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Abstract. This is a survey of some possible extensions of ZF to a larger

universe, closer to the “naive set theory” (the universes discussed here concern,

roughly speaking : stratified sets, partial sets, positive sets, paradoxical sets and
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0. Introduction

The aim of this paper is to give a (non-exhaustive) survey of the possibility
of extending the “usual” Zermelo-Frankel universe to a larger one, closer to
the “naive set theory”. As is well-known, the ZF -universe is satisfying for
most mathematicians, but excludes many “intuitive” sets and operations, as
e.g. the Russell set, complementation, “filters” of type {x|a ∈ x}, etc. . . This
gives the impression to more “philosophically oriented” people that ZF in
a sense “solves” the paradoxes by just refusing to look at them. Several
“alternative” set theories have been proposed, and we will suggest here that
one can see them, not as being intended to replace ZF (what most mathe-
maticians would refuse to do), or as being in conflict with ZF , but rather
as being “reasonable” extensions of ZF .

As in those theories more “classically paradoxical sets and operations” are
available, this should satisfy both “mathematicians” and “philosophers”.

The theories we intend to discuss are :

(1) Quine’s “New Foundations” : NF .
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(2) “Partial sets” theory (that can be seen as “Frege in partial logic”).

(3) “Positive comprehension”, in its performant version : GPK+
∞

.

(4) “Paraconsistent Frege”.

(5) Kisielewicz’s “Double extension set theory”.

Roughly speaking these theories (however profoundly different) all have in
common difficulties to cumulate the following “qualities” (that ZF cumu-
lates rather “spontaneously”) :

a) be “naturally” modelizable (say in some “reasonable” extension of ZF )

b) “contain” a transitive class that modelizes ZF (with axiom of choice

if possible) in a sufficiently “standard” way,

c) be compatible with the axiom of choice AC (≡ any set is well-orderable).

We will make more precise each of these points and discuss them for each of
the concerned theories. Whenever models are involved, our metatheory will
be ZFC (≡ ZF +AC) or an adequate extension of ZFC.

The paper is kept as less technical as possible, with references to precise
results, proofs and details.

Let us first of all precise the concept of “containing ZF in a standard way”,
for a theory T expressed in the language L of ZF (i.e. with variables for sets
and proper symbols ∈ and =), in classical logic (for the theories (2) (4) (5)
we will need specific adaptations). We will use the notion of “class” in the
usual way, i.e. as “definable collection of sets”; so a class is a meta-object,
which use is intended only to allow traditionnal set-theoretical abbreviations.

When we say that the theory T contains ZF in a standard way, we mean
that the following wishes have been fulfilled : one can define a class C =
{x

∣

∣ ϕ(x, ~y)} in T (where ~y is an n-tuple y1 . . . yn of parameters), realizing
the following conditions :

(i) C is transitive, i.e. t ∈ x & x ∈ C → t ∈ C (where “z ∈ C” is the
abbreviation of “ϕ(z, ~y)”).

(ii) C provided with ∈ (more precisely : with the restriction of ∈ to C)
models ZF (if possible also AC), i.e. makes any concerned axiom σ
true when relativized to C (to relativize, bound each quantifier by C;
the parameters ~y should also be in C).

(iii) any subclass (in the sense of T ) of a set in C is a set in C, i.e. X ⊂ a
& a ∈ C → ∃y ∈ C X = y.
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(iv) if a set f (in the universe V of T ) is a function, x ∈ C and ∀t ∈ x
f(t) ∈ C, then f ∈ C (and so by (ii), also {f(t)

∣

∣ t ∈ x} ∈ C).

Some comments :

1) Condition (iv) extends the “replacement principle” in C to all functions
f (of V ) of type f ⊂ C ×C.

2) Conditions (i) (ii) simply express that C should be a transitive inter-
pretation of ZF .

3) Conditions (iii) (iv) are intended to guarantee “standardness” for a lot
of notions (a notion being standard iff it concerns “objects” of C and
has the same meaning in C and in V ); for example :

• the “powerset” Pa := {x
∣

∣ x ⊂ a}; with condition (iii), we have

indeed :

{x ∈ C
∣

∣ x ⊂ a} = {x ∈ V
∣

∣ x ⊂ a}, for a ∈ C and V := {y|y = y},

• “to be countable”, i.e. in bijection with the least infinite Von Neu-

mann ordinal ω (use condition (iv)),

• “to be well-founded”,

• “to be a Von Neumann ordinal”,

• etc. . .

It would indeed be frustrating that (for example) some a ∈ C would be
considered as countable when seen in V , and uncountable in C !

1. Quine’s “New Foundations”

The system NF [20] can be seen as an “adaptation” of Russell’s “type
theory” to the first order language (of ZF ) L (see [7], [15] for a detailed
bibliography).
The idea is to restrict the “naive comprehension principle” :

∃a ∀t (t ∈ a↔ ϕ(t, ~y))

to those formulas ϕ (in L) that are “stratified”, i.e. for which one can
associate to each variable “v” (in ϕ) an integer jv (the “type” of v; notice
that all occurrences of v should receive the same type) in such a way that
jy = jx + 1 whenever “x ∈ y” appears in ϕ and jz = jt whenever “z = t”
appears in ϕ.
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Typically “x ∈ x” is not stratified (so that one avoids the straightforward
Russell-paradox argumentation), while (for example) “∀t (t ∈ x→ t ∈ y)” is
stratified. Further NF admits also the (classical) axiom of extensionality :

EXT ≡ (∀t (t ∈ x↔ t ∈ y)) → x = y.

In 1953, Specker gave his famous proof of ¬AC in NF [21]. Notice that the
well-known equivalent forms of AC (equivalent in ZF ) stay equivalent in
NF (see [15, Chapter 14]), so that this result is actually a very “hard” one
(at last for mathematicians). The positive side of this however is that NF
proves an (adequate) “axiom of infinity”; more precisely this axiom does not
refer to the existence of the least infinite Von Neumann ordinal ω, but states
that V /∈ FIN , where V := {x|x = x} is a set here (because “x = x” is

stratified) and FIN is the set of all finite sets :

FIN := ∩{b|∅ ∈ b & ∀z ∈ b ∀t z ∪ {t} ∈ b}.

This axiom permits to prove that the set IN of all Frege-integers (i.e. equipo-
tence classes of finite sets; for example 2 is the set of all true pairs) satisfies
the Peano-arithmetic axioms, so is very satisfactory from the mathematical
point of vue.

The most “negative” aspect of NF however is still the question of its con-
sistency. The problem is related to the (full) axiom EXT, as Jensen [16]
showed that “slightly weakening” EXT suffices to get a system, NFU ≡
stratified comprehension + extensionality for the non-empty sets, i.e.

∃z ∈ x→ (∀t (t ∈ x↔ t ∈ y) → x = y)),

that one can modelize and that is even compatible with AC and stronger ax-
ioms of infinity, essentially in the same way as ZF [15, in particular Chapter
1].
All this gives the impression that perhaps NFU is the “good” version of
“stratified comprehension”, which is the thesis adopted in [15] and reinforced
by the easy way in which NFU can “incorporate” ZF . But what can be said
about “ZF in NF (the “true” one, not NFU)” ? This is actually realizable
(with the “standardness” expectations explained in section 1), at the price
of assuming the existence of some large cardinal; more precisely :

Theorem. If “NF+ there exists a strongly inaccessible, strongly cantorian,
uncountable cardinal κ” is consistent, then there exists a model M of NF
that contains ZF in a standard way (as defined in section 1).
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Before we define the involved notions, let us mention that this results from
[11, theorem p.25] and [13, section 3], and that one gets ZFC instead of ZF
if κ is assumed to be a “well-ordered cardinal”.

Some definitions and comments :

• the class C that interprets ZF in M is even a set in M (here),

• the notion of “cardinal” should be understood in Frege’s sense (as an
“equipotence class”) :

Card x := {y|y can be put in bijection with x}.

When x is a well-orderable set, its cardinal is said to be a “well-ordered
cardinal”,

• a cardinal κ is “strongly inacessible” iff

(def.) ∀y(Card y < κ→ Card Py < κ) &

∀a ((Card a < κ & ∀b ∈ aCard b < κ)

→ Card ∪ a < κ);

this is the “natural” adaptation to NF of this familiar notion of ZF
(notice that some authors just say “inaccessible”, e.g. [2]),

• in NF , a set x is called “strongly cantorian” when the collection
{(t, {t})

∣

∣ t ∈ x} (that is not defined a priori by a stratified formula)
is a set. Strongly cantorian sets have a more “normal” behaviour than
others (see e.g. [15]). By extension a cardinal Card x is called “strongly
cantorian” when x is a “strongly cantorian set”,

• naturally, so far nobody really knows about the compatibility of NF
with the type of “large cardinal” involved in the Theorem, but the
risk of inconsistency exists also for “ZF + such a κ”; it should also
be mentioned that traditionnaly “strong inaccessibility” is a rather
“weak” assumption in the hierarchy of “large cardinals”,

• one can get “ZF in NF” at a “lower price”, but then not in a “stan-
dard way” (as defined in section 1); in [13, “characterization theorem”,
p. 524] for example, it is shown that the consistency of “NF+ Rosser’s
axiom (stating that IN is a strongly cantorian set, with IN the set of
all cardinals of finite sets) + Con ZF (the arithmetical statement that
translates “ZF is consistent”)” suffices to guarantee the consistency of
“NF+ there exists a transitive set M that modelizes ZF”; that model
M (munished with ∈) realizes our wishes (i) (ii) (see section 1), but
not (iii), (iv), because M itself is countable (in NF ) !
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2. Partial sets

This kind of concept was introduced by Gilmore (see the pioneer paper [10]),
who proposed two versions (PST and PST+) of a theory of “partial sets”,
both in a language with variables (for the “partial sets”), primitive symboles
∈, /∈, = and an abstraction operator. Those theories negate the correspond-
ing axiom of extensionality [10], [12], precisely because of the presence of the
abstraction operator. So it was very natural to hope that some adaptations
of these theories to a first-order language without abstractor could be com-
patible with extensionality. Actually these adaptations can also be seen as
particular versions of “Frege” (i.e. full comprehension) with extensionality,
in some “partial logic”; this presentation has been introduced in [12] and
further studied in detail in [14], where models for some versions, but not
all, are given; in particular the question of a model is still open for the “most
natural” version, called F2 in [14] (this one is very close to PST+).

To give some intuition about all this, we only describe here what a model of
“F2 in partial logic” should be. Actually one wants a structure of type

M = (A,∈+
M ,∈

−

M ,=
+
M ,=

−

M ),

where A is a set and ∈+
M , ∈−

M , =+
M , =−

M are binary relations on A (∈+
M

corresponds to “∈” in [10], ∈−

M to “/∈ ”, =+
M to “=” and =−

M to “6=”).

Further =+
M should be the “true” equality on A, and the following conditions

should be fulfilled :

• Extensionality :

∀t ((t ∈+
M x↔ t ∈+

M y) & (t ∈−

M x↔ t ∈−

M y)) ↔ x =+
M y

and

∃t ((t ∈+
M x & t ∈−

M y) ∨ (t ∈−

M x & t ∈+
M y)) ↔ x =−

M y

• Comprehension :

∃a ∀t ((t ∈+ a↔ ϕ(t, ~y)) & (t ∈− a↔ ϕ(t, ~y))

should be realized in M , for any positive formula (i.e. build up from
the atomic formulas of type x ∈+ y, x ∈− y, x =+ y, x =− y, only
using ∀, ∃, &, ∨); ϕ is the “dual” of ϕ obtained via the rules :

x ∈+ y is x ∈− y,∀xψ is ∃xψ, etc. . .
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• “Partial sets” principle :

∈+
M ∩ ∈−

M and =+
M ∩ =−

M are both empty.

The existence of such an M is still open, and so are (a fortiori) the questions
of compatibility with AC and “containing ZF”.

3. Positive comprehension

The unsolved questions about “partial sets” naturally suggested (apparently)
simpler problems : what about “positive comprehension”, but in the lan-
guage L of ZF and with classical logic ? More precisely, what can be said
about the theory T which axioms are :

• Extensionality :
∀t (t ∈ x↔ t ∈ y) → x = y

• Positive comprehension :

∃a ∀t (t ∈ a↔ ϕ(t, ~y)),

for any positive formula ϕ in L.

• Empty set axiom (intended to avoid the trivial model with one ele-
ment) :

∃x ∀t¬t ∈ x.

Now, Gilmore’s technique (to modelize PST ) can be easily adapted to fur-
nish a model of T , but alas without extensionality [12, Remarque p.310].
The solution for the full T came only later [8], [13], thanks to improvements
of Malitz’s pioneer work [19], that uses “topological” techniques. The mod-
els even allow “generalized positive” comprehension (i.e. extensions of T )
and have for now been studied in detail by several authors.

We will restrict us here to those results that are linked to the aim of this
paper (see section 1).
Call GPF (“generalized positive formulas”) the formulas obtained from the
atomic ones (of type x ∈ y, x = y), only using ∀, ∃, & , ∨, ∀x ∈ y (“universal
bounded quantification”), and quantification of type “∀x such that θ(x)”,
where θ is an arbitrary formula (not necessarily positive!) with exactly one
free variable (namely ‘x’). The system GPK+ has as axioms the empty set
axiom and extensionality (of T ), and the following comprehension scheme :

∃a ∀t (t ∈ a↔ ϕ(t, ~y)),
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for any formula ϕ of type

∀z(θ(z, ~y) → ψ(t, z, ~y)),

where ψ is GPF and θ does not contain the variable “t”. In particular one
has this comprehension when ϕ is GPF (just take ψ ≡ ϕ and θ ≡ z = z). So
this is really “generalized” positive comprehension, as ϕ may contain many
“negative” parts (compare with T ). The system GPK+ can be enriched
via an adequate infinity axiom, namely “∃ω” that states the existence of an
infinite Von Neumann ordinal; the resulting system is denoted GPK+

∞
.

This appears to be a kind of “optimal natural” version of “positive com-
prehension” and has been formulated and studied by Esser [4]. Actually
GPK+ (without the infinity axiom) has models in ZFC [8], [13], which
satisfy even “spontaneously” AC [9]. But, if one wants models of GPK+

that “contain ZF in a standard way”, one has to modelize GPK+
∞

, and this
theory disproves AC (see [6]); this important result should be put in parallel
with the analogue situation for NF [21]); further the “price” for a model
of GPK+

∞
is a “weakly compact, uncountable cardinal” (in the hierarchy

of “large cardinals” the existence of that type of cardinal κ is still consid-
ered as a “rather low” assumption; the model that is constructed contains
actually all the well-founded sets of rank < κ, and these modelize ZFC
in the desired “standard way”; for details, see [8]). The exact interpreta-
tive power of GPK+

∞
has been determined by Esser [4], [5]; it corresponds

to “Kelley-Morse + the class of all ordinals behaves like a weakly compact
cardinal”.

4. Paradoxical sets

The “topological” models for GPK+ evoked in section 3 inspired adpta-
tions to modelize “paraconsistent Frege”. Without extensionality Gilmore’s
technique suffices (the corresponding consistency result was independently
noticed by Crabbé [3]), but to overcome the lack of extensionality the “topo-
logical” techniques were necessary. The system “paraconsistent Frege” that
we want to discuss here can be described in several ways. In [14] it is “F2
in Pd-Logic”. This “Pd-Logic” (“Pd” for “paradoxical”) corresponds actu-
ally exactly to the logic CLuNs1, familiar (at least) to the Flemish-Polish
“paraconsistency tradition” (see e.g. [1]). In order to describe the system
as simply as possible, we adopt the presentation of section 2 (the situation
here is a kind of “dual” of the situation there).

1 I wish to thank Prof. D. Batens who immediately recognized this correspondence.
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So a model of “F2 in Pd-Logic” should simply be like a model of “F2 in
partial logic” (see section 2), except that the “partial sets principle” should
be replaced by the following “paradoxical sets principle” : ∈+

M ∪ ∈−

M and
=+

M ∪ =−

M are both A × A (A is the universe of the model). To avoid the
trivial model with one element, one has also to add (here) a condition like :
∃x∀t¬t ∈+

M x.

For the reader familiar with CLuNs, the system can be described like this :
the logic is CLuNs, with classical negation ¬ and the non-classical negation
∼; further the non-logical axioms express the following version of “Frege
with extensionality” :

• Extensionality :
(∀t(t ∈ x↔ t ∈ y)) ↔ x = y

and

∼ (∀t(t ∈ x↔ t ∈ y)) ↔∼ (x = y)

(where → is classical, i.e. A→ B is ¬A ∨B).

• Comprehension :
∃a ∀t(t ∈ a↔ ϕ(t, ~y)),

for ϕ build up positively (i.e. via ∀, ∃, &, ∨) from basic formulas of
type : x ∈ y, ∼ (x ∈ y), x = y, ∼ (x = y).

• Empty set axiom :
∃x∀t¬t ∈ x.

The link with the previous description in terms of “a model” is simply that :
x ∈ y corresponds to x ∈+

M y, ∼ (x ∈ y) to x ∈−

M y, x = y to x =+
M y and

∼ (x = y) to x =−

M y.

Actually ZFC is strong enough to modelize this form of “paradoxical Frege”
[14].
The construction uses a “projective limit” with ω levels; actually, going be-
yond ω, with the aim of getting also “ZF in Frege” presents several technical
difficulties, not yet completely solved. Also the question of AC has not been
studied so far.

However, as the situation is (apparently) close (but not identical) to the one
of GPK+

∞
, we think that it is reasonable to conjecture2 that, in “ZFC+

there exists an uncountable, weakly compact cardinal” one can construct a

2This was written in 2000; underwhile T. Libert axiomatized the adequate version of
“paraconsistent Frege” (and called it “HyperFrege”), and O. Esser proved the conjecture.
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model of “paraconsistent Frege containing ZFC in a standard way”; as for
GPK+

∞
, such a model (obtained via projective limits) will probably negate

AC (on its whole universe), but accept AC on the ZF -part.

Remark. The “projective limit” construction, even restricted to ω levels,
is problematic when adapted to the “partial sets” case, putting in evidence
the “not really dual” relation between “Pd-logic” and “Pt-logic” (see [14]).

5. Kisielewicz’s “Double sets”3

Another alternative approach to set theory is to be found in the “double
sets” concept, first presented in a language with class variables [17] and
later improved in the sense of a welcome simplification of the axioms as
well as of the language (first-order this time) [18], while keeping the desired
strenght of the system(s), which lies in its aim to avoid paradoxes in a very
original and simple syntactical way and to get ZF in it !

We only describe here some of the basic ideas involved. The underlying logic
is classical, the language is first-order (with equality) but has two kinds of
membership : “∈” and “E”.

A regular set x is a set realizing :

∀t (t ∈ x↔ tEx).

Notice that this is very different from the “partial sets” and “paradoxical
sets” concepts, where a “regular” (or “normal”, or “classical”) set should
realize :

∀t (t ∈+ x↔ ¬t ∈− x);

so ∈− has to do with complements, while here E has to do with another

extension.

The axiomatization of “double set” theories is inspired by the following
remark : consider R := {x|¬x ∈ x} (the “Russell set”); if instead of a
comprehension sentence like ∀t (t ∈ R ↔ ¬t ∈ t), one has this : ∀t (tER ↔
¬t ∈ t), the paradox (at least in its immediate form) vanishes !

‘The questions of the consistency of these theories as well as their be-
haviour w.r.t. AC are, however, still open.4

3 I wish to thank Prof. J. Perzanowski who let us know the existence of this very
original “non-classical alternative” for set theory.

4This was written in 2000. Underwhile (precisely in 2002) Randall Holmes succeeded



About the coexistence of “classical sets” with “non-classical”. . . 89

References

[1] Batens, D., and K. De Clercq, ‘A rich paraconsistent extension of full
positive logic’, Logique et Analyse (2000).

[2] Chang, C.C., and H. J. Keisler, ‘Model Theory’, North-Holland, 1973.
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