

′
D stand for those regions of the back-

ward light cones of A, B, C and D, respectively that sheds the respective
outcomes from influences of a physical situation in R′ABCD (see Fig. 3). The
possible physical situations in R′A+R

′
B +R

′
C +R

′
D +R

′
ABCD are described

by set Λ of parameters and again we do not specify what sort of mathe-
matical objects λ ∈ Λ can stand for. We will use two familiar assumptions:
a version of local causality (or the common cause principle) and the deep
locality, which in this setup take the following form:

23 Horne M. A., Shimony A., Zeilinger A., Phys. Rev. Lett. 62 (1989), 2209.
24 Rarity J. D., Tapster P. R., Phys. Rev. Lett. 64 (1990), 2495.
25 d’Espagnat B., Veiled Reality, Adison-Wesley, Reading Mass., 1995.
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LC P (1iA|2jB; 3kC; 4lD; 1i; 2j; 3k; 4l;λ) = P (1iA|1i; 2j; 3k; 4l;λ),
DL P (1iA|1i; 2j; 3k; 4l;λ) = P (1iA|1i;λ).

This notation is an extension of the notation introduced in section 5, two
outcomes at two wings L and R of the setup being replaced by four outcomes
at four wings (1, 2, 3 and 4) of the setup, and symbols of outcomes and
directions being changed appropriately. In order to have the full statement
of LC and DL, the above conditions should be rewritten for the remaining
regions.
We will now prove that strict correlations with DL and LC entail the

deterministic dependence of outcomes on parameters. Note first that LC,
DL and HA authorize the following factorization of probabilities:

P (1iA& 2jB& 3kC & 4lD|1i; 2j; 3k; 4l;λ)
= P (1iA|1i;λ)P (2jB & 3kC & 4lD|2j; 3k; 4l;λ).

Recalling the quantum mechanical expectation value for the joint mea-
surement of spin projections in the system considered,

E(i, j, k, l) = 1 for α+ β − γ − δ = π

the probability of obtaining a set of outcomes with an odd number of −1
outcomes is 0.
Consider now the following factors:

p± = P (1i± |1i;λ),
q± = P (2j ± & 3k ± & 4l ± |2j; 3k; 4l;λ)

+ P (2j ± & 3k ∓ & 4l ∓ |2j; 3k; 4l;λ)
+ P (2j ∓ & 3k ∓ & 4l ± |2j; 3k; 4l;λ)
+ P (2j ∓ & 3k ± & 4l ∓ |2j; 3k; 4l;λ).

Note that the expression p+q− + p−q+ captures probabilities of all set of
outcomes with an odd number of −1 outcomes. Thus, on the assumption of
hidden autonomy:

0 =

∫
Λ
[p+q− + p−q+]σ(λ) dλ .

Since factors p+, q−, p− and q+ are non-negative and p++p− = 1 = q−+q+,
we obtain

p− = 0, 1 p+ = 0, 1 q− = 0, 1 p+ = 0, 1 .
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Repeating the argument for the remaining three combinations, we arrive at
the deterministic result:

P (1iA|1i;λ) = 0, 1 P (2jB|2j;λ) = 0, 1
P (3kC|3k;λ) = 0, 1 P (4lD|4l;λ) = 0, 1 .

Given the determinism of outcomes, the rest of the proof goes like the proof
of GHZ-(Bell 1).

9. Conclusions

In a sense, charting the labyrinth of Bell-type theorems is like charting a
geographical map: new geographical facts are still emerging and proofs of
new Bell-type theorems are likely to come; a map can always include more
details and a survey of Bell-type theorems can always be improved by in-
cluding still another versions of proofs that people have come up with. Thus,
both the tasks must be brought to an end somehow arbitrarily. Best to our
knowledge, the set of the six arguments presented here is exhaustive in the
sense that at present there are no proofs of Bell-type theorems that draw
on different sets of premises than were used above. This is not to say that
we described all known versions of the proofs. To give an example, we did
not even mention the three-particles variants of GHZ proofs.26

Basically, the theorems split into four categories, generated by two di-
viding lines, the first being the distinction between deterministic or merely
statistical impact of the parameters on outcomes. The second distinction is
whether or not an argument assumes the strict (anti-)correlations.
Granted that a given premise slightly changes the meaning from ar-

gument to argument (and relying on the reader’s ability to work out the
differences), there are essentially four sorts of premises:

C-1 The causality conditions that put a constraint on the working of pa-
rameters. These are: the condition of the deterministic dependence of
outcomes on parameters of (Bell 1), (Bell 2), (Bell 1-GHZ), the prin-
ciple CC of the common cause of (Bell 3), the local causality LC of
(Bell 4) and (Bell 3-GHZ).

C-2 The locality conditions requiring that, given a value of the parameter, a
setting in a spatially separated region has no influence on the outcome
observed.

26 See Mermin N. D, “Quantum mysteries revisited”, Am. J. Phys., August 1990,
p. 731–734.
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C-3 The requirement of hidden autonomy (HA) or non-contextuality, as it
is sometimes called.

C-4 Finally, (Bell 1)–(Bell 4) rely on classical (Kolmogorovian) probability
calculus.

As was said before, none of the sets of the assumptions is hold sacrosanct.
Making a not too impartial assessment, it is rather unlikely that assump-
tions C-2 or C-3 went wrong. Since I am not too resistant to the project
of generalizing the probability calculus, I might try to put the blame on
probability. But this is not going to work, since GHZ arguments are not in
this sense probabilistic.27 Thus, something must be wrong with our way of
thinking about the functioning of parameters. But the possible reasons of
why conditions C-1 must go point in opposite directions. One possibility is
that we put too much determinism in these conditions and make the causes
too deterministic, meaning the world is more chancy than LC or CC permit.
The other option is the claim that conditions C-1 fail because they capture
only a part of the truth. In this vein, an outcome is partially determined
by the parameter, the other part of the determination being provided by a
non-local influence of a spatially separated region. Similarly, local causality
fails because besides local causes there are also some non-local influences.
Be that as it may, both the options leave us with the hard task to un-

derstand how non-local causation may work.
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27 GHZ are probabilistic in respect to their testing; no probability calculus is needed to
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