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1. Aim and Survey

It is generally agreed upon today that scientific reasoning, like everyday
reasoning, proceeds in a dynamic way: inferences derived at some stage in
the reasoning process may at a later stage be rejected. This dynamics may
be extrinsic or intrinsic. I shall call it extrinsic when previously derived
conclusions are rejected on non-logical grounds, and intrinsic when their
rejection is based on a purely logical analysis.

Historical case studies reveal that inconsistencies play a crucial role in
both kinds of dynamics. An interesting example of an extrinsic form of dy-
namics is provided by Planck’s derivation of the law that is named after
him. As Smith shows in [39], Einstein discovered that Planck’s derivation
relied on premises that were contradicted by other findings in the domain.
As these other findings were better established and more likely to survive
after the inconsistencies were resolved, Einstein decided to reject Planck’s
derivation. Clausius’ derivation of Carnot’s theorem constitutes a nice ex-
ample of a reasoning process that is intrinsically dynamical. As we shall see
below, Clausius derived Carnot’s theorem in two different ways from an in-
consistent set of premises. These derivations are structurally very similar to
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one another (both are based on Reductio Ad Absurdum from a hypothesis).
Still, Clausius rejected the first derivation, while accepting the second one.
An important difference with the previous case is that Clausius’ decision,
unlike Einstein’s, was entirely based on logical grounds—see Section 2.

The aim of this paper is threefold. First, I shall argue that we need to dis-
tinguish between two different sources of inconsistencies. An inconsistency
may arise because one is reasoning from inconsistent information or because
one is making plausible assumptions on the basis of incomplete information.
In the former case, but not in the latter, the underlying conceptual struc-
tures necessarily preclude a consistent description of the domain at issue.
Next, I shall show that both kinds of situations can adequately be dealt
with by so-called adaptive logics, but that each of them requires a different
type of adaptive logic.1 Finally, I shall discuss some implications of all this
for the ontological foundations of systems that can handle inconsistencies.

2. Reasoning from Inconsistent Information

The history of the sciences exhibits several examples of reasoning from in-
consistent information. I already mentioned Clausius’ derivation of Carnot’s
theorem, and Planck’s and Einstein’s derivation of Planck’s law. Other ex-
amples are Maxwell’s formulation of electrodynamics (see [36]), Einstein’s
account of Brownian motion (see [37]), and Bohr’s theory of atomic spectra
(see [39], [17], and [20]).

In each of these cases, the underlying conceptual structures prohibited
a consistent description of the domain involved. Clausius, for instance, ap-
proached the domain of thermodynamic phenomena in terms of two incom-
patible accounts of heat. On the one hand, he relied on the theory of Sadi
Carnot which stated that heat is a substance (“calorique”) that can neither
be destroyed nor created. On the other hand, he accepted the view, espe-
cially advocated by James Prescott Joule, that heat is a ‘force’ that can
be converted into work. The combination of these two accounts makes it
impossible to describe thermodynamic phenomena in a consistent way. It
follows, for instance, that the production of heat in a heat engine results
from the mere transfer of heat from a hot to a cold reservoir and that it
results from the conversion of heat into work. The same holds true for the
other examples. Planck approached the problem of black body radiation

1 The first adaptive logic was designed by Diderik Batens around 1980—see [3]. Mean-
while, a whole variety of such logics is available—see [5] for a survey. As we shall see
below, the importance of adaptive logics is that they provide a unified framework for the
study of dynamic reasoning patterns.
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in terms of mutually inconsistent classical and quantum hypotheses. Also
Bohr combined hypotheses from classical electrodynamics with incompatible
quantum hypotheses in his study of spectral emission phenomena.

Scientific reasoning processes that start from inconsistent information
share some important characteristics. The first is that, although the ultimate
goal is to replace the inconsistent theory by some consistent alternative,
consistency is (almost) never restored by simple excision of one or more
parts of the theory. As long as there are no good (logical or extra-logical)
grounds to resolve the inconsistencies in a particular way, scientists prefer to
work with the inconsistent theory. The reason for this seems to be at least
threefold.

First, a set of inconsistent statements is only accepted when for each of
them some kind of confirmation is available. Hence, prematurely resolving
the inconsistencies by simple excision may deprive one of central ‘elements
of truth’ that should follow from the consistent replacement. In some cases,
these elements are derivable from a consistent subset of the inconsistent set.
However, in more interesting cases, they can only be obtained by combining
mutually inconsistent statements. Thus, Clausius’ consistent replacement
for the mutually inconsistent proposals of Carnot and of Joule is based on
the idea that, in a heat engine, heat is partially transferred from a hot to a
cold reservoir, and partially converted into work. As I showed in [30], this
idea can neither be derived from Carnot’s theory nor from Joule’s view, but
only from the combination of these two.

Next, simply eliminating some of the inconsistent statements may con-
siderably reduce one’s problem solving capacities in a certain domain. Bohr’s
account of atomic spectra, for instance, could not be obtained from classical
electrodynamics alone (see [39]). Similarly, both Carnot’s theory and Joule’s
view were needed for Clausius’ account of thermodynamic phenomena, even
though he eventually arrived at a consistent theory. This is related to the
fact that reasoning from mutually inconsistent proposals may lead to rein-
terpretations of these proposals, and even to new concepts. In the case of
Clausius, for instance, it led to the (very fruitful) idea of a partial transfer
of heat from a hot to a cold reservoir (see [30]).

Finally, reasoning from an inconsistent theory usually plays an impor-
tant heuristic role in resolving the inconsistencies. One reason for this should
already be clear from the previous paragraphs. In interesting cases, the de-
cision which ‘parts’ of an inconsistent theory should be retained and which
should be rejected requires that one first analyses the theory, and even that
one reinterprets some of its statements. Another reason is that, unlike what
is sometimes accepted, deriving interesting results from an inconsistent the-
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ory may be far from trivial, and hence, that the mere availability of a par-
ticular derivation may provide some support for the statements used in it.

A second important characteristic of this type of reasoning process is
that the occurrence of inconsistencies is not seen as a hindrance to sensible
reasoning. From this, it can be inferred that the consequence relation (im-
plicitly) used in this type of reasoning process is not that of classical logic
(henceforth CL). Some readers may object to this that CL is applied to
consistent subsets of the premises. Two remarks are in order here. The first
is that, as we have seen above, inferences may be made from an inconsis-
tent set of premises that cannot be made from any of its consistent subsets.
The second remark is that, even in cases where CL is applied to consistent
subsets, one needs criteria to decide when a statement follows from the in-
consistent set. One possibility is to postulate that a statement follows from
an inconsistent set of premises Γ iff it follows by CL from every maximal
consistent subset of Γ.2 The consequence relation thus defined is not that
of CL.

Other readers may object that the sensible handling of inconsistent in-
formation is a matter of heuristics, not of changing the underlying logic.
One may refer here to the fact that many valid derivations are in practice
not made because they are heuristically useless. For instance, when trying
to prove that q is a consequence of ∼p ∨ q and p, no sane person will infer
∼∼∼∼∼∼p from p. Analogously, in nineteenth century thermodynamics,
no sane scientist inferred from the inconsistency concerning the nature of
heat that the moon is made of blue cheese. This objection, however, rests
on a serious misunderstanding of the problem. When dealing with incon-
sistent information, the problem is not that one may infer clearly false or
nonsensical statements. What has to be prevented is that one infers conclu-
sions that are reasonable, but that are nevertheless trivial consequences of
the inconsistencies,3 and hence, are not justified by the premises at issue.
Precisely this cannot be guaranteed by CL.

But there is more. Even when dealing with inconsistent information,
scientists try to design proofs for certain statements, and when successful,
try to find acceptance for their proofs. For example, it was known that
Einstein’s proof of Planck’s law had inconsistent premises. Nevertheless,
the relevant community accepted this proof as an argument for Planck’s law

2 This is the so-called strong consequence relation. For an overview of consequence
relations defined in terms of consistent subsets of the premises, see [15] and [16]; for their
reconstruction in terms of adaptive logics, see [6], [14] and [40].

3 Intuitively, I say that A is a trivial consequence of an inconsistent set of premises Γ
if it can only be derived from Γ by relying on both ‘halves’ of an inconsistency.
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(see [39]). This is meaningless from the point of view of CL. If CL were
considered as the correct logic for reasoning processes of this type, no proof
with inconsistent premises would provide justification for some conclusion A.
The reason is quite simple: whenever A is CL-derivable from an inconsistent
set of premises, so is ∼A. Hence, if CL were considered as the correct logic in
this type of situation, every proof for some conclusion A could be undermined
by an equally valid proof for ∼A.

Still, one may object that scientists themselves often claim to be using
CL, even in inconsistent contexts. This objection, however, should not be
taken serious. As far as logical and methodological issues are concerned, a
distinction has to be made between what scientists preach and what they
practice. Those scientists that continue reasoning in an inconsistent context
use (implicitly) a logic that does not validate Ex Falso Quodlibet. This
can be inferred, for instance, from the fact that they do not undermine
proofs with inconsistent premises by trivializing them. The latter can only
be explained by assuming that they use another logic than CL to judge
the validity of such proofs. Moreover, before the advent of paraconsistent
logics, those scientists that had a good insight in the then available logics,
usually objected to reasoning from inconsistent premises. At the 1911 Solvay
conference, for instance, Poincaré explicitly indicated that he was well aware
of the problem:

What strikes me about the discussions that we have heard is
to see the very same theory supported sometimes by principles
of classical mechanics and sometimes by new hypotheses which
contradict the former; one must not forget that there is no propo-

sition that cannot be easily demonstrated if one includes in the

demonstration two contradictory premisses.4

The third characteristic is that in reasoning processes of this type, the
inconsistencies are resolved on the basis of extra-logical considerations. After
analysing and possibly reinterpreting the inconsistent theory, those parts are
retained that are preferred on external grounds (for instance, because they
are better confirmed or because accepting their negation would cause the
violation of some law that is considered to be fundamental). For example,
after reinterpreting both Carnot’s theory and Joule’s view in the light of one
another, Clausius eventually rejected the idea that heat is a substance in
view of the empirically more adequate view that heat is a kind of motion
(see [30]). When an inconsistency is thus resolved, inferences that were

4 This passage is from [27, p. 451] and was found in [39, p. 431]; the italics are mine.



134 Joke Meheus

previously drawn may be rejected (because some premises are no longer
accepted).

The fourth and final characteristic is that, in addition to extrinsic forms
of dynamics, reasoning processes that start from inconsistent premises are
also intrinsically dynamical. Again, this is best illustrated by means of an
example. One of the central contributions to early thermodynamics was
Carnot’s derivation of, what was later called, Carnot’s Theorem. Accord-
ing to this Theorem, no engine can be more efficient than a reversible one.
Carnot’s derivation was published in 1824 (see [18]), and was based on the
calorique theory of heat. As Carnot’s Theorem proved extremely successful,
it was soon after its publication considered as one of the most fundamen-
tal results in the domain. Around 1840, however, it became clear that the
calorique theory of heat was contradicted by some reliable experimental re-
sults concerning the conversion of work into heat. These results moreover
supported the rival view that heat is not a substance, but some kind of
‘force’ that can be converted into other types of ‘forces’. Some of the lead-
ing scholars in the domain, like Kelvin, concluded from this that one would
have to restart from scratch, but that, in the meantime, it was better to
stick to Carnot’s theory. Others, like Clausius, tried to reason from the two
incompatible approaches in the hope to arrive thus at a consistent alterna-
tive.

As may be expected, one of the main challenges concerned the problem to
find a new derivation for Carnot’s Theorem. In 1850, Clausius presented such
a new derivation that, although the inconsistencies were not yet resolved,
was accepted by the scientific community. What is even more interesting,
however, is that, according to Clausius’ own account (see [19]), he designed
two proofs, the first of which he rejected.

As I already mentioned, both proofs are very similarly to one another—
both start from the same set of premises and are moreover based on Reductio

Ad Absurdum. This is why, at first sight, it seems highly surprising that
Clausius rejected the first one, but accepted the second one. The reason
for this becomes clear, however, if one takes a closer look at the proofs, and
moreover takes into account that the set of premises at issue was inconsistent.

As I described in detail in [30] and [32], it is characteristic of both proofs
that an inconsistency is derived from the hypothesis that some engines are
more efficient than a reversible one (the negation of Carnot’s Theorem)
together with the set of premises. The crucial difference, however, is that,
in the case of the first proof, the inconsistency at issue can be derived from
the premises alone. Hence, it indeed does not make sense to reject the
hypothesis on the basis of this inconsistency—as it already follows from the
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premises, it teaches nothing about the truth or falsity of the hypothesis. In
the case of the second proof, however, the inconsistency at issue can only be
derived in a sensible way (that is, while avoiding triviality) from the premises
together with the hypothesis. What this comes to is that the inconsistency
bears upon the truth or falsity of the hypothesis: accepting it will lead to
additional inconsistencies that do not follow (in a non-trivial way) from the
premises. In view of this, it makes perfectly good sense to accept the second
proof as a valid derivation.

Evidently, I do not claim that Clausius was aware of the kind of logic
he was using. I do claim, however, that he seemingly had some very good
logical intuitions. As soon as he discovered that the inconsistency derived in
the first proof follows from the premises alone, he indeed had good logical
grounds to reject the derivation and to start anew.

3. Reasoning from Incomplete Information

The examples discussed in the previous section all have in common that
the underlying conceptual structures preclude a consistent description. In
many cases, however, inconsistencies arise not because one is reasoning from
inconsistent information, but from incomplete information. The underly-
ing mechanism is not difficult to understand. When dealing with incomplete
information, scientists do not proceed in a blind way. Rather, they try to for-
mulate plausible hypotheses on the basis of ampliative inference steps—steps
that extend the information already contained in the premises. Examples
of ampliative reasoning patterns are induction, abduction, analogical rea-
soning, and default reasoning. Inconsistencies arise when these hypotheses
turn out to be in conflict with one another or with the available information.
Also here, the history of the sciences offers a large number of examples.5

Analogical reasoning often occurs in the design of a novel model or theory.
Well-known examples include Bohr’s model of the atom that was designed
on analogy with the solar system, and Carnot’s theory of the steam engine
that was formulated on analogy with hydraulic engines. Abductive reasoning
typically occurs in the search for explanations for novel phenomena. When
Herschel in 1781 noted an unexpectedly large object in the quartile near Zeta
Tauri, he first formulated the hypothesis that the body at issue was a comet.
This was inferred from the fact that the object appeared especially large

5 As inconsistent sets of premises may be incomplete in some respects, these too may
give rise to ampliative forms of reasoning. In cases like this, inconsistencies may arise from
the same set of premises for two different reasons.
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and that it moved among the stars. When this hypothesis was contradicted
by observational data concerning the object’s orbit, a new hypothesis was
formulated (namely, that it was a planet). The latter too was obtained by an
abductive step (see [35] for an analysis of this particular reasoning process).
Also the reasoning process that led to the discovery of oxygen incorporated
several abductive inferences, many of which were withdrawn in view of other
information available (see [26, pp. 167–171]).

Reasoning processes that start from incomplete information share some
important characteristics with those that start from inconsistent informa-
tion.

A first important similarity may seem rather surprising: the inconsisten-
cies that arise are often tolerated for a considerable period of time. This
especially holds true for the case where different hypotheses turn out to be
in conflict with one another. As long as there are no good (logical or extra-
logical) reasons to reject one hypothesis in particular, scientists continue to
reason from the mutually inconsistent hypotheses. This is nicely illustrated
by Holmes’ study of Lavoisier (see [25]). In his attempt to develop a unified
theory for such diverse phenomena as respiration, fermentation and combus-
tion, Lavoisier formulated different hypotheses that he himself recognized as
mutually inconsistent. Still, he continued to make inferences from them un-
til he had reasons to prefer one above the other. So, also in this type of
situation the occurrence of an inconsistency is not seen as a hindrance to
sensible reasoning.

A second important similarity is that the discovery of inconsistencies
leads to interesting examples of dynamics. And also here, this dynamics
may be extrinsic or intrinsic. The latter typically occurs when different
hypotheses contradict each other. In the case of Lavoisier, for instance,
the hypothesis that the reconversion of “fixed air” into “natural air” occurs
by the removal of “phlogiston” was rejected in favour of the hypothesis
that it occurs by the provision of “inflammable matter” when it turned out
that the latter was empirically more successful than the former. When a
hypothesis contradicts the available information, the dynamics is usually
intrinsic. For instance, as soon as Herschel discovered that his hypothesis
was in conflict with the data concerning the bodies orbit, he rejected the
former. The motivation behind this rejection was logical, namely that a
conclusion arrived at by some ampliative step (in this case an abductive
one) was in conflict with one obtained by pure deductive means.

There are, however, also important differences between the two types
of situations. A first one is that, in the case of reasoning from incomplete
information, the inconsistencies one arrives at are not seen as an indica-
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tion that the underlying conceptual structure is inconsistent. In the case
of Lavoisier, for instance, it would have been foolish to conclude that his
conceptual framework necessarily led to an inconsistent description of the
domain. The framework was not ‘overdetermined’, but ‘underdetermined’: it
was so open that mutually inconsistent hypotheses were compatible with it.
Let me phrase the distinction in a different way. When dealing with incon-
sistent information, inconsistencies can be derived by pure deductive means.
When dealing with incomplete (but consistent) information, inconsistencies
can only be obtained because deductive steps are combined with ampliative
steps. Thus, only in the former type of situation the inconsistencies follow
necessarily from the available information.

A second important difference is that, in the case of reasoning from
incomplete information, the inconsistencies that arise are often resolved on
logical grounds. This typically happens in the case of conflicts between
ampliative conclusions and deductive conclusions. As soon as an ampliative
conclusion is contradicted by a deductive one, the former is withdrawn in
favour of the latter and the inconsistency is resolved. The reason is that,
whereas the latter is necessary with respect to the premises, the former is
only plausible in view of them. This is completely different in the case
of reasoning from inconsistent information. As the inconsistencies follow
necessarily from the premises, they cannot be resolved on logical grounds,
but only on the basis of extra-logical criteria.

A final difference is related to this. In the case of inconsistent infor-
mation, the inconsistencies that arise can only be resolved by eliminating
or modifying some of the premises (for instance, reinterpreting some of the
predicates that occur in them). Such modifications are not necessary in the
case of reasoning from incomplete information. Here, the inconsistencies
are immediately resolved in view of the available information (when an am-
pliative conclusion turns out to be incompatible with it) or can be resolved
by further extending one’s information (when two or more ampliative con-
clusions are in conflict with one another). In neither of these cases, it is
necessary to reject or modify some of the available premises.

4. Corrective and Ampliative Adaptive Logics

From the point of view of logic, one of the main challenges posed by the
reasoning processes discussed above concerns the fact they are intrinsically
dynamical. As may already be clear from the examples, this type of dynam-
ics is not related to the rejection or modification of some of the premises,
but to the fact that some predetermined set of logical presuppositions is
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followed ‘as much as possible’—this is, unless and until they are explicitly
violated. When one of these presuppositions is violated, conclusions that
were previously inferred may be withdrawn.

In the case of reasoning from inconsistent information, for instance, it
may be presupposed that sentences behave consistently with respect to the
premises, unless and until proven otherwise. This enables one to apply in-
ference rules that rely on the consistent behaviour of some of their premises.
In most contexts, for instance, it is accepted that Disjunctive Syllogism—to
derive B from ∼A and A ∨ B—only makes sense if A behaves consistently
(if both A and ∼A are true, A ∨ B is true even if B is false).6 If in such
a context B is derived from ∼A and A ∨ B on the presupposition that
A behaves consistently, the former will be withdrawn as soon as A turns
out to be inconsistent. Also the example of Clausius may be remembered
here. In both his proofs, Reductio Ad Absurdum is applied on the presup-
position that the sentence for which a contradiction is derived (from the
premises together with the hypothesis) behaves consistently with respect to
the premises. When this presupposition proves false in the first proof, the
conclusion thus derived is withdrawn.

A similar pattern can be found in ampliative forms of reasoning. In the
case of analogical reasoning, for instance, one of the presuppositions may be
that all information concerning the source domain can be transferred to the
target domain. When this presupposition is violated—for instance, when
it turns out that some of the information concerning the source domain is
incompatible with available information on the target domain—previously
derived conclusions may be withdrawn.

From a formal point of view, reasoning processes that are intrinsically
dynamical have two important characteristics. The first is that the dynamics
they exhibit may be external or internal. It is said to be external when con-
clusions are withdrawn because new premises are added, and internal when
the mere analysis of the available information leads to such withdrawal.7

The second characteristic is that (in general) they are not only undecidable,
but even lack a positive test (see also below).

6 Which inference rules rely on the consistent behaviour of their premises depends on
the context. In [31], for instance, it is argued that, in contexts governed by the principle
of maximal informativeness, it is justified to derive B from ∼A and A ∨ B, even if A

behaves inconsistently. The condition, however, is that Addition—to derive A ∨ B from
A—is made dependent on the consistent behaviour of A.

7 Reasoning patterns of the former type are also called non-monotonic. Note that not all
dynamical reasoning patterns are non-monotonic—an interesting example of a reasoning
pattern that is intrinsically dynamical yet monotonic is studied in [7].
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The consequence relation that captures a specific reasoning pattern of
this type may be defined in various ways—for instance, with respect to some
monotonic logic, some semantics or some set of criteria. As I shall argue
below, such definitions are important. However, if we want to understand
dynamical reasoning processes, we need something more. The reason for
this is twofold. First, the definitions only indirectly explicate the external
dynamics, and moreover completely fail to capture the internal dynamics.
Next, in view of the undecidability of the reasoning patterns at issue and the
fact that they even lack a positive test, the definitions are of limited use in
actual reasoning. Let me try to illustrate this with some simple examples.

One of the basic forms of ampliative reasoning concerns the inference of
sentences that are (merely) compatible with a set of premises.8 A conse-
quence relation for this type of reasoning can easily be defined with respect
to a monotonic logic. For instance, if one is interested in a consequence
relation “⊢COMPAT” for classical compatibility, the latter may be defined
as “Γ ⊢COMPAT A iff Γ 6⊢CL ¬A”.9 This definition clearly captures the
meaning of the phrase “A is compatible with Γ”. However, as the definition
is static, it does not enable one to model (in a direct way) what happens
when Γ is extended to Γ′. Moreover, as it refers to CL-derivability, it can
neither explain what happens when a person draws a conclusion on a par-

tial understanding of Γ (and withdraws this conclusion when Γ is further
analysed) nor provide guidance in the case of undecidable fragments. In-
deed, according to the definition, a sentence A is or is not compatible with
some set of premises Γ independently of the question whether this can be
established.

Two other important forms of ampliative reasoning are abduction and
induction. The former is usually defined by summing up a set of criteria that
should be satisfied for A to be ‘abducible’ from a theory T and an explanan-
dum B (for instance, that A is compatible with T , that B does not follow
from T , that B follows from T ∪ {A}, that A is as parsimonious as possible,
. . . ). The latter is sometimes defined with respect to some kind of preferen-

8 A fundamental requirement for ampliative consequence relations is that they lead
to conclusions that are compatible with the premises. Different ampliative consequence
relations can be distinguished from one another with respect to the additional requirements
they impose on their conclusions. In the case of inductive reasoning, for instance, one of the
requirements may be that the conclusions should be jointly compatible with the premises—
see, for example, [10]—and in the case of abductive reasoning that the conclusions explain
one or more explananda—see, for example, [35].

9 It is easily seen from these definition why compatibility lacks a positive test: as CL

is undecidable, it may be the case that A follows from Γ by COMPAT, whereas no finite
construction exists that establishes this.
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tial semantics. For instance, one may stipulate that A follows by induction
from Γ iff A is true in all CL-models of Γ that have the smallest possible
domain. Also reasoning from inconsistent premises has been defined with
respect to various types of preferential semantics. For instance, to capture
the idea that an inconsistent set of premises Γ is interpreted ‘as consistently
as possible’, one may select those models of Γ (of some monotonic paracon-
sistent logic), that are minimally inconsistent (in some specific sense),10 and
define a consequence relation with respect to these. In each of these cases,
however, one obtains a definition that does not capture the dynamics of the
reasoning patterns at issue, and that is of limited use in actual reasoning.

An interesting way out of all this is offered by adaptive logics, and more
specifically by their dynamic proof theory. As is argued in [9], adaptive logics
provide a unified framework for the formal study of reasoning processes that
are intrinsically dynamical. What makes adaptive logics suitable for such
reasoning processes is that they ‘adapt’ themselves to specific violations of
presuppositions. Where a presupposition is violated, the rules of inference
are restricted in order to avoid triviality. However, where this is not the
case, the rules can be applied in their full strength.

All currently available adaptive logics are defined in terms of three ele-
ments: an upper limit logic, a lower limit logic, and an ‘adaptive strategy’.
The upper limit logic is an extension of the lower limit logic. The former
thus introduces a set of presuppositions on top of those of the latter. These
additional presuppositions are the ones that are defeasible: they are followed
‘as much as possible’, but are abandoned when necessary to avoid triviality.
The third element, the adaptive strategy, determines the interpretation of
the ambiguous phrase “as much as possible”. When a set of premises vio-
lates one of the presuppositions of the upper limit logic, it is said to behave
abnormally with respect to the upper limit logic.11

The semantics of an adaptive logic is a preferential one: it is obtained
by selecting a subset of the models of the lower limit logic. The selection is
determined by the adaptive strategy. The Minimal Abnormality Strategy,
for instance, selects those models that are minimally abnormal (in a set-
theoretical sense) with respect to the upper limit logic. If some theory Γ

10 Such a selection may either be linguistic or ontological. In the former case, it refers to
the inconsistencies that are verified by the model, in the latter to the ‘inconsistent objects’
in the domain. For an interesting comparison of the two types of approaches, see [4].

11 It is important to note that “abnormality” does not refer to the purported standard
of reasoning, say CL. It refers to properties of the application context—to presuppositions
that are considered desirable, but that may be overruled.
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behaves normally with respect to the upper limit logic, the adaptive models
of Γ coincide with the models of the upper limit logic that validate Γ.

Syntactically, an adaptive logic is obtained by taking the rules of the
lower limit logic as unconditional (as unconditionally valid), and the rules
of the upper limit logic as conditional. The adaptive strategy determines a
marking rule (see below). As mentioned above, the proof theory of adaptive
logics is dynamic. Sentences derived conditionally at some stage in a proof
may at a later stage be rejected, namely, when the condition is no longer
satisfied. The mechanism by which this is realized is quite simple. If a
formula is added by the application of a conditional rule, a ‘condition’ (set
of formulas) that is specified by the rule, is written to the right of the line. If
a formula is added by the application of an unconditional rule, no condition
is introduced, but the conditions (if any) that affect the premises of the
application are conjoined for its conclusion. The members of the condition
set have to behave normally for the formula to be derivable. At each stage of
the proof—with each formula added—the marking rule is invoked: for each
line that has a condition attached to it, it is checked whether the condition is
fulfilled or not. If it is not, the line is considered as not (any more) belonging
to the proof. The formulas derived at a stage are those that, at that stage,
occur on non-marked lines.

Thanks to this dynamic proof theory, adaptive logics enable one to model
in a direct way both the external and the internal dynamics that is typical of
the reasoning processes discussed in the previous paragraphs. It can more-
over be shown that the proof theory leads to the best possible conclusions
in view of the understanding of the premises at a given stage (see [9]). This
makes the proof theory of adaptive logics more realistic than the above
mentioned definitions. Indeed, it not only enables one to come to justified
conclusions for undecidable fragments, it can also account for the fact that,
even for decidable fragments, inferences are drawn on the basis of a partial
understanding of the premises (because of limited resources, for instance).
Still, one obviously wants that the dynamics is sensible—that, for instance,
different dynamic proofs ‘eventually’ lead to the same results. In an adaptive
logic, this is guaranteed by the notion of final derivability which is sound
and complete with respect to the semantics. Intuitively, a sentence is said
to be finally derived in a dynamic proof iff it is derived on a line i that is
not marked and is such that any extension of the proof in which i is marked,
can be further extended in a way that i is unmarked.12 For all currently

12 This notion of final derivability corresponds to the static definitions discussed above.
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available adaptive logics, it can be shown that the order in which inferences
are made does not affect what is finally derivable from the premises.13

Adaptive logics can be divided into two categories: corrective and am-
pliative. In a corrective adaptive logic, the standard of reasoning is de-
termined by the upper limit logic; specific deviations from this standard
are minimized. All currently studied corrective adaptive logics have CL as
their upper limit logic, and hence, adapt themselves to specific violations
of CL-presuppositions. Inconsistency-adaptive logics, for instance, interpret
inconsistent theories ‘as consistently as possible’. Examples in this category
are ACLuN1 and ACLuN2 (see especially [3]), and ANA (see [31]). In
an ampliative adaptive logic, the standard of reasoning is determined by the
lower limit logic; specific extensions of this standard (that are considered
desirable within the application context at issue) are maximized. Exam-
ples of ampliative adaptive logics are logics of compatibility (see [11]), of
metaphorical reasoning (see [23]), of diagnosis (see [12]), of induction [10],
of abduction (see [35]), and of inference to the best explanation (see [34]).
In each of these logics, CL is the lower limit logic.

Although from a formal point of view corrective and ampliative adap-
tive logics are very similar to one another,14 the former are best suited for
reasoning from inconsistent information and the latter for reasoning from
incomplete information. One reason for this is that according to an amplia-
tive adaptive logic, but not according to a corrective one, inconsistencies
may arise even if the set of premises is consistent. Another reason is that
corrective logics merely localize the inconsistencies (and leave their resolu-
tion to extra-logical considerations). In an ampliative adaptive logic some
inconsistencies are resolved by the logic itself (for instance, when there is
a conflict between a deductive inference and an ampliative one). Both dif-
ferences coincide with central differences between the two types of situation
(see the previous section).

5. Inconsistencies and Ontological Presuppositions

As is argued convincingly in [8], the question whether the world (or some
domain) is consistent is a confused one. Consistency refers to negation, and

13 There is only one exception: the adaptive logic for default reasoning that is presented
in [1]. This, however, is related to the aim of this logic, namely to reconstruct standard
default logics (see, for instance, [28]). According to these logics the order in which default
rules are applied indeed makes a difference for the set of sentences that is finally derivable.

14 Formally, both corrective and ampliative logics are realized by choosing some upper
limit logic that incorporates the desired presuppositions, and by minimizing the deviations
from these presuppositions.
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hence to a description of the world, not to the world itself. As every descrip-
tion of the world presupposes a language L and a correspondence relation R

that ties the language to the world, the real question is whether there exists
a language L and a correspondence relation R such that the true description
of the world as determined by L and R is consistent. In [8], it is argued that
all attempts to answer this question in the positive are flawed. Here, I shall
focus on a different aspect, namely that if some researcher (temporarily) ac-
cepts inconsistencies with respect to some domain, this does not necessarily
indicate that he or she is using a language L and correspondence relation R

that together preclude a consistent description of that domain. I shall argue
that if the latter is not taken into account, one easily misjudges the way in
which the world is categorized by the researcher at issue.

I mentioned in the previous section that, from a formal point of view,
corrective and ampliative adaptive logics are very close to one another. In
view of this, it is possible to design corrective and ampliative systems that
are equivalent (in the sense that they lead to the same consequence set
when applied to the same set of premises). What is important, however,
is that the ontological presuppositions behind the two types of systems are
different. This is why, in some contexts, an ampliative system leads to a
better reconstruction than a corrective one (and vice versa), even if the two
are equivalent. Let me illustrate this with an example.

In [2], Batens presented a reconstruction of circumscription15 in terms
of an inconsistency-adaptive logic. This was followed by a reconstruction
of Reiter’s default logic in terms of an inconsistency-adaptive logic (see [21]
and [22]) and one in terms of an ampliative adaptive logic (see [1]). As far as
the consequence relation is concerned, both these reconstructions of default
logic are equivalent to one another. There are, however, some important
ontological and epistemological differences.

In the first reconstruction, it is presupposed that a person who applies
default rules (general rules that may have exceptions, such as “Birds fly”)
categorizes the world in such a way that he or she necessarily comes to an
inconsistent description. This is illustrated in Figure 1, where “F” stands
for “flying” and “B” for “bird”. The assumption here is that the extensions
of “flying” and “not-flying” overlap. In this way, it can be ensured that the
sentences “birds fly” and “some birds do not fly” can both be satisfied. The
price to be paid, however, is that some entities (like penguins) can only be

15 Circumscription is a non-monotonic formalism that is very popular in Artificial In-
telligence. The intuitive idea behind it is that the extension of predicates is minimized
(or that predicates are ‘circumscribed’): objects that can be shown to satisfy a certain
predicate are presupposed to be the only object that satisfy it.
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described in an inconsistent way. This is also why the first reconstruction
necessarily proceeds in two steps: first localizing the inconsistencies that
follow from the theory, and next resolving them by means of extra-logical
criteria.

Figure 1.

The second reconstruction proceeds in a totally different way. The as-
sumption behind it is that a person who applies default reasoning categorizes
the world by means of (what I call) graded concepts. This is illustrated in
Figure 2: there is no overlap of extensions, but a distinction is made between
‘typical’ instances of entities that have property B, and ‘non-typical’ ones;
typical instances have property F , non-typical ones do not. In line with this
assumption, the dynamical character of default reasoning is linked to a lack
of information. Suppose, for instance, that one uses a conceptual framework
as presented in Figure 2, and that one hears the sentence “Tweety is a bird”.
As typical birds fly, it seems justified to conclude that Tweety flies. This,
however, is not a deductive consequence, but a plausible hypothesis on the
basis of incomplete information (one does not know whether or not Tweety
belongs to the exceptions). Hence, as soon as one hears that Tweety is a
penguin, the hypothesis will be withdrawn. This is precisely how the second
reconstruction works: conclusions can be inferred on the basis of default
rules, but as soon as one of these conclusions contradicts a deductive one,
the former is withdrawn.

In the case of default reasoning, a reconstruction in terms of an amplia-
tive adaptive logic seems more justified. Default reasoning is a typical case
of reasoning from incomplete information: one makes plausible assumptions
on the basis of what typically or normally holds true. Assuming that in
this type of process the underlying conceptual structures are inconsistent
is a form of ‘paraconsistencitis’. The same holds true for other forms of
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Figure 2.

ampliative reasoning. Also these should not be modelled by means of a cor-
rective logic. In other cases, however, there is every reason to accept that
the underlying conceptual structures are inconsistent (see, for instance, the
examples in Section 2). If one reconstructs processes like this on the basis of
an ampliative system,16 the inconsistencies are simply explained away. This
inevitably leads to a serious underestimation of the difficulties one is dealing
with in such situations.
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