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“REDUCTIO AD ABSURDUM” AND

 LUKASIEWICZ’S MODALITIES

1. Introduction

The present article contains part of results from my lecture delivered at II
Flemish-Polish workshop on Ontological Foundation of Paraconsistency. In
the lecture presented at the First Flemish-Polish Workshop (see [24]) as well
as in a series of other works ([19, 20, 21, 22, 23]) I studied the class Jhn

of non-trivial extensions of minimal or Johansson’s logic. Minimal logic (we
will denote it Lj) suggested for the fist time by Kolmogorov [15] and received
the name “Johansson’s logic” after the work [13] by Ingebrigt Johansson is
a paraconsistent analog of Heyting’s intuitionistic logic Li. These logics
have common positive fragment but different axioms for negation. In Li the
negation is defined by the laws (p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p) (reductio ad
absurdum) and ¬p ⊃ (p ⊃ q) (ex contradictione quodlibet), while Lj have
only first of these two axioms.. In this way minimal logic is paraconsistent
according to the generally accepted definition of paraconsistent logics as
logics admitting inconsistent but non-trivial theories. But it lies on the
border line of paraconsistency. Usually (see, e.g. [27]) the above definition
of paraconsistency is augmented with the remark that it is not absolutely
satisfiable, and namely Lj serves as a counterexample, because we have in
Lj for arbitrary formulae ϕ and ψ,

{ϕ,¬ϕ} ⊢ ¬ψ.

This condition means that although inconsistent Lj-theories may be non-
trivial, they are trivial with respect to negation. Any negated formula is
provable in any inconsistent Lj-theory.
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Due to this “paraconsistent paradox” of minimal logic it looks natural
to finish an investigation of the class of Lj-extensions with an attempt to
overcome it. We try to do it by emerging the class of Lj-extensions in a more
general class of paraconsistent logics and pointing out some special property
distinguishing extensions of minimal logic in the latter class. We suggest
also that negation in logics from the above mentioned class should preserve
the most essential property of intuitionistic negation, namely, that the nega-
tion must be defined as reduction to absurdity. In intuitionistic logic, the
negation is characterized by three important features: 1) we assert ¬ϕ if sup-
posing ϕ leads to absurdity; 2) absurdity may be explicated as propositional
constant ⊥; 3) absurdity implies everything, ⊥ ⊃ p, or ¬p ⊃ (p ⊃ q). Note
that item 3 implies, in fact, item 2. If any contradiction implies everything,
all contradictions are equivalent, and so we may use a propositional constant
do denote arbitrary contradictory or absurd statement. In minimal logic Lj

we omit item 3, which allows to distinguish nonequivalent contradictions.
In an extension L of Lj, the contradiction ϕ ∧ ¬ϕ is equivalent to ⊥ if and
only if ϕ is provable in Lneg = L + {⊥}, so called negative counterpart of
L (see [23]), moreover, it was stated in [23] that Lneg may be treated as
a logic of contradictions of L. On the other hand, the item 2 is preserved
in Lj which results, in particular, in the above mentioned “paraconsistent
paradox”. In this situation it looks natural to make the next step and to
resign not only from item 3, but also from its consequence, item 2. This
gives rise to a question, how in this case the absurdity should be explicated
in a logical system?

I suggest an answer, which will be based on the interrelations between the
logic of classical refutability (hereafter, Le) and modal logic  L of  Lukasiewicz.
The logic Le of classical refutability can be obtained from Lj by extending
its positive fragment up to the classical positive logic. It was suggested by
P. Bernays [3] and received his name from H. B. Curry [7]. Namely Le was
the starting point in the author’s investigations of the class of Lj-extensions.
In [19], Le was characterized via the class of Peirce-Johansson algebras (see
Section 2) and it was proved on the base of this characterization that Le

is the greatest paraconsistent extension of minimal logic having only two
proper non-trivial extensions: classical logic Lk, and maximal negative logic
Lmn(= Le + {¬p}). The above characterization implies that the simplest
matrix for Le has at least four elements, and so Le can be considered as
a four-valued logic as well as  Lukasiewicz’s modal logic. This fact and the
work [14] by A. Karpenko, where he considered isomorphs (see Section 2) of
classical logic in three-valued Bochvar’s logic B3 and suggested a hypoth-
esis that namely different isomorphs of classical logic definable in a given
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finite-valued logic determine its paraconsistent structure, inspired the work
[20]. In this work, it was proved that one can define in Le only one iso-
morph of classical logic and two isomorphs of maximal negative logic. These
isomorphs, on one hand, correspond to translations of Lk and Lmn into
Le playing a key role in studying the structure of the class Jhn (see [21]).
On the other hand, the isomorphs were induced by mappings which can be
identified in a natural way with modalities of  L, which easily implies the
fact that Le is definitially equivalent to the positive fragment of  L and that
Le extended by the classical negation is definitially equivalent to  L. At this
point I must acknowledge to Prof. Jozef M. Font, who informed me that
such interrelations between Le and  L were stated previously by J. Porte
[25, 26]. For our goals the most essential is the fact that the necessity oper-
ator of  L may be identified with the contradiction operator C(ϕ) ⇀↽ ϕ ∧ ¬ϕ
of the logic of classical refutability. This leads to the idea of considering a
contradiction operator C as a primary logical connective and defining nega-
tion as reduction to this operator, ¬ϕ ⇀↽ ϕ ⊃ C(ϕ). In this way, we emerge
the class Jhn into the class of so called C-logics and show that logics from
Jhn will be distinguished by some paradoxical property of C considered as
a modal operator. So the more natural modal properties of contradiction
operator result in a more satisfiable consequence relation from the point of
view of paraconsistent logic. Further, it turns out that the same negation
may be defined via different operators. There is a sense to distinguish, for
example, between contradiction operator C that should satisfy the axiom
C(ϕ) ⊃ ϕ and more general absurdity operator, for which similar axiom is
not obeying.

In the forthcoming article we will show that in some well known para-
cosistent logics, namely, in the logic CLuN by D. Batens [1, 2], in Sette’s
maximal paraconsistent logic P 1 [28, 30], and in Da Costa’s C1 negation can
be defined via a suitable contradiction or absurdity operator. Interesting
that the negation of CLuN may be defined via absurdity operator about
which nothing is postulated. In this way CLuN may be considered as a
counterpart of Le, where the negation is defined via the constant ⊥ about
which nothing is postulated.

2. Preliminaries

Our considerations will be restricted to the propositional case. We will con-
sider several propositional languages, all of which are extensions of positive
language L+ ⇀↽ {⊃,∨,∧}. The equivalence ≡ is definable as ϕ ≡ ψ ⇀↽ (ϕ ⊃
ψ)∧ (ψ ⊃ ϕ). We denote by L¬ the language obtained by adding to L+ the
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symbol ¬ for negation, L¬ = {⊃,∨,∧,¬} and by L⊥ the extension of L+ via
the constant ⊥ for absurdity, L⊥ = {⊃,∨,∧,⊥}. Further languages will be
introduced in the last section. For any language L under consideration by a
logic in the language L we mean a set of L-formulae closed under the rules
of substitution and modus ponens. With every logic L one can associate in
a standard way a consequence relation ⊢L. The relation X ⊢L ϕ means that
one can pass in a finite number of steps to a formula ϕ using elements of X,
theorems of L and the rule of modus ponens. For a logic L and a set X of
formulae in the language of L, L + {X} denotes the minimal extension of L

containing X.
Let L1 and L2 be propositional languages, L1 and L2 logics in languages

L1 and L2, respectively, and let θ : L1 → L2 and ρ : L2 → L1 be transla-
tions from the language L1 into the language L2 and visa versa, i.e., simply
mappings from the set of L1-formulae to the set L2-formulae and visa versa.
We will say that L1 is faithfully embedded into L2 via θ if for any set X of
L1-formulae and L1-formula ϕ we have the equivalence

X ⊢L1
ϕ ⇔ θ(X) ⊢L θ(ϕ),

where θ(X) = {θ(ψ) | ψ ∈ X}. Further, the logic L1 is said to be definitially
equivalent to L2 via translations θ and ρ if L1 is faithfully embedded into
L2 via θ, L2 is faithfully embedded into L1 via ρ, and moreover, for any
L1-formula ϕ and L2-formula ψ we have the equivalences

L1 ⊢ ϕ ≡ ρθ(ϕ) and L2 ⊢ ψ ≡ θρ(ψ).

A translation α from the language L1 to the language L2 preserves propo-
sitional variables if α(p) = p for any propositional variable p and it preserves
an n-ary connective ∗ if ∗ ∈ L1 ∩ L2 and

α(∗(ϕ1, . . . , ϕn)) = ∗(αϕ1, . . . αϕn)

for all formulae ϕ1, . . . , ϕn.
Now we recall the definitions of basic logics. The positive logic Lp is a

logic in the language L+ axiomatized by the following formulae.

1. p ⊃ (q ⊃ p)

2. (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

3. (p ∧ q) ⊃ p

4. (p ∧ q) ⊃ q
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5. (p ⊃ q) ⊃ ((p ⊃ r) ⊃ (p ⊃ (q ∧ r)))

6. p ⊃ (p ∨ q)

7. q ⊃ (p ∨ q)

8. (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))

The classical positive logic Lk+ is also a logic in the language L+ and
can be axiomatized modulo Lp by either of the following two axioms:

P. ((p ⊃ q) ⊃ p) ⊃ p (Peirce law)

E. p ∨ (p ⊃ q) (extended law of excluded middle)

The version Lj⊥ of minimal logic in the language L⊥ can be defined as
a logic axiomatized by the axioms 1–8 above. The equivalent version of
minimal logic Lj¬ in the language L¬ with negation can be axiomatized by
the axioms 1–8 and the following axiom:

A. (p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p) (reductio ad absurdum)

To make precise the statement about the equivalence of two defined above
versions of the minimal logic we define the translations θ from the language
L¬ to L⊥ and ρ from the language L⊥ to L¬ as follows. Both transla-
tions θ and ρ preserve propositional variables and connectives of L+ and,
additionally, we have

θ(¬ϕ) = θ(ϕ) ⊃ ⊥ and ρ(⊥) = ¬(p0 ⊃ p0),

where ϕ is an arbitrary L¬-formula and p0 is some fixed propositional vari-
able.

Proposition 2.1. Logics Lj¬ and Lj⊥ are definitially equivalent via trans-
lations θ and ρ.

Due to this fact we may freely pass in the following from the language L⊥

to the language L¬ and visa versa. Therefore, we will omit the superscripts
in the denotation of minimal logic and will not explicitly indicate with which
version of minimal logic or of its extension we deal in a moment.

The intuitionistic logic Li can be axiomatized modulo minimal logic in
the language L⊥ as follows Li = Lj + {⊥ ⊃ p}; and in the language L¬ as
follows Li = Lj + {¬p ⊃ (p ⊃ q)}.
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The classical logic Lk and the logic of classical refutability Le can be
axiomatized modulo intuitionistic logic Li and minimal logic Lj, respectively,
via either the Peirce law P or the generalized law of excluded middle E.

Lk = Li + {p ∨ (p ⊃ q)},Le = Lj + {p ∨ (p ⊃ q)}

Semantics for logics under considerations may be provided by matrices
with unique distinguished value, therefore, we deal not with matrices but
with algebras unit element of which corresponds to the only distinguished
value. As usually, for an L-formulae ϕ and algebra A of the language L∪{1},
ϕ is an identity of A if V (ϕ) = 1 for any A-valuation V . A logic of A, LA,
is defined as a set of all its identities and a logic of a class K of algebras,
LK, is an intersection of logics of algebras from K. An algebra A is called
a (characteristic) model of a logic L if L ⊆ LA (L = LA). A logic L is
characterized by a class K of algebras if L = LK.

As is known the minimal logic Lj is characterized by the class of j-
algebras (or pseudo-complemented algebras), i.e., implicative lattices in
which the constant ⊥ is interpreted as an arbitrary element of basic set.
In [19], it was stated that the logic Le of classical refutability is character-
ized by the class of Peirce-Johansson (or pj-)algebras. A pj-algebra is an
implicative lattice satisfying the Peirce law and with ⊥ interpreted as an ar-
bitrary element of its basic set. This characterization easily implies that any
characteristic model of Le must contain at least four elements: unit element
1, 0(= ⊥ = ¬1), some element -1 under 0, because Le is paraconsistent,
and finally, element a = 0 ⊃ −1 incomparable with 0. It turns out that the
four-element lattice 4′ with universe {1, 0, a,−1} and ⊥ interpreted as 0 is
really a characteristic model for Le.

In [20], the author studied isomorphs definable in Le, which was inspired
by the work [14] by A. Karpenko.

The term “isomorph” was used in the first monograph on multi-valued
logics [29] by N. Rescher, and now it looks a bit archaic. Let L1 and L2 be
logics and let L2 be given via its logical matrix. Due to N. Rescher [29], an
isomorph of the logic L1 in the logic L2 is a definition of a matrix for L1 in
the matrix for L2 with the help of term operations only.

Consider the following term operations on 4′:

ε(x) ⇀↽ ¬¬x(= x ∨ ⊥), δ(x) ⇀↽ ¬¬x ⊃ x(= ⊥ ⊃ x), τ(x) ⇀↽ x ∧ ⊥.

The first of these mappings allows to define an isomorph (we denote it Lkε)
of classical logic in Le. Defining operations ∨ε, ∧ε, ⊃ε, and ¬ε as follows:

x ∗ε y ⇀↽ ε(x) ∗ ε(y), ∗ ∈ {∨,∧,⊃,¬}, ¬εx ⇀↽ ¬ε(x),
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we obtain the following truth tables:

∧ε 1 a 0 −1

1 1 1 0 0

a 1 1 0 0

0 0 0 0 0

−1 0 0 0 0

∨ε 1 a 0 −1

1 1 1 1 1

a 1 1 1 1

0 1 1 0 0

−1 1 1 0 0

⊃ε 1 a 0 −1

1 1 1 0 0

a 1 1 0 0

0 1 1 1 1

−1 1 1 1 1

¬ε

1 0

a 0

0 1

−1 1

As we can see, rows and columns corresponding to elements 1 and a are
identical. The same holds for elements 0 and −1. So, identifying these pairs
of elements we obtain two-valued matrices of operations of classical logic.

The other two mappings allow to define isomorphs Lmnδ and Lmnτ

of maximal negative logic in Le. Recall that Lmn is characterized via the
two element negative algebra 2′ differing from the two element model of Lk

only by the negation operation, which is identically true in this case. The
corresponding operations looks as follows.

x ∗δ y ⇀↽ δ(x) ∗ δ(y), ∗ ∈ {∨,∧,⊃}, ¬δx ⇀↽ ¬δ(x);

x ∗τ y ⇀↽ τ(x) ∗ τ(y), ∗ ∈ {∨,∧},

x ⊃τ y ⇀↽ τ(x ⊃ y) = τ(τ(x) ⊃ τ(y)), ¬τ ⇀↽ τ(¬x).

There is a close connection between interdefinability of logical matrices
and mutual translations of logics. They were studied in details in the works
of P. Wojtylak [31, 32]. The isomorphs defined above leads to the following
translations of classical and maximal negative logics into Le.

Proposition 2.2. For any formula ϕ, the following equivalences hold:

1. Lk ⊢ ϕ ⇔ Le ⊢ ¬¬ϕ,

2. Lmn ⊢ ϕ ⇔ Le ⊢ ¬¬ϕ ⊃ ϕ

3. Lmn ⊢ ϕ ⇔ Le ⊢ ⊥ ⊃ (ϕ ∧ ⊥) ⇔ Le ⊢ ⊥ ⊃ ϕ

As was mentioned these translations play a key role in studying the class
of Lj-extensions, on the other hand, term operations ε, δ, and τ inducing
translations may be identified in a natural way with  Lukasiewicz modalities,
which will be considered in the next section.
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3. Le and modal logic of  Lukasiewicz

 Lukasiewicz’s modal logic  L was introduced in [16] (see also [17]). J.  Lukasie-
wicz intended to construct a system of modal logic, which is an extension
of classical propositional logic with two interdefinable modal operators of
“necessity” L and of “possibility” M , Lp ≡ ¬M¬p and Mp ≡ ¬L¬p. These
operators, in turn, should satisfy the conditions

⊢ Lp ⊃ p, ⊢ p ⊃Mp,

and

6⊢ p ⊃ Lp, 6⊢Mp ⊃ p.

He used the matrix approach to define his system. Since the ordinary two-
element matrix 2 for classical logic does not allow to define modal opera-
tors satisfying the above mentioned conditions,  Lukasiewicz took the four-
element matrix 2 × 2.

Note that if we identify the elements of 2 × 2 and the elements of Le-
model 4′ in the following way (1, 1) → 1, (1, 0) → a, (0, 1) → 0, and (0, 0) →
−1, the binary operations of classical logic and of Le will coincide on 4′,
only negations will act differently on the set of truth values {1, a, 0,−1}.

Modalities L and M and dual modalities W and V are defined on 2× 2

via the following truth-tables:

x Lx Mx Wx V x

1 0 1 a 1
a −1 a a 1
0 0 1 −1 0
−1 −1 a −1 0

These pairs of modalities are interdefinable, e.g., as follows

Wp ≡ p ∧M(∼ (p ⊃ p)), Lp ≡ p ∧ V (∼ (p ⊃ p)),

where ∼ is the classical negation, and if we will use modalities W and V

instead of L and M , respectively, we obtain the logic with the same set of
tautologies. Taking into account the above identification of truth-values of
logics  L and Le we can easily see that the action of modalities L, M , and
V on the set of truth-values will coincide, respectively, with the mappings
τ , θ, and ε definable in the logic of classical refutability, which were used
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in Section 2 to construct isomorphs of classical (ε) and maximal negative
logic (τ , θ) in Le. On the other hand, the modality W can not be defined
in Le, because algebra 4′ has a subalgebra with the universe {1, 0}, i.e., the
set {1, 0} is closed under all operators definable in Le. Thus, we can see
that there is a very close interrelation between  L and Le. Porte [25, 26]
was the first, who paid attention on the above mentioned interrelation, but
he had  Lukasiewicz’s modal logic as a starting point of his considerations.
More exactly, in [25], it was proved that the modalities of  L can be defined
in a system obtained from the classical logic by the addition a constant, Ω
in Porte’s notation, about which nothing is postulated, and conversely, that
the modalities of  L can be used to define the constant Ω. In [26], Porte
noted that his constant Ω is close to the negation of the logic of classical
refutability and stated that Le is definitially equivalent to the positive part
of  L.

Extend the language L⊥ of the logic Le via a new negation symbol ∼,
L⊥,∼ ⇀↽ L⊥ ∪ {∼}, and define the logic Le∼ as a logic in the language
L⊥,∼ with axiom schemes of the logic Le and, additionally, axiom schemes
of classical negation for ∼:

1∼. (p ⊃ q) ⊃ ((p ⊃∼ q) ⊃∼ p)

2∼. ∼ p ⊃ (p ⊃ q)

3∼. p∨ ∼ p

Recall that the logic  L is considered in the language L+ + {L,∼}, and  L+

denotes its positive fragment in the language L++{L}. Note that the second
modality M can be defined via L in  L+ as follows

Mp ≡ L(p ⊃ p) ⊃ p.

Define a translation θ : L⊥,∼ → L+ + {L,∼} from the language of Le∼ to
the language of  Lukasiewicz’s modal logic and an inverse translation ρ from
the language of  L to the language of Le∼ in such a way that they preserve
propositional variables and all classical connectives and, moreover,

θ(⊥) = L(p ⊃ p), ρ(Lϕ) = ρϕ ∧ ¬ρϕ,

where p is a propositional variable and ϕ is an arbitrary formula in the
language L+ + {L,∼}.

Defining algebras 4∼ and 4 L as expansions of the algebra 4′ via the
classical negation and, respectively, via the modal operator L, we state the
following facts.
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Proposition 3.3. The algebra 4∼ is a characteristic model for Le∼.

Proof. Obviously, Le∼ has only two subdirectly irreducible models, 2∼

and 2′∼, which are expansions of the Boolean algebra 2 and the negative
algebra 2′ via additional Boolean negation ∼. Therefore, Le∼ = L2∼∩L2′∼.
Taking into account 4∼ ∼= 2∼ × 2′∼ we immediately arrive at L4∼ = Le∼.

The proposition is proved.

Proposition 3.4. The logic Le∼ is a conservative extension of Le.

Proof. If ϕ is a formula in the language L⊥ and Le∼ ⊢ ϕ, then 4∼ |= ϕ,
and also 4′ |= ϕ, because the connective ∼ do not occur in ϕ. Since L4′ = Le,
we have ϕ ∈ Le, which completes the proof.

Now we give in a precise form the slightly modified version of Porte’s
results [25, 26].

Proposition 3.5. The logics Le∼ and  L are definitially equivalent via θ and
ρ, the logic Le is definitially equivalent to the positive fragment of  L via the
same translations.

The proof is by direct verification, because all logics involved in this
statement are four-valued.

The only difference of the above translations from Porte’s translations is
the item ρ(Lϕ) = ρϕ∧¬ρϕ. The original version was ρ(Lϕ) = ρϕ∧⊥, but,
obviously, Lj ⊢ (ϕ ∧ ¬ϕ) ≡ (ϕ ∧⊥).

Proposition 3.5 means, first of all, that there is a very close connec-
tion between  Lukasiewicz’s modalities and the paraconsistent negation of
the logic of classical refutability. From this fact Porte [26, pp. 87–88.] infer
rather categorical conclusion that “the modalities of the  L-system are very
far from what everybody calls “possibility” and “necessity” and/or that the
weak negation of CR (the logic of classical refutability) is very far from what
everybody calls “negation”.” As was noted above  Lukasiewicz constructed
his system so as to satisfy the minimal list of requirements for modal opera-
tors, which gives rise to a long history of critics of  Lukasiewicz’s modal logic
 L, but special discussing this logic lays outside the present research. The
resent work by Font and Hajek [11] may be recommended to the reader to
get an acquaintance of the topic. What concern the critics of the negation
of classical refutability based on its similarity to modal operators, in the
last years such similarity was not considered as something “negative” and
was intensively studied. For example, K. Dosen in a series of works [8, 9, 10]
treated the negation namely as a modal operator. The interrelation between
Le and  L stated in Proposition 3.5 will be used in the next section to suggest
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the way of generalization the notion of negation, which allow us to overcome
the paradox of minimal logic mentioned in the introduction.

4. Paradox of minimal logic and generalized absurdity

Recall that by the paradox of minimal logic we mean the following property
of Lj: from any contradiction one can infer in Lj an arbitrary negated
formula, i.e., for any ϕ and ψ, we have

ϕ, ¬ϕ ⊢Lj ¬ψ.

Due to this property the negation have no sense in inconsistent Lj-theories,
because all negated formulae are provable in them. This property is condi-
tioned, on the one hand, by the axiom for implication

p ⊃ (q ⊃ p)

(which is called some times “the positive implication paradox”) and, on the
other hand, by the unrestricted law reductio ad absurdum,

(p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p),

saying that if a formula implies a contradiction, one can negate this formula
without any restriction on the nature of this contradiction. Indeed, let T be
some inconsistent Lj-theory and ϕ,¬ϕ ∈ T . Then for an arbitrary formula
ψ we can infer in T the implications ψ ⊃ ϕ and ψ ⊃ ¬ϕ using the positive
paradox, and then we infer ¬ψ applying reductio ad absurdum.

Of course, one can try to overcome the above mentioned paradox via
rejecting the positive implication paradox and passing in this way in the
field of relevant logics. But in our research we choose another way, we leave
intuitionistic implication unchanged and consider possible ways of restricting
reductio ad absurdum. It is worth to note that this idea were exploited many
times in investigations in the field of paraconsistency. For example, such
well-known paraconsistent logics as Sette’s P 1 [28, 30] and Da Costa’s C1

[4] have reductio ad absurdum restricted to complex formulae, in case of P 1,
and to formulae “behaving consistently”, in case of C1.

Our main idea is based on the correspondence stated in the previous
section between the necessity operator L of  Lukasiewicz’s modal logic and the
contradiction operator C, C(ϕ) ⇀↽ ϕ∧¬ϕ, in the logic of classical refutability.
The negation in Le as well as in an arbitrary extension of minimal logic can
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be defined via the constant “contradiction”, ¬ϕ ⇀↽ ϕ ⊃⊥, but also it can be
defined via the contradiction operator C(ϕ), ¬ϕ ⇀↽ ϕ ⊃ C(ϕ). Clear that

Lj ⊢ ¬ϕ ≡ ϕ ⊃ C(ϕ).

This leads to the idea of defining a negation via the contradiction operator
C considered as a primary logical connective, ¬ϕ ⇀↽ ϕ ⊃ C(ϕ). It will be
shown below that unrestricted reductio ad absurdum for negation defined as
above exactly corresponds to some paradoxical properties of C(ϕ) considered
as a modal operator.

The results of the previous section allow to identify Le with a subsystem
of  L and we will have after such identification

 L ⊢ C(ϕ) ≡ L(ϕ) and  L ⊢ ¬ϕ ≡ ϕ ⊃ L(ϕ).

We have also the following properties of modal operators L and M :

 L ⊢ L(ϕ ∧ ψ) ≡ L(ϕ) ∧ ψ and  L ⊢M(ϕ ∨ ψ) ≡M(ϕ) ∨ ψ.

Each of these properties can be inferred from the other modulo classical
logic and relation defining M through L and both of these properties have a
paradoxical nature. Indeed, if we accept the conjunction of two conditions
as necessary, it means from the intuitive point of view more then stating
that one of these conditions is necessary and the second simply takes place.
In a similar way, assuming that it is possible that one of the two conditions
takes place should be weaker than the alternative of one of the conditions
and the possibility of the other. Interesting that numerous authors criticized
 Lukasiewicz’s modalities did not pay attention on these paradoxes.

For any formula ϕ, we have

ϕ ≡ ϕ ∧ (p ⊃ p) and ϕ ≡ ϕ∨ ∼ (p ⊃ p),

from which we infer using the above paradoxical properties,

 L ⊢ L(ϕ) ≡ ϕ ∧ L(p ⊃ p) and  L ⊢M(ϕ) ≡ ϕ ∨M(∼ (p ⊃ p)).

The first of these equivalences corresponds to the relation C(ϕ) ≡ ϕ ∧ ⊥ ≡
ϕ ∧ ¬(p ⊃ p) for the contradiction operator in Le. Thus, the paradoxi-
cal properties envisaged above allow also to define the negation trough the
constant “contradiction”.

Now we consider the language LC = 〈∨,∧,⊃, C〉, i.e., L+ extended by
a contradiction operator C, and define a C-logic as a logic in this language
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containing axioms of Lp and the formula C(p) ⊃ p. We say that C is
extensional in L if L is closed under the rule

ϕ ≡ ψ

C(ϕ) ≡ C(ψ)
.

The following facts take place.

Lemma 4.6. Let L be a C-logic and

C(p ∧ q) ≡ C(p) ∧ q, C(p ∧ q) ≡ p ∧ C(q) ∈ L,

then C is extensional in L.

Proof. Let L satisfies the conditions of the lemma. Assume ϕ ≡ ψ.
Using the first equivalence from the condition and the axiom C(p) ⊃ p we
have

C(ϕ ∧ ψ) ≡ C(ϕ) ∧ ψ ≡ C(ϕ) ∧ ϕ ≡ C(ϕ).

In a similar way, we infer from the equivalence C(p ∧ q) ≡ p ∧ C(q) that
C(ϕ ∧ ψ) ≡ C(ψ), and, finally, C(ϕ) ≡ C(ψ), which completes the proof.

Proposition 4.7. Let L be a C-logic and we define ¬ϕ ⇀↽ ϕ ⊃ C(ϕ), then

C(p) ≡ p ∧ ¬p ∈ L, (1)

moreover,

(p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p) ∈ L

iff

C(p ∧ q) ≡ C(p) ∧ q, C(p ∧ q) ≡ p ∧ C(q) ∈ L.

Proof. From the well-known property p ∧ (p ⊃ q) ≡ p ∧ q of the in-
tuitionistic implication and the axiom C(p) ⊃ p we immediately obtain the
equivalence C(p) ≡ p∧¬p, which justifies the name “contradiction operator”
for C.

Assume that (p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p) ∈ L and show that in this
case the negation may be defined via the constant, ¬ϕ ≡ ϕ ⊃ ⊥, where
⊥ ⇀↽ C(p0 ⊃ p0) for some fixed variable p0. Substituting the definition
of negation in reductio ad absurdum and exporting the second premise we
obtain

((p ⊃ q) ∧ (p ⊃ (q ⊃ C(q)))) ⊃ (p ⊃ C(p)) ≡

≡ (p ⊃ (q ∧ (q ⊃ C(q))) ⊃ (p ⊃ C(p)).
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The above equivalence follows from the tautology p ⊃ (q∧r) ≡ (p ⊃ q)∧(p ⊃
q) which holds in Lp, and so in every C-logic. Due to (1) the latter is
equivalent to

(p ⊃ C(q)) ⊃ (p ⊃ C(p)). (2)

Substituting the tautology p0 ⊃ p0 for q we obtain

L ⊢ (p ⊃ C(p0 ⊃ p0)) ⊃ ¬p.

To state the inverse implication we substitute p0 ⊃ p0 for p and p for q in 2

((p0 ⊃ p0) ⊃ C(p)) ⊃ ((p0 ⊃ p0)) ⊃ C(p0 ⊃ p0)),

from which we have C(p) ⊃ C(p0 ⊃ p0). Taking into account that the
intuitionistic implication is increasing in the second argument we arrive at

¬p ⊃ (p ⊃ C(p0 ⊃ p0))

and, finally, at
¬p ≡ p ⊃ ⊥.

Further, from this fact and the equivalence C(p) ≡ p ∧ ¬p we infer as in Lj

that L ⊢ C(p) ≡ p ∧ ⊥. This equivalence implies in a trivial fashion the
extensionality of C in L, moreover,

C(p ∧ q) ≡ (p ∧ q) ∧ ⊥ ≡ (p ∧ ⊥) ∧ q ≡ C(p) ∧ q.

The second desired equivalence easily follows from the just proved one by
extensionality.

Now we assume that the equivalences C(p∧q) ≡ C(p)∧q and C(p∧q) ≡
p ∧ C(q) hold in L. By Lemma 4.6 the operator C will be extensional in L.
Defining ⊥⇀↽ C(p0 ⊃ p0) and using extensionality we obtain

C(p) ≡ C((p0 ⊃ p0) ∧ p) ≡ C(p0 ⊃ p0) ∧ p ≡ p ∧ ⊥

and, further,
¬p ≡ p ⊃ C(p) ≡ p ⊃ (p ∧⊥) ≡ p ⊃ ⊥.

The equivalence ¬p ≡ p ⊃ ⊥ easily implies the unrestricted version of re-
ductio ad absurdum.

The proposition is proved.
As was noted in the beginning of this section the paradox of minimal logic

is conditioned by the “positive implication paradox” and the unrestricted
version of reductio ad absurdum. In the definition of C-logics we leave the
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intuitionistic implication unchanged, therefore, a C-logic meets the paradox
of minimal logic if and only if the negation defined via its operator C satisfy
the unrestricted version of reductio ad absurdum. In this way, we infer from
the last proposition

Corollary 4.8. A C-logic L satisfy for all formulae ϕ and ψ the condition

ϕ, ¬ϕ ⊢L ¬ψ

iff

C(p ∧ q) ≡ C(p) ∧ q, C(p ∧ q) ≡ p ∧ C(q) ∈ L.

As we can see from this corollary deleting paradoxical property of C allow
to avoid the paradox of minimal logic. In other words, if the operator C of
contradiction has more natural properties from the point of view of modal
logic, then the negation defined via C generates more satisfiable inference
relation from the point of view of paraconsistent logic.

It was noted above that in the minimal logic the negation may be de-
fined in two equivalent ways: via the constant ⊥ and via the non-constant
operator C(ϕ) of contradiction. This simple observation leads naturally to
the distinction between the contradiction operator and what we will call the
absurdity operator, which we denote A(ϕ). In case of Lj, the absurdity op-
erator is constant (A(ϕ) ≡ ⊥). There are different intuitions behind these
operators. By C(ϕ) we mean a contradiction expressed in terms of ϕ, i.e., a
simultaneous stating ϕ and its negation ¬ϕ, from which follows that C(ϕ)
should imply ϕ. By A(ϕ) we mean such statement that reducing ϕ to it, i.e.,
proving the implication ϕ ⊃ A(ϕ), is enough to negate ϕ. This understand-
ing of A(ϕ) do not assume that A(ϕ) implies ϕ. The formulae A(ϕ) and ϕ

may be incomparable, as it takes place in case of Lj, where the formulae ϕ
and ⊥ are incomparable in general case. In fact, the contradiction operator
C can be considered as a special case of an absurdity operator satisfying an
additional assumption that C(ϕ) ⊃ ϕ for any ϕ. Moreover, if a negation of
some system can be defined in terms of an absurdity operator, such nega-
tion itself can be taken as an absurdity operator, which will produce the
same negation. To present these considerations in a precise form we define
an A-language as a positive language L+ with additional unary operator A,
LA ⇀↽ L+ ∩ {A}, and an A-logic as a logic in the language LA containing
axioms of positive logic Lp.

Proposition 4.9. Let L be an A-logic. Define the contradiction operator C
as C(ϕ) ⇀↽ ϕ ∧A(ϕ) and the negation ¬ as ¬ϕ ⇀↽ ϕ ⊃ A(ϕ). The following
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formulae are provable in L:

¬p ≡ p ⊃ ¬p and ¬p ≡ p ⊃ C(p);

C(p) ≡ p ∧ ¬p and C(p) ⊃ p;

C(p) ⊃ A(p) and A(p) ⊃ ¬p.

All the formulae listed in the proposition can be easily inferred from the
given definitions and axioms of Lp. For example, the equivalence ¬p ≡ p ⊃
¬p is an abbreviation for

p ⊃ A(p) ≡ p ⊃ (p ⊃ A(p))

and the latter is simply a partial case of the contraction law. This proposition
shows that C defined in terms of the absurdity operator A can be really
considered as a contradiction operator corresponding to the negation defined
via A and that there is the whole “interval” of operators, from C to ¬ defining
the same negation.
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