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Abstract. This is an exploratory paper whose aim is to investigate the
potentialities of bilattice theory for an adequate definition of the deduction
apparatus for multi-valued logic. We argue that bilattice theory enables us
to obtain a nice extension of the graded approach to fuzzy logic. To give
an example, a completeness theorem for a logic based on Boolean algebras
is proved.
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1. Introduction and preliminaries

Formal fuzzy logic (or fuzzy logic in narrow sense) is a chapter of formal
logic strictly related to the theory of fuzzy subsets and connected with
the tradition of multi-valued logic (see [12, 14, 15, 16, 18, 19]). Bilattice
theory was introduced by Ginsberg [8] in the framework of logic pro-
gramming to treat both truth and information from an algebraic point
of view (see also Fitting [6, 7]). Its principal task is to give successful
tools to face the difficulties arising from the acceptance of the negation
in the body of the rules in a program.

In this exploratory paper we argue for the potentialities of bilattice
theory for fuzzy logic. The basic idea is that if V is the “valuation
structure” used to evaluate the formulas in a multi-valued logic, then it
is useful to extend V to a bilattice B as a tool to define an adequate
inferential apparatus. The elements of B are interpreted as information
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pieces on the elements in V , i.e., on the truth values of the formulas.
Perhaps this gives an answer to the important question denounced by
D. Dubois in [4], i.e., the existing confusion between truth-values and
information states (see also [9]).

The paper is mainly addressed to propositional level and, to give an
example, we apply the proposed apparatus to a logic with a world-based
semantics. In [2] one considers the first order level and the attention is
focused on multi-valued logic programming and fuzzy control.

Notice that the first, very interesting, proposal to connect fuzzy logic
with bilattice theory was done probably by E. Turunen, M. Öztürk,
A. Tsoukiás in [22] in connection with paraconsistent logic. Our ap-
proach is different since we attempt to distinguish the role (related with
information and inference) of the bilattice from the role (semantics in
nature) of the valuation structure. Also in the literature on fuzzy logic an
analogous of the notion of bilattice is named intuitionistic fuzzy logic (see
for example [17]). Our approach is different since we refer to the formal
definition of fuzzy logic in Pavelka’s sense in which a deduction apparatus
is defined by a fuzzy subset of logical axioms and by fuzzy inference rules.

A useful tool we use in this paper is the notion of a closure operator
and the associated one of a closure system. This in accordance with
the abstract approach to fuzzy logic proposed in [9, 12]. We recall that,
given a complete lattice L, a closure operator in L is a map H : L −→ L
such that

H(x) ≥ x; x ≥ y ⇒ H(x) ≥ H(y); H(H(x)) = H(x).

Given M ⊆ L, the map HM defined by setting

HM(x) = inf{z ∈ M : z ≥ x}

is a closure operator we call closure operator generated by M. A closure

system is a subset C of L closed with respect to the finite and infinite
meets. Given a closure operator H, the set CH = {x ∈ L : H(x) = x} of
fixed points of H is a closure system and the closure operator associated
with CH coincides with H, i.e. H(x) = inf{z ∈ CH : z ≥ x}. Conse-
quently, if H and K are closure operators, CH ⊆ CK entails H ≥ K,
i.e. H(x) ≥ K(x) for every x ∈ L. In particular, if two closure operators
have the same fixed points, then they coincide. Given M ⊆ L, the class

〈M〉 = {inf i∈Imi : (mi)i∈I is a family of elements of M}
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is a closure system, we call the closure system generated by M. Equiv-
alently 〈M〉 is the intersection of all the closure systems containing M.

2. Bilattice theory

We list some basic notions in bilattice theory.

Definition 2.1. A bilattice is a structure B = (B, ≤t, ≤k, False, True,
⊥, ⊤) such that (B, ≤t, False, True) and (B, ≤k, ⊥, ⊤) are bounded lat-
tices. If both the orders are complete, then we say that B is complete.
We denote by ∧t and ∨t, ∧k, and ∨k the lattice operations in the lattices
(B, ≤t, False, True) and (B, ≤k, ⊥, ⊤), respectively. B is interlaced if all
these operations are order preserving with respect to ≤t and ≤k. B is dis-

tributive if all 12 distributive laws connecting ∧t, ∨t, ∧k, and ∨k are valid.
B satisfies the decomposition property provided that, for every x ∈ B,

x = (x ∧k True) ∨k (x ∧k False).

The ordering ≤t is with respect to the degree of truth, the ordering ≤k

is related to information or knowledge. In the paper we will distinguish
a lattice notion related to ≤k from the same notion related to ≤t in an
evident way. For example we write Supk and Supt to denote the least
upper bound with respect to ≤k and ≤t, respectively. It is easy to prove
that if a bilattice is distributive, then it is also interlaced and that an
interlaced bilattice satisfies the decomposition property.

Definition 2.2. Assume that in a bilattice B an involution ∼ : B −→ B
is defined such that

1. x ≤t y ⇒ ∼ y ≤t ∼ x (t-order reversing)
2. x ≤k y ⇒ ∼ x ≤k ∼ y (k-order preserving)
3. ∼ ∼ x = x

Then we say that (B, ≤t, ≤k, ∼, False, True, ⊥, ⊤) is a bilattice with nega-

tion.

We emphasize that since ∼ is order-reversing with respect to ≤t and
order-preserving with respect to ≤k,

∼(x ∧t y) = ∼(x) ∨t ∼(y), ∼(x ∨t y) = ∼(x) ∧t ∼(y),

∼(x ∧k y) = ∼(x) ∧k ∼(y), ∼(x ∨k y) = ∼(x) ∨k ∼(y),

for every x, y in B. It is also immediate that ∼ False = True, ∼ True =
False, ∼ ⊥ = ⊥, ∼ ⊤ = ⊤.
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There are several ways to define a bilattice by starting from a bound-
ed lattice L = (L, ≤, 0, 1). One way is to consider the set of intervals of
L (see for example A. Pilitowska [20]) and it is related in a natural way
to multi-valued logic. Indeed, an interval is interpreted as a constraint
on a possible truth value.

Theorem 2.3. Let I(L) be a set of closed intervals of a bounded lattice
L (included the empty set) and define the structure I(L) = (I(L), ≤t,
≤k, {0}, {1}, L,∅) in such a way that

• ≤k is the dual of the inclusion relation,
• for every [a, b], [c, d] in I(L) − {∅}, [a, b] ≤t [c, d] provided that a ≤ c

and b ≤ d,
• {0} ≤t ∅ ≤t {1} and ∅ is not t-comparable with any other interval.

Then I(L) is a bilattice we call interval bilattice associated with L.

Proposition 2.4. The interval bilattice I(L) satisfies the decomposition
property and it is interlaced if and only if L is the two elements Boolean
algebra. If L is complete, then I(L) is complete. Let ∼ be an involution
in L, i.e. an order reversing map such that ∼(∼ x) = x, and set

∼[a, b] = [∼ b, ∼ a]; ∼∅ = ∅.

Then we obtain a negation in I(L).

Proof. To prove the decomposition property, we observe that, for every
interval [a, b],

[a, b] = [a, 1] ∩ [0, b] = ([a, b] ∧k {1}) ∨k ([a, b] ∧k {0})

and

∅ = {1} ∨k {0} = (∅ ∧k {1}) ∨k (∅ ∧k {0}).

Moreover, due to the behavior of ∅, in the case L 6= {0, 1}, I(L) is not
interlaced. Indeed, if c is an element of L different from 0 and 1, then
[0, 0] ≤t [c, c], while [0, 0] ∨k [c, 1] = ∅ and [c, c] ∨k [c, 1] = [c, c]. On the
other hand the relation ∅ ≤t [c, c] is false. The remaining part of the
proposition is trivial. ⊣

Another very elegant way to obtain a bilattice is the following one
(see Fitting [7]).
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Theorem 2.5. Let L = (L, ≤, 0, 1) be a bounded lattice and denote by
B(L) the structure (L × L, ≤t, ≤k, ∼, (0, 1), (1, 0), (0, 0), (1, 1)), where ∼
is defined by setting ∼(x, x′) = (x′, x), and the relations ≤t, ≤k are
defined by setting

(x, x′) ≤t (y, y′) ⇐⇒ x ≤ y and x′ ≥ y′,

(x, x′) ≤k (y, y′) ⇐⇒ x ≤ y and x′ ≤ y′.

Then B(L) is an interlaced bilattice with negation we call the square
bilattice associated with L.

Proposition 2.6. B(L) is interlaced and therefore it satisfies the de-
composition property. If L is complete (distributive) then B(L) is com-
plete (distributive, respectively).

The idea is that if a claim α is valued by (x, x′), then x is a measure
of the information in favor of α and x′ a measure of the information
against α.

The following proposition shows a basic connection between I(L)
and B(L).

Proposition 2.7. Let L be a bounded lattice with an involution ∼
and let I0(L) be the set of nonempty intervals of L. Then by setting
h([a, b]) = (a, ∼ b) we obtain an embedding of the structure I0(L) =
(I0(L), ≤t, ≤k, ∼, {0}, {1}, L) into the structure (L×L, ≤t, ≤k, ∼, (0, 1),
(1, 0), (0, 0)).

In accordance with the fact that in a multi-valued logics the con-
junction is usually interpreted by a non idempotent operation, we give
the following extension of the notion of bilattice. Under the name com-

mutative monoid with a zero we mean a structure (D, ·, 0, 1) such that
(D, ·, 1) is a commutative monoid such that x · 0 = 0 for every x ∈ D.

Definition 2.8. An extended bilattice (see also [3] and [22]) is a structure
B = (B, ≤t, ≤k, ⊗t, ∼, False, True, ⊥, ⊤) such that

• (B, ≤t, ≤k, ∼, False, True, ⊥, ⊤) is a bilattice with negation,
• (B − {⊤}, ⊗t, False, True) is a commutative monoid with zero which

is infinitely distributive with respect to the bilattice operations.

In an extended bilattice we have that,

⊤ ⊗t ⊥ = False.
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Indeed, ⊥ ≤k False and therefore ⊥ ⊗t ⊤ ≤k False ⊗t ⊤ = False and
False ≤k ⊤ and therefore False = False ⊗t ⊥ ≤k ⊤ ⊗t ⊥.

3. Bilattices as an information framework on truth values

In the literature on multi-valued logic one refers to algebraic structures
whose elements are truth values and whose operations are devoted to
interpret the logical connectives. To fix the ideas, in this paper we refer
to the following well known class of structures.

Definition 3.1. A valuation structure is a complete commutative resid-
uated lattice with an involution, i.e. a structure V = (V, ≤, ⊗, ∼, 0, 1)
such that (V, ≤, 0, 1) is a complete lattice with 0 6= 1, ∼ is an involution
and

(i) (V, ⊗, 0, 1) is a commutative monoid with a zero
(ii) ⊗ is infinitely distributive, i.e., for every x ∈ V and C ⊆ V , C 6= ∅,

x ⊗ Sup(C) = Sup(x ⊗ C) and x ⊗ Inf(C) = Inf(x ⊗ C).

We call truth values the elements of V , we denote by → the residuum of
⊗ and we define the operation ⊕ by setting

x ⊕ y = ∼(∼ x ⊗ ∼ y).

Obviously, ∼ is an isomorphism from (V, ≤, ⊗, ∼, 0, 1) to (V, ≥, ⊕, ∼,
1, 0) and this means that an obvious duality principle holds true. This
entails, for example, that ⊕ is commutative, associative, order-preserving
and such that x⊕0 = x, x⊕1 = 1. Moreover, ⊕ is infinitely distributive.

Definition 3.2. A k-extension of a valuation structure V is an extended
bilattice B = (B, ≤t, ≤k, ⊗t, ∼, False, True, ⊥, ⊤) together with an em-
bedding i : V −→ B of V into the reduct (B, ≤t, ⊗t, ∼, False, True).

The intended interpretation is that the elements in B are pieces of
information on the truth values in V and that, given λ ∈ V, i(λ) is the
whole information we can obtain on λ in the “information framework”
B. In accordance, it is reasonable to define a piece of information on λ
as a “fragment” of the whole information i(λ).
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Definition 3.3. Given λ ∈ V and x ∈ B, we say that x is a correct

piece of information on λ and we write λ � x if x ≤k i(λ). We say that
x is satisfiable provided that there is λ ∈ V such that λ � x and we
indicate by Sat(B) the set of satisfiable elements in B.

We refer mainly to two classes of k-extensions, the first one is related
with the interval bilattices.

Proposition 3.4. Let V be a valuation structure and assume that B

is the interval bilattice I(V ). Then we obtain a k-extension of V by
considering the operation ⊗t defined by the equations

[a, b] ⊗t [c, d] = [a ⊗ c, b ⊗ d]

{1} ⊗t ∅ = ∅ ⊗t {1} = ∅ ⊗t ∅ = ∅

[a, b] ⊗t ∅ = ∅ ⊗t [a, b] = {0}([a, b] 6= {1})

and by the map i : V −→ I(V ) defined by setting

i(λ) = [λ, λ] = {λ}

In such a k-extension ∅ is the unique element in B which is not satisfiable
while, for every nonempty interval [a, b],

λ � [a, b] ⇔ λ ∈ [a, b].

Proposition 3.5. The definition of ⊗t is partially justified by the fol-
lowing facts

• it is minimal with respect to the condition
if λ � x and µ � y then λ ⊗ µ � x ⊗t y ,

• if ⊗ is the meet in (V, ≤, 0, 1) then ⊗t is the meet in (I(L), ≤t, {0}, {1}).

A second class of k-extensions is related with the square bilattice
B(V ).

Definition 3.6. Given a valuation structure V = (V, ≤, ⊗, ∼, 0, 1), we
call square k-extension of V the k-extension obtained by adding to the
bilattice B(V ) the operation ⊗t defined by setting

(x, x′) ⊗t (y, y′) = (x ⊗ y, x′ ⊕ y′)

and by considering the embedding i : V −→ B(V ) defined by setting

i(λ) = (λ, ∼ λ).
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In a square k-extension we have that

λ �
∗ (a, b) ⇔ a ≤ λ and b ≤ ∼ λ,

and this means that an element (a, b) of B(V ) carries the information
“the truth degree is at least a and the falsity degree is at least b”. Notice
that, differently from the interval k-extension, there are several elements
in B(V ) which are not satisfiable. Indeed,

Sat(B(V )) = {(λ, µ) ∈ V × V : µ ≤ ∼ λ}.

The following proposition gives a justification for the proposed definition
of ⊗t.

Proposition 3.7. The definitions of i and ⊗t in a square extension are
compatible with the embedding h of I0(V ) into B(V ) given in Propo-
sition 2.7 and they are the only possible definitions in the case ⊗t is
distributive with respect to ∨k.

Proof. Indeed, consider a k-extension of V in B(V ) and assume that
it is in accordance with h. Then the map i : V −→ B(V ) have to satisfy
the equation i(λ) = h(i([λ, λ])) = (λ, ∼ λ). Moreover, the operation ⊗t

in B(V ) have to satisfy the condition

h−1((x, x′) ⊗t (y, y′)) = h−1((x, x′)) ⊗t h−1((y, y′))

and therefore

(x, x′) ⊗t (y, y′) = h(h−1((x, x′)) ⊗t h−1((y, y′)))

= h([x, ∼ x′] ⊗t [y, ∼ y′])

= h([x ⊗ y, ∼ x′ ⊗ ∼ y′])

= (x ⊗ y, ∼(∼ x′ ⊗ ∼ y′))

= (x ⊗ y, x′ ⊕ y′)

for every x, y, x′, y′ such that x ≤ ∼ x′ and y ≤ ∼ y′. Assume that ⊗t

is distributive with respect to ∨k, and that y ≤ ∼ y′, then, for every x,
y, x′, y′ in V ,

(x, x′) ⊗t (y, y′) = ((x, 0) ∨k (0, x′)) ⊗t (y, y′)

= ((x, 0) ⊗t (y, y′)) ∨k ((0, x′) ⊗t (y, y′))

= (x ⊗ y, 0 ⊕ y′) ∨k (0 ⊗ y, x′ ⊕ y′)

= (x ⊗ y, x′ ⊕ y′). ⊣
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Notice that an analogous of the k-extensions by the square bilattices
is proposed in [22] by E. Turunen, M. Öztürk and A. Tsoukiás. Indeed,
in [22] one considers the case V is a MV-algebra and one extends V into
a suitable MV-algebra of evidence matrices. This algebraic structure is
defined in a set of matrices like

(

f k
u t

)

where the values f , k, u, t correspond to falsehood, contradictory, un-

known and truth, respectively. Namely, every pair (x, x′) in the square
bilattice B(V ) is associated with the matrix

(

x′ ∧ ∼ x x ⊗ x′

∼ x ⊗ ∼ x′ x ∧ ∼ x′

)

and one considers the set of so obtained matrices.
We conclude this section by recalling some basic notions in fuzzy set

theory. Given a nonempty set S and a valuation structure V , we denote
by V

S the direct power of V with index set S and we call V -subsets

of S the elements of V
S. Given x ∈ S, the value s(x) is interpreted as

the membership degree of x in s. The set-theoretical nomenclature is
used in an obvious way. For example the order relation in V S is denoted
by ⊆ and named inclusion relation. The meet and the join in V S are
denoted by ∩ and ∪ and named intersection and union, respectively. The
complement of s is the V -subset  s defined by setting (−s)(x) = ∼ s(x)
for every x ∈ S. We extend these definitions by considering a bilattice
B in place of V . For example, a B-subsets of S is a map s : S −→ B,
we denote by ⊆k the k-order relation in B

S and we denote by ∩k and
∪k and  the k-meet, the k-join and the complement, respectively.

4. Bilattice-based logics

We will define a bilattice-based multi-valued logic by extending the def-
inition for fuzzy logic proposed by Pavelka (graded approach). Recall
that if F is the set of formulas of a given language, then Pavelka calls
semantics any class M ⊆ V F of V -subsets of F and model an element
of M . This means that a model is identified with the valuation in V of
the formulas it determines. We extend this definition by identifying a
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model with the information we can have on this model in a k-extension
B of V , i.e. with a map from F to B.

Definition 4.1. Let F be a nonempty set whose elements we call for-

mulas and let B be a k-extension of a valuation structure V . Then a
B-valuation is a map v : F −→ B from F to B. We say that v is pointwise

satisfiable if v(α) is satisfiable for every formula α. A B-semantics, in
brief a semantics, is a non-empty class M ⊆ BF of B-valuations. We
call interpretation or model any element m in M and we say that m is
real if m(α) ∈ i(V ) for every α ∈ F . A semantics M is canonical if all
its interpretations are real.

Obviously, we are mainly interested in the canonical semantics. Nev-
ertheless in [2], in accordance with the fact that in logic programming
there is no drastic distinction between semantics and syntax, one con-
sider also the possibility of Herbrand models (i.e. B-subsets of facts)
which are not real.

Definition 4.2. Given a B-subset of formulas v, we say that m ∈ M
is a model of v, in brief m � v, if m(α) � v(α) for every α ∈ F .

Then m is a model of v provided that m(α) ≥k v(α) for every α ∈ F ,
i.e. provided that m ⊇k v. We interpret v as the available information
on (the truth-values of) an unknown “world” m. These definitions ex-
tend Pavelka’s definitions since Pavelka’s semantics coincides with the
canonical B-semantics, in a sense. Indeed, if M ⊆ V F is a semantics
in Pavelka’s sense, then we obtain a canonical B-semantics by setting
M = {i ◦ m : m ∈ M} ⊆ BF . Conversely, if M ⊆ BF is a canonical
B-semantics, then we obtain a semantics in Pavelka’s sense by setting
M = {i−1 ◦ m : m ∈ M} ⊆ V F . In the following we identify a model
m ∈ M with i ◦ m and therefore M with M . For example, we say that
m ∈ M is a model of v provided that i ◦ m is a model of v.

Definition 4.3. The logical consequence operator associated with M is
the operator Lc : BF −→ BF defined by setting,

Lc(v)(α) = Infk{m(α) ∈ B : m ∈ M and m � v}

for every v ∈ BF and α ∈ F . The B-subset of tautologies is defined by
setting

Tau = Lc(v⊥) = Infk{m(α) ∈ B : m ∈ M}.
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We interpret Lc(v)(α) as the information on α shared by all the
possible models of v. In particular, Tau(α) represents the information
on α shared by all the possible models.

Proposition 4.4. Given a B-subset of formulas v, we have that

Lc(v) =
⋂

k{m ∈ M : m ⊇k v}.

Consequently, Lc : BF −→ BF is a closure operator, the closure operator
generated by M.

In the case B is an interval bilattice (a square bilattice), we denote
by v+ and v− (by v+, v−) two V -subsets of formulas such that v(x) =
[v+(x), v−(x)], (v(x) = (v+(x), v−(x)) respectively) for every x ∈ F .
Then, if B = I(V ), M is the canonical semantics associated with a
Pavelka semantics M , and m = i ◦ m′ with m′ ∈ M , then we have that
m � v if and only if v+ ⊆ m′ ⊆ v− and, given α ∈ F , Lc(v)(α) is the
least interval containing the set {m′(α) ∈ V : m′ ∈ M , v+ ⊆ m′ ⊆ v−}
of possible values assumed by α, i.e. Lc(v)(α) = [Inf{m′(α) : m′ ∈
M , v+ ⊆ m′ ⊆ v−}, Sup{m′(α) : m′ ∈ M , v+ ⊆ m′ ⊆ v−}].

In particular,

Tau(α) = [Inf{m′(α) : m′ ∈ M}, Sup{m′(α) : m′ ∈ M}].

In the case B = B(V ), m � v if and only if v+ ⊆ m′ ⊆ −v− and
therefore

Lc(v)(α) = (Inf{m′(α) : m′ ∈ M , v+ ⊆ m′ ⊆ −v−},
∼ Sup{m′(α) : m′ ∈ M , v+ ⊆ m′ ⊆ −v−}).

In particular,

Tau(α) = (Inf{m′(α) : m′ ∈ M}, ∼ Sup{m′(α) : m′ ∈ M}).

In the case condition m′(¬α) = ∼ m′(α) is satisfied, we have

Lc(v)(α) = (Inf{m′(α) : m′ ∈ M , v+ ⊆ m′ ⊆ −v−},

Inf{m′(¬α) : m′ ∈ M , v+ ⊆ m′ ⊆ −v−})

and therefore,

Tau(α) = (Inf{m′(α) : m′ ∈ M}, Inf{m′(¬α) : m′ ∈ M}).
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Once the operator Lc is defined, the crucial question is to propose an
algorithm to “calculate” the values Lc(v)(α), i.e. to calculate the in-
formation we can obtain on the truth value of α given the available
information v. To this aim, we define a notion of deduction apparatus in
Hilbert style, i.e. by logical axioms and inference rules. This is obtained
by modifying Pavelka’s definitions so that we refer to the knowledge
order in B and not to the order in V . For example, we say that a map
f : Bn −→ B is k-continuous if it preserves the k-inductive limits, i.e.

f(x1, . . . , SupkC, . . . , xn) = Supk{f(x1, . . . , x, . . . , xn) ∈ B : x ∈ C}

for every k-directed subset C of B.

Definition 4.5. Let B be a complete bilattice, then an n-ary

B-inference rule is a pair r = (rsyn, rsem) where rsyn is a partial n-ary
operation in F (i.e., an inference rule in the usual sense) and rsem is a
k-continuous n-ary operation in B. A B-deduction apparatus, in brief a
deduction apparatus, is a pair (IR, la) such that la is a B-subset of for-
mulas, we call B-subset of logical axioms, and IR is a set of B-inference
rules.

Notice that the continuity condition is required to obtain that the de-
duction operator (see Definition 4.8), is a closure operator. We represent
an application of an n-ary B-inference rule as follows

〈

α1, . . . , αn

rsyn(α1, . . . , αn)
|

b1, . . . , bn

rsem(b1, . . . , bn)

〉

The intended meaning is that if b1, . . . , bn are correct pieces of informa-
tion on α1, . . . , αn, then rsem(b1, . . . , bn) is a correct piece of information
on rsyn(α1, . . . , αn).

Definition 4.6. A proof π of a formula α is any sequence α1, . . . , αm

of formulas in F such that αm = α, together with the related “justifica-

tions”, i.e., for any formula αi, we must specify whether

(i) αi is assumed as a logical axiom; or
(ii) αi is assumed as an hypothesis; or

(iii) αi is obtained by a rule (in this case we have to indicate also the rule
and the formulas αi(1), . . . , αi(n) in α1, . . . , αi−1 used to obtain αi).

Differently from the classical logic, the justifications are necessary to
calculate the information furnished by the proof. As in classical logic,
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for i ≤ m, the initial segment α1, . . . , αi of a proof α1, . . . , αm is a proof
of αi we denote by π(i).

Definition 4.7. Given a proof π = α1, . . . , αm of α and a B-set of
formulas v : F −→ B, the information on α furnished by π given v is
the element I(π, v) in B defined by induction on the length of π in
accordance with the following rules:

I(π, v) = la(αm) if αm is assumed as a logical axiom,
I(π, v) = v(αm) if αm is assumed as an hypothesis,
I(π, v) = rsem(I(πi(1), v), . . . ,I(πi(n), v)) if αm is obtained from
αi(1), . . . , αi(n) by the rule r = (rsyn, rsem)

with i(1) < m, . . . , i(n) < m.

Notice that we have only two proofs of α with length 1. The formula
α with the justification “α is assumed as a logical axiom” and the formula
α with the justification “α is assumed as an hypothesis”. So, the first
two lines in the definition of I give also the induction basis.

Each proof of a formula α gives a different piece of information on
the truth value of α. So, we have to fuse all these pieces of information.

Definition 4.8. We call deduction operator the operator D : BF −→
BF defined by setting, for every v ∈ BF and α ∈ F ,

D(v)(α) = Supk{I(π, v) ∈ B : π is a proof of α}.

These definitions suggest adding further hypotheses to the notion
of deduction apparatus. For example, in the case of a binary inference
rule it is natural to assume that evaluation part is a binary k-continuous
operation ⊗k which is commutative and associative. Indeed, the order of
the formulas assumed either as hypotheses or logical axioms in a proof is
not relevant. Moreover to be coherent with the usual notion of inference
rule, it is natural to assume that True⊗k True = True. We call valuation

product an operation satisfying these conditions. Also, it is not restrictive
to assume that in the considered deduction apparatus there are two
structural rules

〈

α

α
|

x

rb(x)

〉

(weakening rules)
〈

α, α

α
|

x, y

x ∨ y

〉

(fusion rule)

where rb(x) = b if x ≥ b and r(x) = x otherwise. The weakening rule
enables us to claim that if we can prove α at degree x, then we can prove
α at degree b for every b ≤ x. The fusion rule enables us to fuse two
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different proofs π1 and π2 of α into an unique proof π of α in such a way
that I(π, v) = I(π1, v) ∨k I(π2, v). In accordance, the information-set
{I(π, v) ∈ B : π is a proof of α} on α is up-ward directed and we can
obtain D(v)(α) as a direct limit of this set,

D(v)(α) = limk{I(π, v) : π is a proof of α}.

The following rule is related with the question of the inconsistency.
〈

α

β
|

x

c(x)

〉

(inconsistency rule)

where the map c is defined by setting c(x) = ⊥ if x ∈ Sat and c(x) = ⊤
otherwise. The inconsistency rule claims that if the information on a
formula is not consistent, then the information on all the formulas is
completely inconsistent.

Theorem 4.9. The deduction operator D associated with a B-deduction
apparatus is a closure operator in the lattice (BF , ⊆k).

Proof. To prove that D(v) ⊇k v it is sufficient to observe that, given a
formula α, the formula α together with the justification “by hypothesis”
is a proof π of α such that I(π, v) = v(α). We can prove that D is
monotone by proving that I(π, v) is monotone with respect to v for every
proof π of a formula α. To this aim it is sufficient to observe that the
semantic component of the inference rules is k-monotone and to proceed
by induction on the length of π. To prove that D is idempotent we have
to prove that D(v) is a fixed point for D and therefore that, given a
formula α,

Supk{I(π, D(v)) ∈ B : π is a proof of α} ≤k D(v)(α).

Equivalently, we have to prove that, for every proof π = α1, . . . , αm

of α,
I(π, D(v)) ≤k D(v)(α). (∗)

We will proceed by induction on the length m of π. Now, if αm is
assumed either as a logical axiom or as a hypothesis, then (∗) is evident.
Otherwise, assume that αm is obtained by an n-ary inference rule and
therefore that

I(π, D(v)) = rsem(I(πi(1), D(v)), . . . , I(πi(n), D(v))),
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where πi(1), . . . , πi(n) are the proofs of the formulas αi(1), . . . , αi(n),
i(1) < m, . . . , i(n) < m. Then, taking in account the induction hypoth-
esis, the definition of D(v) and the k-continuity of rsem: I(π, D(v)) ≤k

rsem(D(v)(αi(1)), . . . , D(v)(αi(n))) = rsem(Supk{I(π, v) ∈ B : π is a
proof of αi(1)}, . . . , Supk{I(π, v) ∈ B : π is a proof of αi(n)}) =
Supk{rsem(I(πi(1), v), . . . , I(πi(n), v)) ∈ B : πi(1) is a proof of αi(1),
. . . , πi(n) is a proof of αi(n)} ≤k D(v)(α). ⊣

We are now ready to give the main definition in this paper.

Definition 4.10. Let M be a semantics and (IR, la) be a deduction
apparatus. Then (IR, la) is sound with respect to M if Lc(v) ⊇k D(v)
for every v ∈ BF . (IR, la) is complete with respect to M if D(v) ⊇k Lc(v)
for every v ∈ BF . In the case (IR, la) is both sound and complete, i.e.
D = Lc, we say that (M, IR, la) is a bilattice based fuzzy logic and that
the completeness theorem holds true.

We emphasize that such an approach to multi-valued logic extends
the graded approach proposed by Pavelka. This in spite of the fact that
in the definitions of Pavelka the reference to the knowledge order is not
apparent. Indeed, as a matter of fact, such a reference is implicit since
the information represented by a fuzzy subset v : F −→ V of formulas
is that m is a model of v provided that m ⊇ v. Then the information
carried on by v is that, for every formula α, v(α) represents a lower-bound
constraint like “the truth value of α is greater or equal to v(α)”. This
means that in the graded approach one manages interval constraints on
truth values and not truth values and we have not confuse the truth value
λ with the constraint [λ, 1]. Then it is possible to identify every valuation
v : F −→ V with the valuation v : F −→ I(V ) defined by setting v(α) =
[v(α), 1] for every α ∈ F and v(α) = [0, 1] = ⊥ otherwise. More in
general, it is evident that we can reformulate every notion in Pavelka’s
approach in the bilattice-based framework proposed in this paper.

It is easy to prove that the deduction operator is “compact” and
“computable” in the sense proposed in [13].

5. Soundness and completeness

If we fix a B-deduction apparatus, then there is no difficulty to find a
semantics such that the completeness theorem holds true. Indeed, it is
sufficient to put the semantics equal to the class of fixed points of the
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deduction operator. A more complicate task is to fix a semantics M and
to find a deduction apparatus adequate to M. The following proposition
is an immediate consequence of closure operator theory.

Proposition 5.1. Let M be a semantics and (IR, la) a deduction ap-
paratus. Then (IR, la) is sound if and only if each fixed points of Lc is
a fixed point of D. (IR, la) is complete if and only if each fixed point of
D is a fixed point of Lc. So, the completeness theorem holds true if and
only if Lc and D have the same fixed points.

Regarding the fixed points of Lc, we have the following proposition
whose proof is trivial.

Proposition 5.2. A valuation v is a fixed point of Lc if and only if v is
a k-intersection of elements in M. Equivalently, the set of fixed points
of Lc is the closure system generated by M.

We characterize the fixed points of D as the B-subsets of formulas
closed under deductions.

Definition 5.3. A B-set of formulas v is closed with respect to the
n-ary inferential rule r provided that,

v(rsyn(α1, . . . , αn)) ≥k rsem(v(α1), . . . , v(αn))

for every α1, . . . , αn. We say that v is a deduction closed theory (in brief
a dc-theory) of (IR, la) if v is closed with respect to all the inferential
rules in IR and it k-contains the B-subset of logical axioms. A dc-theory
v is consistent if it is different from v⊤.

Trivially, every B-subset of formulas is closed with respect to the two
structural rules.

Theorem 5.4. Let v be a valuation, then v is a fixed point of D if and
only if v is a dc-theory.

Proof. Assume that v is a dc-theory. To prove that v is a fixed point
for D, we prove, by induction on the length of the proofs, that for every
formula α and for every proof π of α

I(π, v) ≤k v(α) (⋆)

In the case n = 1 (⋆) is trivial. Consider the case n 6= 1 and, by induction
hypothesis, that (⋆) is satisfied by all the proofs whose length is less than
n. Then again in the case α is assumed as a logical axiom or a hypothesis
(⋆) holds true. Otherwise, there is an inference rule r = (rsyn, rsem) such
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that α = rsyn(αi(1), . . . , αi(m)) with 1 ≤ i(1) < n, . . . , 1 ≤ i(m) < n and
I(π, v) = rsem(I(π(i(1)), v), . . . , I(π(i(m)), v)). Then by the closure of
v, by induction hypothesis and the monotony of rsem, we have that

v(α) = v(rsyn(πi(1), . . . , πi(m)))

≥k rsem(v(α1), . . . , v(αn))

≥k rsem(I(π(i(1)), v), . . . , I(π(i(m)), v)) = I(π, v).

Conversely, assume that v is a fixed point of D. Then v(α) =
Supk{I(π, v) ∈ B : π is a proof of α} and therefore v(α) ≥k I(π, v) for
every proof π of α. By assuming that π is the proof of length 1 consist-
ing in assuming α as a logical axiom, we obtain v(α) ≥k I(π, v) = la(α).
Then v k-contains la. Let r be an n-ary inference rule, then to prove that
v is closed with respect to r, given α1, . . . , αn we consider the proof π
obtained by assuming α1, . . . , αn as hypotheses and by applying the rule
r. Such a proof proves the formula α = rsyn(α1, . . . , αn) and therefore

v(rsyn(α1, . . . , αn)) = v(α) ≥k I(π, v) = rsem(v(α1), . . . , v(αn)).

Thus v is closed with respect to (IR, la). ⊣

Definition 5.5. Given a semantics M, a system la of logical axioms is
sound if la ⊆k m for every m ∈ M, i.e. la ⊆k Tau. An inference rule is
sound if, for every α1, . . . , αn,

m(rsyn(α1, . . . , αn)) ≥k rsem(m(α1), . . . , m(αn)).

The proof of the following proposition is evident.

Proposition 5.6. A deduction apparatus (IR, la) is sound with respect
to a semantics M if and only if the inference rules and the logical axioms
are sound with respect to M.

The following simple lemmas give useful criterions to obtain the com-
pleteness.

Lemma 5.7 (Bitangency principle). Let B be a bilattice satisfying the
decomposition property and assume that the following conditions hold
true for every consistent dc-theory v and every formula α,

(i) there is a model mα of v such that

mα(α) ∧k True = v(α) ∧k True ,
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(ii) there is a model mα of v such that

mα(α) ∧k False = v(α) ∧k False .

Then the deduction apparatus is complete.

Proof. We will prove that every fixed point v of D is a fixed point of
Lc. It is not restrictive to assume that v 6= v⊤. Now in account of the
hypotheses, for every formula α,

Lc(v)(α) ∧k True = (Infk{m(α) ∈ B : m � v}) ∧k True

≤k mα(α) ∧k True = v(α) ∧k True

and

Lc(v)(α) ∧k False = (Infk{m(α) ∈ B : m � v}) ∧k False

≤k mα(α) ∧k False = v(α) ∧k False.

Consequently,

Lc(v)(α) = (Lc(v)(α) ∧k True) ∨k (Lc(v)(α) ∧k False)

≤k (v(α) ∧k True)) ∨k (v(α) ∧k False) = v(α).

Since Lc is a closure operator, it is sufficient to claim that v is a fixed
point of Lc. Thus, the deduction apparatus is complete. ⊣

Assume that M is the canonical semantics associated with a Pavel-
ka’s semantics M . Then in the case B = I(V ) we have that M satisfies
the bitangency principle if and only if for every consistent dc-theory v
and every formula α, there are two models mα and mα in M of v such
that mα(α) = v+(α) and mα(α) = v−(α), respectively. Likewise, in the
case B = B(V ), M satisfies the bitangency principle provided that for
every consistent dc-theory v and every formula α, there are two models
mα and mα in M of v such that mα(α) = v+(α) and mα(α) = v−(α).

There is a large class of semantics satisfying the condition m(¬α) =
∼ m(α) for every model m. It is evident that in this case it is convenient
to consider the following two rules:

〈

¬α

α
|

b

∼ b

〉

(¬-elimination)
〈

α

¬α
|

b

∼ b

〉

(¬-introduction)

An inferential apparatus containing these rules is balanced. Again, we
call balanced a B-subset of formulas v closed with respect to these rules,
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i.e. if v(¬α) = ∼ v(α) for every α ∈ F . A semantics M is balanced if all
its models are balanced.

Lemma 5.8 (Tangency Principle). Consider a balanced semantics and a
balanced deduction apparatus. Also, assume that for every consistent
dc-theory v and α ∈ F there is a model mα of v such that

mα(α) ∧k True = v(α) ∧k True.

Then the deduction apparatus is complete.

Proof. By hypothesis, given a formula α there is a model m¬α such that
m¬α(¬α) ∧k True = v(¬α) ∧k True. Consequently, if we set mα = m¬α

Mα(α) ∧k False = ∼(∼ mα(α) ∧k ∼ False) = ∼(mα(¬α) ∧k True)

= ∼(v(¬α) ∧k True) = (∼ v(¬α)) ∧k (∼ True)

= v(α) ∧k False

and condition (ii) of Lemma 5.7 is satisfied. ⊣

6. Boolean logic and Kripke bilattices

To test our formalisms, we consider a logic related with the Kripke bilat-
tice logics proposed by Ginsberg in [8]. Namely, given a nonempty set W
whose elements we call worlds, we consider as a valuation structure the
Boolean algebra V = (P (W ), ⊆, ∩, −,∅, W ) where P (W ) is the class of
all the subsets of W . Also, we consider the square k-extension BW =
B(V ) of V . This means that BW is defined in P (W )×P (W ), by setting

(X, Y ) ≤k (X ′, Y ′) ⇔ X ⊆ X ′ and Y ⊆ Y ′;

(X, Y ) ≤t (X ′, Y ′) ⇔ X ⊆ X ′ and Y ⊇ Y ′;

∼(X, Y ) = (Y, X);

(X, Y ) ⊗t (X ′, Y ′) = (X ∩ X ′, Y ∪ Y ′);

⊥ = (∅,∅);

⊤ = (W, W );

False = (∅, W );

True = (W,∅);

i(X) = (X, −X).
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We consider a first order language with two logical connectives ¬ and ∧
corresponding to the operations ∼ and ⊗t, respectively, and we denote
by F the set of formulas of such a language. The intended meaning is
that we assign to a formula α, the value (X, Y ) provided that
• X is the set of worlds in which the available information says that α

is true
• Y is the set of worlds in which the available information says that α

is false.
Moreover, for every X ∈ P (W ) and (A, B) ∈ BW ,

X �
∗ (A, B) provided that A ⊆ X and B ⊆ −X

and
Sat(BW ) = {(A, B) ∈ BW : A ∩ B = ∅}.

Definition 6.1. We call Boolean semantics the set M of truth-func-
tional valuations in the Boolean algebra (P (W ), ∩, −,∅, W ), i.e., the set
of maps m′ : F −→ P (W ) such that for every α, β ∈ F

m′(α ∧ β) = m′(α) ∩ m′(α); m′(¬α) = −m′(α).

The Kripke bilattice semantics is the canonical B-semantics M = {i ◦
m′ ∈ B : m′ ∈ M} associated with M .

The intended meaning of a model m ∈ M is that, given α ∈ F , the
value m(α) = (X, −X) is defined by the set X of worlds in which α is
true and the set −X of worlds in which α is false.

The following properties are well known.

Proposition 6.2. Let m′ be an element in M and assume that α and α′

are logically equivalent in classical propositional calculus, then m(α) =
m(α′). Moreover, m(α) = W for every tautology α and m(α) = ∅ for
every contradiction α. Finally, m(α)∩m(α → β) ⊆ m(β). Consequently,
Lc(v) is compatible with the logical equivalence and, for every m ∈ M,

• m(α) = (W,∅) = True for every tautology α
• m(α) = (∅, W ) = False for every contradiction α
• Tau(α) = (W,∅) if α is a tautology
• Tau(α) = (∅, W ) if α is a contradiction
• Tau(α) = (∅,∅) if α is neither a tautology or a contradiction.

To individuate a suitable inferential apparatus for this semantics, at
first we give a “symmetric” version of the usual deduction apparatus
in classical propositional calculus. Indeed, we denote by α →t β the
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formula ¬(α∧¬β), i.e. the usual implication and by α →f β the formula
β ∧ ¬α which is classically equivalent to ¬(¬α →t ¬β). In correspon-
dence, we define two rules. The positive Modus Ponens, in brief MP+,
giving β from α and α →t β which is sound in a positive sense (i.e. if α
and α →t β are true, then β is true). The negative Modus Ponens, in
brief MP− giving β from α and α →f β and which is sound in a negative
sense (i.e. if α and α →f β are false, then β is false).

Definition 6.3. Let LA be a set of logical axioms of the classical propo-
sitional calculus and denote by ¬LA the set {¬α ∈ F : α ∈ LA}. Then
we say that a set T of formulas is a positive theory or that T is closed with

respect to positive proofs provided that T contains LA and it is closed
with respect to MP+. We say that T is a negative theory or that T is

closed with respect to negative proofs provided that T contains ¬LA and
it is closed with respect to MP−.

Passing to our bilattices-based logic, we call graded positive Modus

Ponens (in brief GMP+) the rule defined by setting

〈

α, α →t β

β
|

(A+, A−), (I+, I−

(A+, A−) ∧k (I+, I−)

〉

We call negative Modus Ponens (in brief MP−), the rule defined by
setting

〈

α, α →f β

β
|

(A+, A−), (I+, I−

(A+, A−) ∧k (I+, I−)

〉

Definition 6.4. We call Kripke deduction system, in brief K-system, the
deduction system in BW whose BW -set la of logical axioms is defined by
setting

la(α) =















(W,∅) if α ∈ LA

(∅, W ) if α ∈ ¬LA

(∅,∅) otherwise,

and whose rules are GMP+, GMP−, the ¬-elimination rule, the ¬-
introduction rule, and the inconsistency rule.

It is intended that the K-system contains the fusion rule and the
weakening rule. Notice that this set of rules is not reduced to a mini-
mum. As an example, we can consider the reduced K-system obtained
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by skipping out the rule MP− and by substituting MP+ with the follow-
ing weakened MP+ rule, in brief wMP+, working only on the positive
information

〈

α, α →t β

β
|

(A+, A−), (I+, I−)

(A+ ∩ I+,∅)

〉

Proposition 6.5. The reduced K-system is equivalent to the K-system.

Proof. It is evident that if α is a tautology of classical propositional cal-
culus, then in the reduced system we can prove α at degree (W,∅). Then,
to show that wMP+ entails GMP+, we can consider the following proof:

α (A+, A−) hypothesis
α →t β (I+, I−) hypothesis
¬(α →t β) (I−, I+) ¬-introduction rule
¬(α →t β) →t ¬β (W,∅) tautology
¬β (I−,∅) wMP+

β (∅, I−) ¬-elimination
β (A+ ∩ I+,∅) wMP+ from the hypotheses
β (A+ ∩ I+, I−) fusion rule
β (A+ ∩ I+, A− ∩ I−) weakening rule.

To obtain MP− from MP+, we consider the following proof

α (A+, A−) hypothesis
α →f β (I+, I−) hypothesis
¬α →t ¬β (I−, I+) ¬-elimination
¬α (A−, A+) ¬-introduction
¬β (A− ∩ I−, A+ ∩ I+) MP+

β (A+ ∩ I+, A− ∩ I−) ¬-elimination rule. ⊣

In spite of this proposition, in our opinion the whole K-system is
interesting by its symmetry. The following proposition is evident.

Proposition 6.6. Given a valuation v, the following equivalences hold
true

(a) v ⊇k la ⇔ v+(α) = W and v−(¬α) = W for every α ∈ LA,
(b) v is closed with respect to MP+ ⇔ v+(β) ⊇ v+(α) ∩ v+(α →t β) for

every α and β,
(c) v is closed with respect to the ¬-introduction and the ¬-elimination

rules ⇔ v+(α) = v−(¬α) and v−(α) = v+(¬α) for every α.
(d) v is closed with respect to the inconsistency rule ⇔ either v is point-

wise satisfiable or v = v⊤.
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7. A bilattice isomorphic with BW

In order to find a completeness theorem relating M with the proposed
K-system, it is useful to introduce the following bilattice.

Definition 7.1. Let P (F ) be the Boolean algebra of all the subsets of
F and denote by BF the associated product bilattice B(P (F )). Then
we call formulas based bilattice the bilattice BW

F obtained as the direct
power of BF with index set W . We call W -valuations the elements of
such a bilattice.

Then a W -valuation U : W −→ BF is defined by a pair (U+, U−) of
functions from W into P (F ) whose intended interpretation is that, for
every world w,
• U+(w) is the set of formulas the available information suggests to be

true in w
• U−(w) is the set of formulas the available information suggests to be

false in w.

Theorem 7.2. The bilattices BF
W and BW

F are isomorphic. Namely,
define the map H : BF

W −→ BW
F by setting, for every v ∈ BF

W ,

H(v)(w) = (T v(w), F v(w)),

where

T v(w) = {α ∈ F : w ∈ v+(α)} and F v(w) = {α ∈ F : w ∈ v−(α)}.

Then H is an isomorphism from BF
W and BW

F whose inverse is the func-
tion K : BW

F −→ BF
W such that, for every U ∈ BW

F and α ∈ F ,

K(U)(α) = ({w ∈ W : α ∈ U+(w)}, {w ∈ W : α ∈ U−(w)}).

Proof. It is immediate that H and K are both one-to-one and H−1 =
K. Moreover,

u ≤k v ⇐⇒ u(α) ≤k v(α), for every α ∈ F

⇐⇒ u+(α) ⊆ v+(α) and u−(α) ⊆ v−(α), for every α ∈ F

⇐⇒ {α ∈ F : w ∈ u+(α)} ⊆ {α ∈ F : w ∈ v+(α)} and

{α ∈ F : w ∈ u−(α)} ⊆ {α ∈ F : w ∈ v−(α)}, for every w ∈ W

⇐⇒ H(u)(w) ≤k H(v)(w), for every w ∈ W

⇐⇒ H(u) ≤k H(v).
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and

u ≤t v ⇐⇒ u(α) ≤t v(α), for every α ∈ F

⇐⇒ u+(α) ⊆ v+(α) and u−(α) ⊇ v−(α), for every α ∈ F

⇐⇒ {α ∈ F : w ∈ u+(α)} ⊆ {α ∈ F : w ∈ v+(α)} and

{α ∈ F : w ∈ u−(α)} ⊇ {α ∈ F : w ∈ v−(α)}, for every w ∈ W

⇐⇒ H(u)(w) ≤t H(v)(w), for every w ∈ W

⇐⇒ H(u) ≤t H(v).

Finally,

H(∼ v)(w) = H((v−, v+))(w)

= ({α ∈ F : w ∈ v−(α)}, {α ∈ F : w ∈ v+(α)})

= ∼({α ∈ F : w ∈ v+(α)}, {α ∈ F : w ∈ v−(α)})

= ∼ H(v)(w). ⊣

Observe that, H(v⊤) is the map constantly equal to (∅,∅), H(v⊤) the
map constantly equal to (F, F ) and H(la) the map constantly equal to
(LA, ¬LA).

Definition 7.3. Let U = (U+, U−) be an element in BW
F , then we say

that

• U is pointwise satisfiable if, for every w ∈ W , U+(w) ∩ U−(w) = ∅

• U is closed with respect to MP+ if, for every w ∈ W , U+(w) is closed
with respect to MP+

• U is closed with respect to MP− if, for every w ∈ W , U−(w) is closed
with respect to MP−

• U is balanced if, for every w ∈ W ,

α ∈ U+(w) ⇔ ¬α ∈ U−(w) and α ∈ U−(w) ⇔ ¬α ∈ U+(w).

• U is complete if, for every w ∈ W , U+(w) is a complete theory and
U−(w) = −U+(w).

Proposition 7.4. Given v ∈ BF
W ,

(i) v ⊇k la ⇐⇒ T v(w) ⊇ LA and F v(w) ⊇ ¬LA.
(ii) v is closed with respect to GMP+ ⇐⇒ T v(w) is closed with respect

to MP+ for every w ∈ W .
(iii) v is closed with respect to GMP− ⇐⇒ F v(w) is closed with respect

to MP− for every w ∈ W .
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(iv) v is balanced ⇐⇒ v is closed with respect to the ¬-elimination and
¬-introduction rules ⇐⇒ H(v) is balanced.

(v) v is closed with respect to the inconsistency rule ⇐⇒ either H(v)
is pointwise satisfiable or H(v) is constantly equal with (F, F ).

Proof. Equivalences i), ii), iii) and v) are all trivial. To prove iv), as-
sume that v is balanced and therefore that, for every α, v+(α) = v−(¬α)
and v−(α) = v+(¬α). Then

α ∈ T v(w) ⇐⇒ w ∈ v+(α) ⇐⇒ w ∈ v−(¬α) ⇐⇒ ¬α ∈ F v(w)

and

α ∈ F v(w) ⇐⇒ w ∈ v−(α) ⇐⇒ w ∈ v+(¬α) ⇐⇒ ¬α ∈ T v(w)

and this proves that H(v) is balanced. Conversely, assume that H(v) is
balanced, then

w ∈ v+(α) ⇐⇒ α ∈ T v(w) ⇐⇒ ¬α ∈ F v(w) ⇐⇒ w ∈ v−(¬α)

and

w ∈ v−(α) ⇐⇒ α ∈ F v(w) ⇐⇒ ¬α ∈ T v(w) ⇐⇒ w ∈ v+(¬α)

and this proves that v is balanced. ⊣

Now, we are able to characterize the models of our logic as the families
of complete positive theories of classical logic.

Proposition 7.5. Assume that m ∈ M. Then H(m) is a complete W -
valuation. Conversely, if U is a complete W -valuation then K(U) ∈ M.

Proof. Assume that m ∈ M, then it is immediate that, for every w ∈
W , F m(w) = −T m(w). Moreover, in accordance with Proposition 6.2,
m is closed with respect to GMP+ and m ⊇k la. This entails that
T m(w) contains LA and it is closed with respect to MP+ and therefore
that T m(w) is a positive theory. To prove the completeness of T m(w),
observe that,

α ∈ T m(w) ⇐⇒ w ∈ m(α) ⇐⇒ w 6∈ m(¬α) ⇐⇒ ¬α 6∈ T m(w).

Conversely, assume that U is a complete W -valuation, i.e. that for every
w ∈ W, U+(w) is a complete theory and that U−(w) = −U+(w). Define
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m′ : F −→ P (W ) by setting m′(α) = {w ∈ W : α ∈ U+(w)}. Then m′

is truth-functional. Indeed, since U+(w) is closed under deductions,

w ∈ m′(γ ∧ β) ⇐⇒ γ ∧ β ∈ U+(w) ⇐⇒ γ ∈ U+(w) and β ∈ U+(w)

⇐⇒ w ∈ m′(γ) and w ∈ m′(β) ⇐⇒ w ∈ m′(γ) ∩ m′(β)

and this proves that m′(γ ∧ β) = m′(γ) ∩ m(β). Moreover, since U+(w)
is complete,

w ∈ m′(¬γ) ⇐⇒ ¬γ ∈ U+(w) ⇐⇒ γ 6∈ U+(w) ⇐⇒ w 6∈ m′(γ)

and this proves that m′(¬γ) = −m′(γ).
On the other hand, since for every w ∈ W ,

w ∈ −m′(α) ⇐⇒ α 6∈ U+(w) ⇐⇒ α ∈ U−(w),

we have also

m(α) = (m′(α), −m′(α))

= ({w ∈ W : α ∈ U+(w)}, {w ∈ W : α ∈ U−(w)}) = K(U)(α). ⊣

Corollary 7.6. Given a W -valuation v, a model m of v exists if and
only if there is a family (Tw)w∈W of positive complete theories such that
T v(w) ⊆ Tw ⊆ −F v(w). This model is obtained by setting, for every
formula α, m(α) = ({w ∈ W : α ∈ Tw}, {w ∈ W : α 6∈ Tw}).

Proof. Let m be a model of v, then, H(m) is a complete W -valuation
and, since m ≥k v, we have that H(m) ≥k H(v). Then (H+(m)(w))w∈W

is a family of positive complete theories such that T v(w) ⊆ H+(m)(w) ⊆
−F v(w).

Conversely, let (Tw)w∈W be a family of positive complete theories
such that T v(w) ⊆ Tw ⊆ −F v(w). Then we can consider the W -
valuation U obtained by setting U+(w) = Tw and U−(w) = −Tw. By
definition U is complete and therefore by setting m′(α) = {w ∈ W :
α ∈ Tw} we obtain an element m of M such that m = K(U). Since by
hypothesis T v(w) ⊆ Tw and −Tw ⊇ F v(w), we have m = K(U) ≥k v,
i.e. m |= v. ⊣

Proposition 7.7. Given v ∈ BF
W , v 6= v⊤, the following are equivalent:

(i) v is a dc-theory.
(ii) T v(w) is a consistent positive theory for every w ∈ W and H(v) is

balanced.
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(iii) F v(w) is a consistent negative theory for every w ∈ W and H(v)
is balanced.

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) are evident. To prove
that ii) ⇒ i) we observe that H(v) is pointwise satisfiable and therefore
v is closed with respect to the inconsistency rule. Indeed, assume that
there are α ∈ F and w ∈ W such that α ∈ T v(w) ∩ F v(w). Then, since
H(v) is balanced, ¬α ∈ T v(w) and therefore T v(w) is inconsistent. This
contradict the hypothesis T v(w) 6= F . To prove the closure of v with
respect to MP− we prove that F v(w) is closed with respect to MP−.
Now if α and α →f β are in F v(w), then ¬α and ¬(β ∧ ¬α) ∈ T v(w).
Since T v(w) is a positive theory, this means that ¬α and ¬α →t ¬β ∈
T v(w) and therefore ¬β ∈ T v(w). Thus, since H(v) is balanced, we can
conclude that β ∈ F v(w). In a similar way one proves that (iii) ⇒ (i). ⊣

Taking in account the results in Section 5 we are ready to prove a
completeness theorem.

Theorem 7.8. The K-system is complete with respect to the truth-
functional semantics M. So, the Kripke truth-functional semantics and
the Kripke deduction system define a bilattice-based fuzzy logic.

Proof. Since both the elements in M and the fixed points of D are
balanced, it is possible to apply Lemma 5.8. Let v be a consistent dc-
theory, then, since v is a fixed point of D, for every w ∈ W , T v(w) is
a consistent positive theory such that T v(w) ⊇ ¬F v(w) and F v(w) ⊇
¬T v(w). Define Uα = (Uα

+, Uα
−) ∈ BW

F by setting:

• Uα
+(w) equal to any complete positive theory extending T v(w) in the

case α ∈ T v(w).
• Uα

+(w) equal to any complete positive theory extending T v(w) ∪ {¬α}
in the case α 6∈ T v(w).

• Uα
−(w) = −Uα

+(w).

Then Uα
+(w) is a complete extension of T v(w) such that, trivially,

α ∈ Uα
+(w) ⇐⇒ α ∈ T v(w).

Now, by Corollary 7.6, Uα is associated with an element mα ∈ M where
mα(β) = ({w ∈ W : β ∈ Uα

+(w)}, {w ∈ W : β 6∈ Uα
+(w)}) for every

formula β. To prove that mα is a model of v, we observe that, by
definition, Uα

+(w) ⊇ T v(w). To prove that Uα
+(w) ⊆ −F v(w) we observe



42 Daniele Genito, Giangiacomo Gerla

that, for every β ∈ Uα
+(w), ¬β 6∈ Uα

+(w) and therefore ¬β 6∈ T v(w).
So β 6∈ F v(w). This proves that mα is a model of v. To prove that
mα(α) = v+(α), we observe that

w ∈ mα(α) ⇔ α ∈ Uα
+(w) ⇔ α ∈ T v(w) ⇔ w ∈ v+(α). ⊣

Observe that the fixed points of D satisfy some natural algebraic
properties. Indeed, denote by F/≡ the Lindebaum algebra of the propo-
sitional calculus and for every valuation v set

[T v(w)] = {[α] ∈ F/≡ : α ∈ T v(w)}

and

[F v(w)] = {[α] ∈ F/≡ : α ∈ F v(w)}.

Then if v is a fixed point of D, [T v
w] is a proper filter and [F v

w] the
corresponding dual ideal in F/≡. If v = m ∈ M, then [T v

w] is maximal
and [F v

w] is its complement.

8. Final remarks and future works

We conclude the paper by listing some peculiar features of the proposed
approach to multi-valued logic.

1. As it is evident in considering square k-extensions, “Truth” and
“False” have a symmetric role in the deduction apparatus while the usual
deduction apparatus move from the truth of the axioms to the truth of
the theorems.

2. It is possible to represent both inconsistency and contradiction.
3. Designed values are not required. This is important since, in our

opinion, it is questionable to accept the “cut” implicit in this notion.
Indeed, if we assume that multi-valued logic is a way to represent the
vagueness phenomenon, then no cut is justified.

4. There is a notion of “approximate reasoning”. Differently from
the classical logic different proofs of the same formula can give different
pieces of information on this formula (giving two proofs can be better
than giving one proof of the same formula).

5. The set of tautologies is substituted with the B-subset of tau-
tologies Tau. The value Tau(α) represents the of a-priori information
on α arising from the structure of α. In accordance, every formula is a
tautology (and a contradiction) at a given degree. For example, if we
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consider the valuation structure ([0, 1], ≤, ∧, 1 − x, 0, 1), then there is no
formula assuming either constantly the value 1. So, no tautology exists in
the classical sense. On the other hand, if we refer to the related interval
k-extension, we have that Tau(p∨¬p) = [0.5, 1], an information on p∨¬p.

6. In all the main multi-valued logics the deduction operator is not
compact and it is not computable. In particular, the set of tautologies
is not recursively enumerable [21]. Now, we can extend to the B-subsets
of formulas the definitions proposed in [13] and therefore to give very
reasonable definitions of compactness and computability for bilattice
based logic. With respect to these definitions the deduction operator
is compact and computable. In particular, the B-subset of tautologies
in axiomatizable logic is recursively enumerable.

There are also several difficulties and open questions. For example,
the passage from the lower-constraints approach proposed by Pavelka
to the bilattice-based approach proposed in this paper increases consid-
erably the possibility of representing information in the inferential pro-
cesses for multi-valued logic. Nevertheless, the question arises whether
this is sufficient or we have to look for further extensions. In its very in-
teresting comments, the referee of this paper observed that the proposed
bilattices are not able to represent several kinds of information on the
truth value of the formulas. For example, consider the interval bilattice
associated with the 5-element MV-algebra V for 5-valued Łukasiewicz
logic. Moreover, observe that the formula (¬α) → α can only have
the value 0 or 1/2 or 1, but neither 1/4 nor 3/4. So we have that
Tau((¬α) → α) = [0, 1] = V (no information) while it should be natu-
ral to put Tau((¬α) → α) equal to the non-interval {0, 1/2, 1}. Then, a
natural candidate to substitute the class of intervals should be the whole
power set P (V ) together with the dual of the inclusion as a knowledge
order (see [9]). Unfortunately, there are at least two difficulties in this
choice. The first one is to define a truth-order in P (V ). The latter is
that in the case V infinite the cardinality of P (V ) is an obstacle for the
effectiveness and the representation of the deduction processes.

Regarding to future works, since this is an exploratory paper aiming
to give a new basis to multi-valued logic, it is evident that there are
countless open questions. The first one is to find suitable completeness
theorems (in the sense given by Definition 4.10) for the “translations”
of the main multi-valued logics in our framework. Moreover, should be
interesting to apply the proposed formalisms for logics which are possi-
bilistic or probabilistic in nature. For example, we can consider a logic
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whose semantics is defined by the class of finitely additive probabilities

in F , i.e. that class M of the maps p : F −→ [0, 1] compatible with the
logical equivalence and such that

i) p(α) = 1 for every tautology α,
ii) p(α) = 0 for every contradiction α
iii) p(α ∨ β) = p(α) + p(β) − p(α ∧ β) for every α, β ∈ F .

The resulting logic is related with the notions of lower envelope and
upper envelope (see [10, 11] and [12]). In a similar way it is possible
to define a bilattice semantics related with the necessity and possibility
measures (see [1, 5] and [12]).
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