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IN DEFENSE OF OPERATIONAL

QUANTUM LOGIC

Abstract. In the literature the work of C. Piron on OQL, “the operational

quantum logic of the Geneva School”, has a few times been criticised. Those

criticisms were often due to misunderstandings, as has already been pointed out

in [19]. In this paper we follow the line of defense in favour of OQL by replying

to the criticisms formulated some time ago in [4] and [17]. In order for the reader

to follow our argumentation, we briefly analyze the basic conceptual machinery

of OQL.

1. Introduction

Operational Quantum Logic (OQL) corresponds to the theory of “Property
Lattices” which, developed by the Geneva School, originated in [1, 22, 23, 24,
28, 30]. OQL’s aim is to characterize physical systems, ranging from classical
to quantum, by means of their actual and potential properties. Concretely,
it provides an operational alternative to the standard approaches on the
logical status of quantum theory and based on the point of view that the
set of mathematical representatives of the properties of an arbitrary physical
system forms a complete lattice, the approach of the Geneva School is closely
linked to the line of reasoning initiated by G. Birkhoff and J. von Neumann
in [5]. This approach has been compared with those of for instance C.H.
Randall and D.J.Foulis, G. Ludwig and of G.W. Mackey. It is not our
intention to go into the details about the differences and similarities of those
different approaches with respect to OQL, we instead refer to [7, 8, 9, 13, 18,
35] for some relevant material. In this paper we want to pay specific attention
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to some points of the theory which easily lead to misinterpretations. We
will go over remarks and critiques aimed at OQL. Indeed, in the papers
[4, 17, 21, 38], the work of C. Piron has been criticised. Many of these
criticisms were merely misunderstandings. D.J. Foulis and C.H. Randall in
[19] replied explicitly to the criticisms formulated in [21, 38].1 In this reply,
they exhibited a lot of possible pitfalls one might run into when learning
about OQL. We do not have the intention just to go over all the remarks
D.J. Foulis and C.H. Randall made, but will concentrate on two other papers,
namely, [4, 17]. Before doing so, we analyze the necessary basic concepts
so the reader will be able to follow the argumentation in defense of OQL
later on. Note that our analysis in section 2 is based on all the available
literature from the Geneva School and doesn’t restrict itself to the material
present at the time when W. Balzer, W.K. Essler and G. Zoubek wrote their
comments.

2. OQL’s Basic Conceptual Machinery

We exhibit here some conceptual machinery of OQL and limit our exposi-
tion to the notions which are necessary for grasping the argumentation in
succeeding sections, a more detailed and recent analysis of OQL focusing on
several different aspects can be found in [10, 11, 25, 36, 40]. We start from
the basic notion of a particular physical system which, within the tradition
of the Geneva School, has been perceived as an isolated and characterizable
part of the external world.2 Given a particular physical system, we can now
focus on the notions of yes-no question, actual and potential property and
state respectively.

2.1. Yes-No Questions

A (yes-no) question or a definite experimental project3 as it more recently
has been called, is specified in [25]:

1To [19], N. Hadjisavvas and F. Thieffine replied with [20] though their paper does not
add anything interesting to the discussion. Indeed, we agree with R. Piziak who reviewed
[20] for the AMS’ MathSciNet and states: “It is right and proper for any scientific work
to be scrutinized and criticized according to its merits. Indeed, this is a main impetus to
progress. But if mathematics is to be used as a tool for criticism, let it be used properly.”

2Note that D. Aerts in [1] and his following papers, works with the notion of physical
entity which is to be thought of equivalently.

3In this paper we take the liberty to use both the notion of definite experimental project
and question freely, within citations we will sometimes insert clarifying notions between
brackets.
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We take “a definite experimental project [question] relative to a
physical system to be a real experimental procedure where we
have defined in advance what would be the positive response
should we perform the experiment.” (p.65)

We think of an experimental procedure as a list of concrete actions which
explicitly must or must not be performed in a specific way. Given that we
execute such a procedure and that the conditions defining a positive result
are known, we assign the response “yes” to the question if the conditions are
satisfied, and the response “no” otherwise. The next notion we introduce
is that of a true question or, a certain definite experimental project as it is
called in [25]:

“A given definite experimental project is certain [a question is
true] for a particular system if it is sure that the positive response
would obtain should we perform the experiment.” (p.66)

Bear in mind that calling a question “true” does not presuppose that the
associated experiment has to be performed. A question can be true even if
one does not have the intention to ever perform the associated experimental
procedure. In the earlier work of C. Piron, the definition of a true question
encompassed the preparation of the physical system, e.g. in [30]:

“When the physical system has been prepared in such a way that
the physicist may affirm that in the event of an experiment the
result will be “yes”, we shall say that the question is certain, or
that the question is true.” (p.20)

The preparation procedure acts as an operational tool. A tool to obtain the
answer “yes” with certainty for a prepared, non-tested, physical system with
respect to a specific question. Since this operational tool is not explicitly
modeled in the mathematical theory of the Geneva School, we prefer the
first definition given. Although we intend to stick with the original Geneva
School theory, we wish to note that C. Cattaneo and G. Nisticó focused on a
syntactic scheme of the Jauch-Piron approach to the foundations of quantum
physics, in which they allow as well-formed formulas predicates expressing
that questions are true (respectively false) in a certain preparation [8].

The notion of an impossible question or impossible definite experimental
project is defined as follows in [25]:

“A given definite experimental project is impossible [a question
is impossible] for a particular system if it is sure that the positive
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response would not obtain should we perform the experiment.”
(p.66)

“Impossible” means here that it is certain that we would obtain the negative
response “no”, should we perform the experiment (see also [2]) — the positive
response “yes” is not even a possible result. Another important notion,
explicitly introduced by D. Aerts in [2], is that of a not true question or
not certain definite experimental project — not to be confused with the
impossible question,

A given definite experimental project is not certain [a question is
not true] for a particular system if it is not sure that the positive
response would obtain should we perform the experiment.

When we are not sure of a positive response, it is a sufficient condition to
state that the answer “no” is possible should we perform the experiment.
When “no” can be a possible answer, the question cannot be true, and
note that this is so, regardless of whether “yes” is possible or not — when
not, then the question is impossible. The way in which these questions
are constructed can lead to confusion. As C. Piron states in [29], “If the
[positive] outcome for the question [called] β is not certain, the statement
“β is true” is false, but we do not say “β is false”.” Because here “β is false”
means that “β is impossible”.

There are some questions which have a specific status. First take a look at
the trivial question, defined as the following specific definite experimental
project in [25]:

Trivial question: “Do whatever you wish with the system and
assign the response “yes”.” (p.67)

This also encompasses doing nothing with the physical system. We call this
definite experimental project certain iff the system exists. Indeed, the trivial
question is true when we are certain to obtain the positive answer “yes” were
we to perform the question. The only condition of the trivial question is that
we have a physical system to begin with. Next, consider the absurd question
defined in [25] as the following specific definite experimental project:

Absurd question: “Do whatever you wish with the system and
assign the response “no”.” (p.67)

The absurd question can never be a true question. Furthermore, we can state
that the absurd question is an impossible question. Another point which
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deserves our focus is the product question, which is a question consisting of
the product of a family of questions. More specifically the product question
is defined as a specific definite experimental project in [25], for a specific
family of questions which we call A and a question called α,

Product question: “Choose an α from the family A as you wish,
and effectuate it.” (p.67)4

In the definitions given by C. Piron it is more explicitly stated that the
answer obtained from effectively performing the arbitrarily chosen question
is the answer attributed to the product question. We then conclude that
the product question is true if it is sure that the answer “yes” would obtain
should we perform the experiment. In other words, we follow [25, p.67],

The product of a family of definite experimental projects called A

is a “certain definite experimental project” [the product question
is true] for a particular physical system iff each α ∈ A is certain
[true] for the particular physical system.

And finally we obtain the inverse of a particular question, called the inverse
question, by exchanging the responses “yes” and “no”. Note that the absurd
question is the inverse of the trivial question and vice versa. The inverse of
a product question with respect to a certain family of questions, is then
the product question with respect to the family of the inverse component
questions.

Concentrating on the mathematical language of OQL, we denote questions
as α, β, ... ∈ Q, the trivial question as I ∈ Q, the absurd question as O ∈ Q,
the product question with respect to a family of questions αi as ΠJαi and to
denote the inverse of a question we use: ∼ : Q → Q. When we consider all
possible questions which could be performed on a particular physical system,
we encounter a relation between questions by considering, as for example in
[31], that,

“A question α is said to be stronger than a question β, i.e. α ≺ β,
if every time α is true, β is true as well.” (p.399)

We call ≺ ⊆ Q×Q a preorder relation, indeed, it is reflexive and transitive.
Of any collection of questions equipped with such a preorder relation, I is the
maximal (top) element and O the minimal (bottom) element. Further, we
call two questions equivalent, written α ≈ β, iff α ≺ β and β ≺ α. As made

4Note that “choose an α as you wish” means “choose an α at random or arbitrarily”.
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explicit in [24], this relation is reflexive, symmetric and transitive. When a
question α is true then so are all questions equivalent to α. So every always
true question is equivalent to I, the trivial question. And every question α

is equivalent with αΠI since αΠI is true iff α is true. Coming back to some
issues concerning the product question we write:

ΠJαi is true ⇔ αi is true ∀i ∈ J

(ΠJαi)
∼ = ΠJ(α∼

i )

2.2. Properties

In the tradition of the Geneva School, the properties a physical system pos-
sesses in reality have an objective existence. C. Piron states it in [31]:

“The system is and it is what it is. It possesses different prop-
erties and whether these are known or not by the physicist does
not change anything to the reality of the object itself. We have
to describe these properties and not to justify or to explain the
knowledge of the physicist about them.” (p.397)

As we analyzed it in [36], with a particular physical system the physicist
associates certain properties and analyzes their ontological value by means
of possible experiments. More explicitly we follow [10],

Properties are construed as candidate elements of reality cor-
responding to the definite experimental projects defined for a
particular physical system.

Of course, several questions can be associated with the same property and
we can classify properties as actual or potential. It is important to note
that as long as we deal with “the properties” of a physical system and “the
associated questions”, we see the system at an abstract level. This is to say
that only from the moment we make the distinction between the actuality
and potentiality of properties, and similarly between true, not true and
impossible questions, is the particular physical system inherently conceived
to be in a specific state — this notion will be elaborated further on. In that
way:

A property of a particular physical system is actual iff the ques-
tions which test it are true, and is potential otherwise.

More specifically, if a question is not true, the associated property is poten-
tial. Referring to the criterion of reality put forward in [16] together with
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the above given definition of a true question, it is claimed that a true ques-
tion corresponds to an element of reality. To the extent that one assigns an
ontological value to the elements of reality, they are what we called actual
properties.

Within the mathematical language used by OQL, we represent properties as
a, b, ... ∈ L. About a property associated with a particular question we can
now say that there is a one-to-one correspondence between: 1) the property
a, associated with the definite experimental project (question) α, and 2)
the equivalence class of questions [α] which is the collection of all definite
experimental projects β such that β ≈ α. This correspondence is realized
through the identification of a and [α]. In other words, to each equivalence
class of questions there “corresponds” a property. For our convenience we
will introduce the notation ζ : Q → L : α 7→ a to express that a is associated
with α ∈ [α]. Next, we call the property expressing the existence of a
physical system 1 = ζ(I) the trivial property and 0 = ζ(O) the absurd
property. To the use of ζ, we must add that in the Geneva School literature
one originally defined a as [α]. This is something we however try to avoid
since it points to a form of operationalism which is not at all in accordance
with the “operational attitude” of the Geneva School — see [36] for details.

Note that it is not possible to conceive of the set of all properties of a given
system. One could here follow the point of view taken in [1, 29] according
to which one can only hope for a set which is large enough to contain the
useful ones with respect to what we want to do with the system. We however
consider it to be a useful “working-hypothesis” that the collection of all
properties constitutes a set, in a mathematical sense. We now obtain a
partial order relation, ≤ ⊆ L× L, on that collection of properties. It is the
preorder relation on questions which induces this partial order relation, (see
for instance [29, p.517]):

a ≤ b iff α ≺ β with ζ(α) = a and ζ(β) = b.

Here, a ≤ b states exactly that b is actual whenever a is actual. One easily
verifies that this partial order relation is reflexive, transitive and antisym-
metric. Within OQL one can now prove the theorem stating that the collec-
tion of all properties of a physical system, noted as L, is a complete lattice.
Quoting C. Piron, [33], this means:

“qu’à chaque famille de propriétés {ai ∈ L | i ∈ J}, J quel-
conque, sont associés deux propriétés de L, ∧J ai et ∨J ai qui
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sont respectivement la borne inférieure (le plus grand minorant):
x ≤ ai ∀i ∈ J ⇔ x ≤ ∧J ai

et la borne supérieure (le plus petit majorant):
ai ≤ x ∀i ∈ J ⇔ ∨J ai ≤ x.” (p.9)

For the detailed proof of this we refer to for instance [29, 30, 33]. What we
do want to stress here is that the existence of a greatest lower bound or meet
for any family of given properties ai, is operationally provided by means of
the product question, (see [25, p.68]):

∧Jai = ζ(ΠJαi) with ζ(αi) = ai

The meet of physical properties as such obtains a physical meaning and its
existence for any set of properties guarantees that the poset of properties is
a complete meet semilattice. The join or least upper bound, on the other
hand, cannot be attributed a direct physical meaning in the same sense and
is defined by means of Birkhoff’s theorem by which every complete meet
semilattice is a complete lattice, (see [25, 29, 30]),

∨Jai =
∧

{b ∈ L | ∀i ∈ J : ai ≤ b}

When we review the use of meet and join, we see that the meet corresponds
to the classical conjunction whereas the join will not always correspond to
the classical disjunction, due to the possibility of superpositions for quantum
systems. Hence:

“a ∧ b is actual” ⇔ “a is actual” and “b is actual” ∀a, b ∈ L

“a ∨ b is actual” ⇐ “a is actual” or “b is actual” ∀a, b ∈ L

As is proved in [29], if the latter implication holds in both directions, L is a
distributive lattice.

2.3. States

Traditionally the state of a physical system was defined as the collection of
all its actual properties (see e.g. [24, 29]). This definition is a translation of
the belief that the information which fully represents a particular physical
system in a singular realization is encrypted in its actual properties. Since
we do not adopt a kind of operationalism such as P.W. Bridgman’s, we
reconsider the concept of state as initiated in [25] and further elaborated on
in [11],
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States are construed as abstract names encoding the possible
singular realizations of the given particular physical system.

The concept of state is built up in such a way that it can be the abstract
name corresponding to the one ontological realization of a particular system
or, that it can be the name corresponding to a realization in which the
system “can be” but “is not”. It is important to grasp that for OQL the
state is not an abstract statistical ensemble of physical systems, nor does it
involve ontological probabilities — for details we refer to [3, 36]. According
to OQL there should be no difference in the way in which we model the
states of different physical systems ranging from classical to quantum.

We have seen that the actual properties of a physical system are “elements
of reality” and that it only makes sense to talk about the actuality (poten-
tiality) of properties if the system is conceived to be in a specific state. This
insight allows us to make the link between actual properties and the state
of a physical system explicit. Indeed, the state stands in a correspondence
relation to the system’s actual properties, though contra C. Piron and D.
Aerts’ earlier conceptions, we believe that the state should not be defined as
equal to a set of actual properties. This implies that the maximum amount
of information which fully represents a particular physical system in a sin-
gular realization is not called “the state of a system” but following [36] has
been called “the state set” which is defined as follows:

The state set is the set of all properties which are actual in case
the particular physical system would be ontologically realized in
a specified state.

From the moment that a physical system is conceived to be in a certain state
or has been prepared as such, there is always at least one actual property
which constitutes its state set with respect to that state. In the worst case,
a state set contains only the property associated with the trivial question.
It is important to mention that the notion of state set is so defined that one
physical system can have several state sets; one for every of the states in
which it can possibly be. Given the concept of a “state set”, the greatest
lower bound of such a set is one property of the system and we know that
if the greatest lower bound of a state set is an actual property then all the
elements of the state set — elements which are necessarily equal or greater —
will be actual. This greatest lower bound of a state set is said to represent the
state in which it can be actual, in other words, it is called a “state property”
— the notion is a translation of C. Piron’s propriété-état introduced in [33].
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When modeling states, “possible” realizations of physical systems, within
the mathematical language of OQL, we use the notation E ∈ Σ where Σ
represents the state space. A state property of state E will be represented
by pE ∈ ΣL, where ΣL denotes the set of atoms of L, and a state set related
to E is modeled as S(E) = {a | a ∈ L, a actual in E} ∈ P (L).5 In [24, 29]
it is stated that if we have a complete lattice L, S(E) satisfies some specific
properties:

(1) If a ∈ S(E), b ∈ L and a ≤ b then b ∈ S(E)

(2) If ai ∈ S(E),∀i ∈ J then ∧Jai ∈ S(E)

(3) 0 6∈ S(E), 1 ∈ S(E) for every state set S(E)

We call pE = ∧a∈S(E)a the strongest property in L that is actual in the state
E . If we now look at the notion of an atom as defined below, we see that an
atom is the strongest property which will be actual in a certain state, hence
atoms are state properties.

pE is an atom of L if it is different from 0 and is such that: if
there is a property a ∈ L and a ≤ pE ⇒ a = 0 or a = pE .

Next it makes sense to postulate within OQL, that one state property should
never imply the actuality of another state property. The argumentation for
this postulate is traced back to Aristotle and involves the belief that a change
of states implies a shift between properties which are actual and potential.
Such a shift is excluded when two state sets are subsets of one another or
when two state properties are less or equal to each other. From this postulate
it follows that all the state properties of a physical system are atoms of a
property lattice, in other words, the property lattice is atomic. Further, the
property lattice can be called atomistic, i.e. each property a ∈ L can be
written as

∨
{p ≤ a | p is an atom} (see theorem 1 in [25]).

We are now in the position to redefine our notion of state set. Given the
strongest actual property pE = ∧a∈S(E)a in the state E , the state set S(E)
has the following form (see [33]):

S(E) = {a ∈ L | pE ≤ a}

Similar to how we handled the partial order relation on the set of properties
of a physical system, we will now deal with an orthogonality relation on the
collection of all states possible for a physical system. Following [25, 32, 34]:

5We allow ourselves to drop the subscripts of state properties when no confusion is
possible.
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“call E1 and E2 orthogonal, written E1 ⊥ E2, if there exists a
definite experimental project α such that α is certain for E1 and
impossible for E2.” [25, p.69].

The orthogonality relation is symmetric and antireflexive [25]:

“If E1 ⊥ E2 then E2 ⊥ E1 and E1 6= E2” (p.69)

We call a question [definite experimental project] α true [certain] for a state
E in case the property a = ζ(α), is an element of S(E). A question α is
impossible for a state E in the case α∼ is true [certain] for E which implies
that the property a = ζ(α) is not an element of S(E). Note that when E1 and
E2 are represented by the state properties p and q respectively, we represent
E1 ⊥ E2 also by p ⊥ q. Within OQL one then introduces the axiom stating
that for every given state E there exists at least one question which is true
if and only if the state is orthogonal to E . Exactly this axiom allows us to
postulate the existence of “opposite” properties, i.e. for every state property
p in ΣL, there exists a property p♯ ∈ L which is actual if and only if the state
is orthogonal to the one represented by p. The property p♯ is the opposite of
the state property p while the opposite of any other property of L is defined
by means of the meet of such opposite properties p♯, i.e. we introduce the
map ′ : L → L : a 7→

∧
{p♯ | p ≤ a}. Another axiom insures that each

property is the opposite of another one, in other words, the map ′ : L → L
is surjective. Without going into further details we are now allowed to call
′ : L → L an orthocomplementation, see for instance [33].

Returning to the concept of state, if T is a subset of Σ, we use the notation
T⊥ = {E ∈ Σ | E ⊥ η, for all η ∈ T} for the set of all states orthogonal
to those in T . Note that such orthogonality relations were, within the con-
text of the Geneva School, explored first by D. Aerts in [1]. In a way this
forms the cornerstone of a “state space description” of a physical system,
parallel to its property lattice description. This parallelism is called the
state-property duality and can be characterized once we can associate with
each property a the set of states µ(a) = {E ∈ Σ | a ∈ S(E)} in which it is
actual and to each state E the set S(E) of its actual properties. Formally,
µ : L → P (Σ) : a 7→ µ(a) is called the Cartan map and is injective, order and
meet-preserving. This Cartan map is surjective if we restrict the co-domain
to the biorthogonally closed subsets of Σ, i.e. when we take subsets T ⊆ Σ
which satisfy T⊥⊥ = T . Further we note that if the system satisfies the al-
ready mentioned axioms, the application of the Cartan map determines an
isomorphism between L and (Σ,⊥) the lattice of the biorthogonally closed
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subsets of Σ, ordered by inclusion, with the singletons {E} as its atoms (see
[33]).

The above mentioned dual state-property description for a particular phys-
ical system is very broad, both classical and quantum systems can be de-
scribed by it. Of course, OQL would not have the known impact were it
not the case that there is a representation theorem which proves the gen-
erality of the OQL-formalism with respect to the Hilbert space formalism.
Indeed, C. Piron proved in [28] that a property lattice which is complete,
atomic, orthomodular, which satisfies the covering law and some additional
properties6, can be represented in the form of the lattice of closed linear
subspaces of a generalized Hilbert space. The crucial axioms at stake in
Piron’s representation theorem — see [39] for a recent concise analysis —
and which can not be stated to hold in general, are weak modularity and the
covering law. Indeed, those two quantum axioms as we may call them, are of
a more mathematical nature than the others, and according to D. Aerts [1]
they form the core-reason why it is impossible to describe separated systems
by means of quantum theory. It is not at all our intention to elaborate on
any more details here, hoping to have pointed out enough basic conceptual
machinery to refer the interested reader to the OQL-literature.

3. A Reply to Criticism

In [17] we witness some confusion concerning C. Piron adhering to the stance
of realism, we quote:

“His [Piron’s] epistemological or metaphysical position is unclear.
He adapts a realistic position without telling whether this realism
— nowadays called “physicalism” in order to distinguish it from
ontological or “Platonic” realism — is an absolute (or naive) or
hypothetical (or critical) one.” (p.411)

First of all, we would like to object to the point of view that the realistic
position of the Geneva School would be some kind of physicalism or mate-
rialism — the view in which reality is reducible to, or emergent from, the
realm of physical things and processes [26].7 OQL’s realistic position also is
not naive in the sense that certified truth is believed to be easily accessible,

6The property lattice has to be irreducible and must be of a sufficient dimension.
7Although one will nowadays perhaps not anymore put the thesis of physicalism forward

in the same strong terms, we still adopt its “old” meaning, i.e. “Physicalism asserts that
every term of the language of science — including beside the physical language those sub-
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for details concerning this kind of debate in favor for a more critical realism
we refer to for instance [26, 27]. And indeed, as we explained in [36, 37],
the metaphysical stance of the Geneva School lies in the nature of a critical
scientific realism. W.K. Essler and G. Zoubek are not the only ones who
thought Piron’s realistic position to be somewhat unclear. In [4] we see some
confusion concerning realism and the EPR-principle of reality:

“By a realistic interpretation he [Piron] means an interpretation
under which the objects of the theory can be described completely
by their actual properties.” (p.403-404)

It is obvious that W. Balzer who wrote this comment in 1981, was mainly
focusing on C. Piron’s earlier work. We think that in the meantime things
have been put in a larger perspective. But it is indeed so that the state
of a physical system has been conceived by C. Piron as the collection of
its actual properties which describe the system completely. It is important
however to see that the actual properties of a physical system only count
as a complete description of it in Piron’s sense when we see it relative to a
specific “singular realization” of that system. We mean this exactly in the
sense that we can conceive a state set to describe a physical system. A more
general and complete description of a physical system is however given by its
property lattice consisting of all its properties. If we want to focus on states
instead of properties, the closest we get to obtain a complete description
of the system in general is by taking into account all possible states of the
system, in other words, its state space. So we have to disagree with W.
Balzer if he means that the realistic approach of the Geneva School only
allows us to focus on actual properties to describe a physical system. We
do retain the criterion of reality as put forward in the EPR-paper, though
this does not exclude potential properties. There is a difference between the
lattice of all properties which characterizes the system in general and the
set of actual properties which describes the system in a certain state! We
think this may be a misconception in [4]. In his analysis of C. Piron’s work,
he also tries to see properties and questions as sets of physical systems.
This is obviously a picture which will not work, there is no need to give
another interpretation of properties than the one we analyzed above. A
property corresponds to an equivalence class of questions and a question is
operationally characterized. Contrary to what is often thought, a question
is not something vague but rather very-well specified. There is another
misconception concerning properties and questions in [17], we quote:

languages which are used in biology, in psychology, and in social science — is reducible to
terms of the physical language.” [6, p.467].
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“Since he [Piron] presupposes an absurd question 0 he has to
assume an absurd property 0 also which has then to be, according
to his distinction, either an actual or a potential property. But
obviously 0 is neither an actual nor a potential property of an
object. He therefore has to distinguish the impossible properties
both from the actual and from the potential properties.” (p.412)

In the sense that potentiality of a property is defined within OQL, 0 is and
will always be a potential property. Especially because “0 is potential” only
means that it is “not actual”. Of course there is more to calling a prop-
erty “potential”, within OQL a deterministic or indeterministic change of a
particular physical system entails a shift between certain of its actual and
potential properties. It is therefore that we analyzed the notion of a poten-
tial property in [36] as a capability with respect to actualization, however we
wish to stress that such an analysis can only be applied to potential proper-
ties different from 0. If one thinks it would improve the theory it is of course
possible to introduce the notion of an impossible property. In that case an
impossible property could correspond to an equivalence class of impossible
questions and an impossible property then implies that the property is po-
tential, but not vice versa. Concerning the concept of a question, defined in
[31] as an experiment leading to a well defined alternative of which the terms
are “yes” or “no”, the “yes” corresponding to the expected result and the
“no” to all the others; there also exists some confusion. It has maybe not
been very clear in [31] but as we analyzed it above, using [25], it concerns
an experimental procedure which is performable and is such that we can
interpret the outcome of it in terms of yes and no — exactly which outcome
corresponds to “yes” is decided upon in advance. There is even no need to
specify which outcome of the experiment we interpret as “no” since it will
be everything not leading to the response “yes”. If we concentrate on the
possible confusion which arises here, we quote [17]:

“Other concepts of his approach are ambiguous and vague, espe-
cially his central concept of an “experiment leading to an alter-
native”. This concept of an experiment may be understood in at
least three different ways:
(1) An experiment is a device that tells the scientist how to han-

dle things by observing them and especially how to use an
apparatus for this purpose.

(2) An experiment is a single performance of such an experimen-
tal device together with its result.
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(3) An experiment is a basic (or minimal covering) law that gen-
eralizes inductively the connections between performance and
result of that device.” (p. 412)

Firstly note that there is more to a question than just performing an experi-
ment. In any case, we believe that for C. Piron an experiment is similar to a
procedure which we can perform. OQL clearly distinguishes an experiment
and its performance, this means indeed that something along the lines of
(1) is the case and not (2). However, W.K. Essler and G. Zoubek think
that a reconstruction of C. Piron’s theory along the lines of (1) would make
no sense of Piron’s use of the terms “actual” and “potential” and therefore
they exclude interpretation (1) as a possibility. This seems to be a mistake,
regarding questions we first of all do not use the terminology of actuality
and potentiality which is reserved for properties. But if W.K. Essler and G.
Zoubek have the terminology of “true” and “not true” questions in mind,
we still do not think there is a problem with accepting interpretation (1). A
question is true if in case we would perform it, “yes” is a sure answer. Since
this is a counterfactual definition, it is not in disaccordance with disconnect-
ing experiments from their performance. However Essler and Zoubek are
convinced that (3) is the case, questions are strict laws and therefore prop-
erties too are identified with a law or a theory [17, p.413-414]. One of their
arguments concerns the counterfactual definition of a true question, [17]:

“The statement “If we performed the question the answer “yes”
would be certain” cannot be justified by referring to some few
experiments and its results but only either to some law induc-
tively based on those results or gained by other laws or to some
inductive method expressing the belief in uniformity of the per-
formances of this experiment.” (p.414)

We agree with W.K. Essler and G. Zoubek if their statement points to the
connection between the lawlike character of utterances and the decidabil-
ity of those counterfactual stated utterances. Indeed, when some kind of
question is always true on some kind of physical systems, the question is
connected to some law-like behavior of the system. The same is the case for
impossible questions, but not true questions are then linked to utterances
which are definitely not law-like. Now, we still have to be careful with such
generalizations here, for between utterances with an explicit law-like charac-
ter and those without there is still a whole gray-scale left. We do not intend
to enter the debate on the status of laws in connection with counterfactuals
within philosophy of science, let us just mention instead that “experiments”
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are certainly not laws. We also do not believe one can so easily generalize
and say that any question or property is a law. Maybe W.K. Essler and G.
Zoubek have a small point here but according to us it will only involve true or
impossible questions. Note that this also does not exclude that experiments
can be interpreted as disconnected from their performances.

Another critical point concerns the product question. We quote [17]:

“In his book [30, p.20] he [Piron] tells us: “... one measures
an arbitrary one of the αi and attributes to Πiαi the answer
thus obtained ... By starting from the definitions it is easy to
verify the following rule: (Πiαi)

∼ = Πi(α
∼
i )”. The equation

“(Πiαi)
∼ = Πi(α

∼
i )” holds only in very few degenerate lattices,

e.g. if the lattice contains only the elements I and 0; in every
other case we obtain: “(Πiαi)

∼ = Σi(α
∼
i )”. So Piron obviously

takes “Πi(α
∼
i ) = Σi(α

∼
i )” to be true.” (p.415)

It is not clear what W.K. Essler and G. Zoubek are getting at here; perhaps
they have something like the De Morgan Laws in mind which of course are
not applicable here. But since we are talking about operational definitions,
what is their interpretation of the Σ of a family of questions? Especially tak-
ing into account that it has to be operationally defined ! The product ques-
tions are operationally precisely defined and therefore “(ΠJαi)

∼ = ΠJ(α∼
i )”

does make sense. W.K. Essler and G. Zoubek try to analyze their confusion
and assume two possible cases. One in which the members of the family
on which a product is defined have to be questions of a similar kind and
one in which they can be different. In the first case they use their previous
law-argumentation which does not take them very far and in the second case
they say that “Piron’s rule of handling a product is of course wrong since a
product may be false even if the arbitrary chosen member is true, namely,
if one of the remaining members is false” [17, p.415]. Here we believe they
pretty well mix up some fundamental ideas. There is a difference between
obtaining the answer “yes” for a question and a “true” question. A product
question gives the result “yes” if we perform it, this means exactly that the
arbitrarily chosen question gives “yes” if we perform it. So, even when all
questions of a specific family are impossible except for one, the product can
give the result “yes”. It is something different to say that a product question
is true or not true. It is true when every question which we could pick out of
the specific family — relative to which the product is defined — is true. And
a product question is not true when not every question which we could pick
out of the specific family is true; it is impossible when every question which
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we could pick is impossible. This leads us to conclude that W.K. Essler
and G. Zoubek’s analysis is simply wrong, a product question can never be
“false” (impossible) when the arbitrary chosen member is true. A product
question is “not true” in case the one chosen member is true and if at least
one of the remaining members is not true. The main point here is that we
cannot claim in the latter case that any “arbitrarily chosen” member is true.
Truth and falseness — where false means impossible — of a product ques-
tion does not have anything to do with the truth or falseness of one chosen
member, but has to do with the status of the arbitrarily chosen member,
in other words, with every member in the family. We agree that a product
of questions is a confusing concept, being constructed such that we can still
talk about the product of two questions even if their performances wouldn’t
be possible together. Let us now concentrate on (ΠJαi)

∼ = ΠJ(α∼
i ). A few

possible situations indicate this equality:

1) Suppose we have a family of questions {αi ∈ Q | i ∈ J} with J given.
If now every αi we could select, gives “yes” if we would perform it,
then ΠJαi is true and (ΠJαi)

∼ impossible (or false). If every arbitrary
question we could pick out of {α∼

i | αi ∈ Q, i ∈ J} gives “no” if we would
perform it, then we say that ΠJ(α∼

i ) is impossible (or false).

2) If on the other hand not every αi we could select gives “yes”, ΠJαi is
not true and so is (ΠJαi)

∼ not true. If every αi which we could choose
gives “no”, ΠJαi is impossible and so (ΠJαi)

∼ is true. If any arbitrary
α∼

i which we could have selected gives “yes”, then we say that ΠJ(α∼
i ) is

true. If not every arbitrary α∼
i which we could have selected gives “yes”,

then we say that ΠJ(α∼
i ) is not true.

W.K. Essler and G. Zoubek clearly did not understand that the product
question has an operational definition and gives rise to a property called the
meet. Contrary to what is claimed in [17], in order to test the affirmation “a
is actual and b is actual” we do not have to “perform” two experiments on
the same system! We only have to consider the product question αΠβ with
ζ(α) = a and ζ(β) = b. On the other hand it is clear that the join, defined
by means of Birkhoff’s theorem, admits of no direct physical meaning [10].
More explicitly,

∨Jai = ζ(Π{β ∈ Q | ∀i ∈ J : αi ≺ β}) with ζ(αi) = ai.

When we look at the disjunction, the classical “or”, we see that a OR b is a
property of a physical system iff it is possible to construct a question that
tests this property [1] — something which will in general not be the case.



208 Sonja Smets

Finally we want to say something with respect to ideal, first kind measure-
ments. A recent and detailed analysis of the part of OQL dealing with
such measurements can be found in [36]. To be brief we mention that OQL
paid special attention to the kind of questions which allow one to deal with
properties — being actual or potential — after the associated experimen-
tal procedures have really been performed. It is obvious that not just any
question is fitted for this purpose, indeed performing an arbitrary given ex-
perimental procedure may destroy the particular physical system. So, what
is called an ideal measurement of the first kind of a property a is a definite
experimental project [a question] α which satisfies the following conditions
[25, 33]:

(i) a = ζ(α) and a′ = ζ(α∼);
(ii) if the positive response is obtained then a is actual immedi-
ately after the measurement;
(iii) if the positive response is obtained then the perturbation
suffered by the system is minimal.

In [4, p.405] W. Balzer thinks that C. Piron in his definition of such kind of
measurements uses basic concepts which are new relative to the underlying
theory he starts with. Especially the notion of a question which is “true af-
terwards” seems to be confusing. Note that C. Piron in [31] intended to talk
about properties which were actual or not afterwards, but we could indeed
consider questions as well. There is however nothing special going on here;
what seems to be forgotten by W. Balzer is the fact that when we consider
a question to be true, not true or impossible, the physical system is always
in a specific singular realization. And it is of course always with respect to
a specific state of the system that we can say that the property associated
with a question is (potential) actual. As such, given a particular physical
system we can ask whether a specific question is true or not and it makes
sense to ask the question again after the state of the system has changed.
What also may cause the confusion is that an ideal first kind measurement
α is true and a is actual when it is sure that the mentioned conditions would
be fulfilled should we perform the experiment and exactly those conditions
refer again to a being actual, so there is some recursion involved. When
focusing on condition (ii) which is responsible for the label “first kind”, α

is true and a is actual if a remains actual and α remains true should we re-
peatedly perform the associated experimental procedure. Further note that
in case we deal with a quantum system, an ideal measurement of the first
kind allows us to calculate the perturbation suffered by the system in course
of the associated action if it yields a positive response. This gave rise to the
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formulation of theorem 4.3 in [30, p.68] stating that if the response of β,
ideal and first kind, is “yes” then the state of the system immediately after
the experiment is (p ∨ b′) ∧ b, where p is the state before and b = ζ(β). So
actually we are puzzled by W. Balzer’s remark where he says:

“...I think the basic vocabulary must be enlarged in a nontrivial
way and new axioms must be adduced. If this is not done I find
it difficult to prove assertions like the following (compare also
[30]):
If a system is in state q, if question α is compatible with p and
if α is performed and yields the answer “yes” then the state of
the system after the experiment is (p ∨ a′) ∧ a where a is the
proposition defined by α.” (p.406)

Since this “assertion” is quite badly formulated we can only ponder what
W. Balzer means. How are p and q related? What kind of question is α

and what does it mean for questions to be compatible? C. Piron only talked
about compatible properties where compatibility is used to explain the above
mentioned condition (iii) formally. We can admit however that ideal and first
kind questions belong to a part of OQL which deals with aspects of dynamics
and that is a part which allows itself to further explorations (see for instance
[12, 14, 15]).

Finally we may affirm that W.K. Essler and G. Zoubek did not understand
C. Piron’s work very well, so we hope to have answered also some of their
questions in this reply to criticism, especially when one reads the following
in [17]:

“As long as Piron does not answer these and similar questions
in a way satisfactory to logicians and especially as long as he
does not determine the logical structure of the elements of his
class Q of all questions his attempt remains as obscure as Heideg-
ger’s approach to a new ontology: he is able then to immunize
his theory against any critique by pretending that he has been
misinterpreted, and no one will then be able to prove the inter-
pretation’s correctness.” (p.417)
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