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1. Introduction

In the article Podstawy analizy metodologicznej kanonów Milla [2] Jerzy Łoś pro-

posed an operator that refered sentences to temporal moments. Let us look, for

example, at a sentence ‘It is raining in Toruń’. From a logical point of view it is a

propositional function, which does not have any logical value, unless we point at a

temporal context from a fixed set of such contexts. If the sentence was considered

today as a description of a state of affairs, it could be true. If it was considered

yesterday, it could be false.1 The operator enables us to connect any sentence p

with any temporal context t. Such a complex sentence we read as: a sentence p is

realized at a temporal context t (a point of time, an interval of some kind, etc).

The operator of realization can be applied more widely than only to tempo-

ral contexts. A review of these applications one can find in the book of Rescher

and Urquhart [5]. It is why we shall, considering some very general axioms in

the further part of our paper, write merely about positions, without deciding about

their nature. These restrictions concern also sentential letters. They do not have to

represent indexical sentences, but also so called eternal sentences. There is no ob-

stacle to think about a logical value of the sentence ‘American soldiers are bombing

1Hence, as an indexical sentence, it expresses various logical propositions at different contexts of

utterance, denotes different parts of a world, and can change a logical value.
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Baghdad in 2003’ at such a temporal context as, for example, 2000. Maybe it was

then already true, but maybe it had the third logical value?

In the mentioned article Łoś proposed axioms that characterized not only a

behavior of the operator, but also a domain of parametr, so a formal representation

of time. Later, basing on Łoś’ axioms, many authors developed different variants of

deductive systems that described a relationship between sentences and time in an

analogous way as Łoś did it (a laconic review of them can be found in the following

papers [1, 4]).

In this article we shall show some basic properties of a very poor system of

axioms that are not intended to be interpreted in a temporal way, because they are

too general.

The system of considered axioms will be called minimal one, because it allows

us to prove that the operator of realization is distributive over all classical connec-

tives, what with the established, intuitive semantics enables us to prove the Com-

pleteness Theorem. Adding quantifiers, positional variables and other axioms, we

obtain an extension of the minimal system, but it does not give any new, essential

theorems.

At the end of the paper we will suggest how to change a meaning of the op-

erator, what can take place, when we establish a structure of a set of positions.

For example, we could treat a set of positions as a partial order and assume that

the realization of a sentence at a context depends on additional factors, not only

on its logical value at the context. Such an approach to the operator of realization

makes us change not only semantics, but also initial, basic axioms. Hence, consid-

ering this situation, one should form a minimal system in another way, opening a

possibility for further extensions.

2. Grammar and deductive tools of MR

The system described here and also its various extensions and modifications are

not simple extensions of classical logic. Although an alphabet is an extension of

propositional logic alphabet, its grammar is very specific. The considered system

will be denoted by ‘MR’.

2.1. Language of MR

The alphabet of MR (in short: Alf) can be in an usual way described as a sum

of separate sets: logical connectives: Con = {¬,∧,∨,→,↔,R}, sentential letters:

SL = {p1, p2, p3, . . .}, positional letters: PL = {a1, a2, a3, . . .}, moreover, we need

some auxiliary signs: ‘)’, ‘(’, ‘]’, ‘[’. We assume also that the sets SL and PL are

infinite, but countable.
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Before we present a definition of a formula, we will define an auxiliary notion:

Definition 2.1. To the set of atomic expressions (in short: AE) belongs every and

only such an expression A that satisfies exactly one of the conditions:2

1. A ∈ SL,

2. A has one of the forms: p¬Bq, p(B ∧ C)q, p(B ∨ C)q, p(B → C)q, p(B ↔ C)q,

where B,C ∈ AE.

Obviously, the set AE is the set of all formulas of Classical Propositional Calculus

(in short: CPC).

Definition 2.2. To the set of formulas (in short: For) belongs every and only such

an expression ϕ that has exactly one of the forms:3

1. pRαAq, where A ∈ AE and α ∈ PL,

2. p¬ψq, where ψ ∈ For,

3. p(ψ ∧ χ)q, where ψ, χ ∈ For,

4. p(ψ ∨ χ)q, where ψ, χ ∈ For,

5. p(ψ→ χ)q, where ψ, χ ∈ For,

6. p(ψ↔ χ)q, where ψ, χ ∈ For.

Any member of For will be called a formula.

2.2. Axioms and rules of MR

The only rule of inference is the detachment rule MP:

ϕ ϕ→ ψ

ψ

(Ax0): An axiom of MR is any substitution of any tautology of CPC with formulas

from For.

Except the above tools, we introduce specific axiom for any atomic expressions

A, B ∈ AE and any positional letter α ∈ PL:

Rα¬A↔ ¬RαA ,(Ax1)

RαA ∧ RαB→ Rα(A ∧ B) ,(Ax2)

2The letters ’A’, ‘B’ and ‘C’ are metavariables which take values from the set of atomic expres-

sions.
3The letters ’ϕ’, ‘ψ’ and ‘χ’ are metavariables which take values from the set of formulas. More-

over, the letter ’α’ is a metavariable which takes a value from the set of positional letters.
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Moreover, if A ∈ AE is a theorem of CPC, the following formula is also an axiom:

(Ax3) RαA .

Now, we will define an usual notion of proof:

Definition 2.3. Let Φ be any set of formulas. Let ϕ be any formula. We say that ϕ

has a proof on the ground of Φ (in short: Γ ⊢ ϕ) iff there is a sequence of formulas

ψ1, . . . , ψn such that ψn = ϕ and for any i 6 n a formula ψi satisfies one of the

conditions:

1. ψi ∈ Φ;

2. ψi is an axiom which is a substitution of a CPC theorem schema;

3. ψi is one of the axioms (Ax1), (Ax2) or (Ax3);

4. ψi arises by use of MP, i.e., there are j, k < i such that ψk = p(ψ j → ψi)q.

In a case when we have proved a formula ϕ on the ground of the empty set of

assumptions Φ, this fact will be denoted by one of the following expressions: ‘⊢ ϕ’

or ‘∅ ⊢ ϕ’ and the formula ϕwill be called theorem. On the other hand, if a formula

ϕ can not be proved on the ground of Φ, this fact we will be denoted by: ‘Φ 0 ϕ’.

2.3. The deduction theorem and derivable rules of MR

By CPC we have the following derivable rules:

¬ψ ϕ→ ψ

¬ϕ

ϕ→ ψ

¬ψ→ ¬ϕ

ϕ↔ ψ

ψ↔ ϕ

ϕ↔ ψ

ϕ→ ψ

ϕ→ ψ ψ→ ϕ

ϕ↔ ψ

ϕ→ χ χ→ ψ

ϕ→ ψ

ϕ→ ψ ϕ→ χ

ϕ→ (ψ ∧ χ)

¬(ϕ ∧ ψ)

ϕ→ ¬ψ

Using the introduced notions and properties of axioms one can prove the deduction

theorem (in short: DT) and the rule of extensionality (in short: RE) for our system.

We omit its proof, because it is analogous as in CPC.

Lemma 2.1. Let Φ ⊆ For and ϕ, ψ ∈ For. Then Φ ∪ {ϕ} ⊢ B iff Φ ⊢ ϕ→ ψ.

Lemma 2.2. The following rule is derivable:

ϕ↔ ψ

χ↔ χ(ϕ//ψ)
RE

where χ(ϕ//ψ) is a formula arising from χ as a result of replacement of the subfor-

mula ϕ with the formula ψ.
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2.4. Inconsistent sets of formulas in MR

We shall introduce some additional helpful notions. The first one is a notion of

inconsistent set:

Definition 2.4. We say that a set Φ ⊆ For is inconsistent iff for every formula ϕ:

Φ ⊢ ϕ.

By this definition, we can prove the following lemma:

Lemma 2.3 (Consistency Lemma). Let Φ ⊆ For and ϕ ∈ For. If Φ 0 ϕ, then the set

Φ ∪ {¬ϕ} is consistent.

Proof. Let Φ ⊆ For, ϕ ∈ For, and Φ 0 ϕ. For every ψ ∈ For we have: Φ ⊢

¬(ψ ∧ ¬ψ), so Φ 0 ¬(ψ ∧ ¬ψ) → ϕ. Hence, by CPC, Φ 0 ¬ϕ → (ψ ∧ ¬ψ). So

Φ ∪ {¬ϕ} 0 (ψ ∧ ¬ψ), by DT. Hence, the set Φ ∪ {¬ϕ} is consistent.

2.5. Distributivity laws in MR

Now we prove that R operator is distributive over all classical connectives.

Fact 2.1. For any A ∈ AE and α ∈ PL the following formula:

RαA↔ ¬Rα¬A

is a theorem.

Proof. It is justified by the following sequence:

1. Rα¬A↔ ¬RαA (Ax1)

2. (Rα¬A↔ ¬RαA)→ (RαA↔ ¬Rα¬A)

the CPC thesis (ϕ↔ ¬ψ)→ (ψ↔ ¬ϕ)

3. RαA↔ ¬Rα¬A 1, 2 and MP

Fact 2.2. For any A, B ∈ AE and α ∈ PL the following formula:

Rα(A → B)→ (RαA→ RαB)

is a theorem.

Proof. It is justified by the following sequence:

1. Rα¬((A → B) ∧ A ∧ ¬B) (Ax3)

2. Rα¬((A → B) ∧ A ∧ ¬B)↔ ¬Rα((A→ B) ∧ A ∧ ¬B) (Ax1)

3. Rα¬((A → B) ∧ A ∧ ¬B)→ ¬Rα((A→ B) ∧ A ∧ ¬B) 2 and CPC

4. ¬Rα((A → B) ∧ A ∧ ¬B) 1, 3 and MP

5. [Rα(A → B) ∧ Rα(A ∧ ¬B)]→ Rα((A→ B) ∧ A ∧ ¬B) (Ax2)
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6. ¬[Rα(A → B) ∧ Rα(A ∧ ¬B)] 4, 5 and CPC

7. Rα(A→ B)→ ¬Rα(A ∧ ¬B) 6 and CPC

8. (RαA ∧ Rα¬B)→ Rα(A ∧ ¬B) (Ax2)

9. ¬Rα(A ∧ ¬B)→ ¬(RαA ∧ Rα¬B) 8 and CPC

10. Rα(A→ B)→ ¬(RαA ∧ Rα¬B) 7, 9 and CPC

11. Rα(A→ B)→ (RαA→ ¬Rα¬B) 10 and CPC, RE

12. ¬Rα¬B→ RαB Fact 2.1 and CPC

13. Rα(A→ B)→ (RαA→ RαB) 11, 12 and CPC

Fact 2.3. For any A, B ∈ AE and α ∈ PL the following formula:

Rα(A ∧ B)↔ (RαA ∧ RαB)

is a theorem.

Proof. It is justified by the following sequence:

1. RαA ∧ RαB→ Rα(A ∧ B) (Ax2)

2. Rα((A ∧ B)→ A) (Ax3)

3. Rα(A ∧ B)→ RαA 2, Fact 2.2 and MP

4. Rα((A ∧ B)→ B) (Ax3)

5. Rα(A ∧ B)→ RαB 4, Fact 2.2 and MP

6. Rα(A ∧ B)→ (RαA ∧ RαB) 3, 5 and CPC

7. Rα(A ∧ B)↔ (RαA ∧ RαB) 1, 6 and CPC

Fact 2.4. For any A, B ∈ AE and α ∈ PL the following formula:

Rα(A → B)↔ (RαA→ RαB)

is a theorem.

Proof. It is justified by the following sequence:

1. Rα(A→ B)→ (RαA→ RαB) Fact 2.2

2. (RαA→ RαB)↔ ¬(RαA ∧ ¬RαB) CPC

3. (RαA→ RαB)↔ ¬(RαA ∧ Rα¬B) (Ax1) and RE

4. (RαA→ RαB)↔ ¬Rα(A ∧ ¬B) Fact 2.3 and RE

5. (RαA→ RαB)↔ Rα¬(A ∧ ¬B) (Ax1) and RE

6. Rα[¬(A ∧ ¬B)→ (A→ B)] (Ax3)

7. Rα¬(A ∧ ¬B)→ Rα(A → B) 6, Fact 2.2 and MP

8. (RαA→ RαB)→ Rα(A → B) 5, 8 and CPC

9. Rα(A→ B)↔ (RαA→ RαB) 1, 8 and CPC
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Fact 2.5. For any A, B ∈ AE and α ∈ PL the following formula:

Rα(A ↔ B)↔ (RαA↔ RαB)

is a theorem.

Proof. It is justified by the following sequence:

1. Rα[(A ↔ B)→ (A→ B)] (Ax3)

2. Rα(A↔ B)→ Rα(A → B) 1, Fact 2.2 and MP

3. Rα(A→ B)→ (RαA→ RαB) Fact 2.2

4. Rα(A↔ B)→ (RαA→ RαB) 2, 3 and CPC

5. Rα[(A ↔ B)→ (B→ A)] (Ax3)

6. Rα(A↔ B)→ Rα(B→ A) 1, Fact 2.2 and MP

7. Rα(A→ B)→ (RαB→ RαA) Fact 2.2

8. Rα(A↔ B)→ (RαB→ RαA) 6, 7 and CPC

9. Rα(A↔ B)→ (RαB↔ RαA) 4, 8 and CPC

10. (RαA↔ RαB)→ Rα(A → B) Fact 2.4 and CPC

11. (RαA↔ RαB)→ Rα(B→ A) Fact 2.4 and CPC

12. (RαA↔ RαB)→ [Rα(A→ B) ∧ Rα(B→ A)] 10, 11 and CPC

13. (RαA↔ RαB)→ Rα[(A → B) ∧ (B→ A)] 12, Fact 2.3 and RE

14. Rα[((A → B) ∧ (B→ A))→ (A ↔ B)] (Ax3)

15. Rα[(A → B) ∧ (B→ A)]→ Rα(A↔ B) 14, Fact 2.2 and MP

16. (RαA↔ RαB)→ Rα(A ↔ B) 13, 15 and CPC

17. Rα(A↔ B)↔ (RαB↔ RαA) 9, 16 and CPC

Fact 2.6. For any A, B ∈ AE and α ∈ PL the following formula:

Rα(A ∨ B)↔ (RαA ∨ RαB)

is a theorem.

Proof. It is justified by the following sequence:

1. Rα[(A ∨ B)↔ ¬(¬A ∧ ¬B)] (Ax3)

2. Rα(A ∨ B)↔ Rα¬(¬A ∧ ¬B) 1 and Fact 2.5

3. Rα(A ∨ B)↔ ¬Rα(¬A ∧ ¬B) 2, (Ax1) and RE

4. Rα(A ∨ B)↔ ¬(Rα¬A ∧ Rα¬B) 3, Fact 2.3 and RE

5. Rα(A ∨ B)↔ ¬(¬RαA ∧ ¬RαB) 4, (Ax1) and RE

6. Rα(A ∨ B)↔ (RαA ∨ RαB) 5, CPC, RE
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2.6. Similar formulas in MR

Definition 2.5. By s: PL × AE −→ For we will understand a function that satisfies

the conditions for any i, j = 1, 2, . . . :

1. s(ai, p j) = pRai
piq,

2. s(ai,¬A) = p¬s(ai, A)q,

3. s(ai, A ∧ B) = ps(ai, A) ∧ s(ai, B)q,

4. s(ai, A ∨ B) = ps(ai, A) ∨ s(ai, B)q,

5. s(ai, A→ B) = ps(ai, A)→ s(ai, B)q,

6. s(ai, A↔ B) = ps(ai, A)↔ s(ai, B)q.

Using the above definition, we can now define the following notion:

Definition 2.6. By S: For −→ For we will understand a function that is determined

by the following conditions i = 1, 2, . . . :

1. S(Rai
A) = s(ai, A),

2. S(¬ϕ) = p¬S(ϕ)q,

3. S(ϕ ∧ ψ) = pS(ϕ) ∧ S(ψ)q,

4. S(ϕ ∨ ψ) = pS(ϕ) ∨ S(ψ)q,

5. S(ϕ→ ψ) = pS(ϕ)→ S(ψ)q,

6. S(ϕ↔ ψ) = pS(ϕ)↔ S(ψ)q.

Definition 2.7. Formulas ϕ and ψ are similar iff S(ϕ) = S(ψ).

From the above notions we obtain some new conclusions.

Theorem 2.1. Let ϕ and ψ be similar. Then ⊢ ϕ↔ ψ.

Proof. By (Ax1) and facts 2.3–2.6.

Corollary 2.1. Let ϕ and ψ be similar formulas. Then ⊢ ϕ iff ⊢ ψ.

3. Semantics of MR

Definition 3.1. Let W be a nonempty set of positions. Then an evaluation is called

any function v : W × SL −→ {0, 1}.

Definition 3.2. An extension of the evaluation v is a function v̄ : W ×AE −→ {0, 1}

that satisfies the conditions for all pi ∈ SL, w ∈ W and A, B ∈ AE:

i) v̄(w, pi) = 1 iff v(w, pi) = 1,

ii) v̄(w,¬A) = 1 iff v̄(w, A) = 0,

iii) v̄(w, A ∧ B) = 1 iff v̄(w, A) = 1 and v̄(w, B) = 1,
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iv) v̄(w, A ∨ B) = 1 iff v̄(w, A) = 1 or v̄(w, B) = 1,

v) v̄(w, A→ B) = 1 iff v̄(w, A) = 0 or v̄(w, B) = 1,

vi) v̄(w, A↔ B) = 1 iff v̄(w, A) = v̄(w, B).

From the above definitions we have an obvious conclusion that any evaluation can

be extended in the unique way.

Definition 3.3. A model M for the set For is any triple 〈W, d, v〉, where W is a

nonempty set of positions (the universe of M), d is a mapping from the set of

positional letters PL into the set W , and v is an evaluation.

Definition 3.4. LetM be a model. We say that a formula ϕ is true inM (in short:

M |= ϕ) iff it satisfies one of the conditions:

i) ϕ = pRαAq for some A ∈ AE and v̄(d(α), A) = 1,

ii) ϕ = p¬ψq for some ψ ∈ For andM 6|= ψ,

iii) ϕ = pψ ∧ χq for some ψ, χ ∈ For and bothM |= ψ andM |= χ,

iv) ϕ = pψ ∨ χq for some ψ, χ ∈ For and eitherM |= ψ orM |= χ,

v) ϕ = pψ→ χq for some ψ, χ ∈ For and eitherM 6|= ψ orM |= χ,

vi) ϕ = pψ ↔ χq for some ψ, χ ∈ For and either M |= ψ, M |= χ or M 6|= ψ,

M 6|= χ.

Definition 3.5. Let Φ ⊆ For. The Φ is true in M (in short: M |= Φ) iff for every

formula ϕ ∈ Φ: M |= ϕ.

Now, in the standard way, we define the relation of logical consequence:

Definition 3.6. We say that a formula ϕ logically follows from a set of formulas Φ

iff for every modelM: ifM |= Φ, thenM |= ϕ.

Definition 3.7. We say that ϕ is a tautology iff ∅ |= A, i.e., for anyM: M |= ϕ.

4. Correctness of MR

Theorem on the Correctness expresses the fact that any formula which is provable

on the ground of a set of formulas ϕ, also logically follows from ϕ. Formally, we

should formulate this theorem as follows:

Theorem 4.1. Let Φ ⊆ For and ϕ ∈ For. If Φ ⊢ ϕ, then Φ |= ϕ.

Proof. One can easily prove that each axiom is true in any model. First, if ϕ is a

substitution of some CPC thesis then it is obviously true in any model. For other

cases we have.
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(Ax1): M |= Rα¬A iff v̄(d(α),¬A) = 1 iff v̄(d(α), A) = 0 iff M 6|= RαA iff

M |= ¬RαA. SoM |= Rα¬A↔ ¬RαA.

(Ax2): IfM |= RαA∧RαB, thenM |= RαA andM |= RαB, so v̄(d(α), A) = 1 and

v̄(d(α), B) = 1, thus v̄(d(α), A ∧ B) = 1, and therefore M |= Rα(A ∧ B).

(Ax3): If A is theorem of CPC, then for any evaluation v we have: v̄(w, A) = 1.

HenceM |= RαA for any modelsM.

Moreover, when the rule MP is applied to true formulas, it yields a true formula.

5. Completeness of MR

The proof of The Completeness Theorem is more sophisticated and interesting.

Theorem 5.1. Let Φ ⊆ For and ϕ ∈ For. If Φ |= ϕ, then Φ ⊢ ϕ.

Let AlfMPC− mean a subset of the alphabet of Monadic Predicate Calculus (in

short: MPC), without quantifiers and individual variables, in which there are the

infinite, but countable set of individual letters IL = {c1, c2, c3, . . .} and the infinite,

but countable set of unary predicates Pred = {P1, P2, P3, . . .}. The symbol ForMPC−

will stand for the set of all MPC formulas which are built with AlfMPC− .

Let h : PL −→ IL, where h(ai) ≔ ci, and g : SL −→ Pred, where g(pi) ≔ Pi, for

i = 1, 2, . . . .

We still need some helpful notions.

Definition 5.1. By t : PL × AE −→ ForMPC− we will understand a function that

satisfies the conditions for any i, j = 1, 2, . . . :

1. t(ai, p j) = g(p j)(h(ai)) = pP j(ci)q,

2. t(ai,¬A) = p¬t(ai, A)q,

3. t(ai, A ∧ B) = pt(ai, A) ∧ t(ai, B)q,

4. t(ai, A ∨ B) = pt(ai, A) ∨ t(ai, B)q,

5. t(ai, A→ B) = pt(ai, A)→ t(ai, B)q,

6. t(ai, A↔ B) = pt(ai, A)↔ t(ai, B)q.

Using the above definition, we can now define the following notion:

Definition 5.2. By T: For −→ ForMPC− we will understand a function that is deter-

mined by the following conditions i = 1, 2, . . . :

1. T(Rai
A) = t(ai, A),

2. T(¬ϕ) = p¬T(ϕ)q,
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3. T(ϕ ∧ ψ) = pT(ϕ) ∧ T(ψ)q,

4. T(ϕ ∨ ψ) = pT(ϕ) ∨ T(ψ)q,

5. T(ϕ→ ψ) = pT(ϕ)→ T(ψ)q,

6. T(ϕ↔ ψ) = pT(ϕ)↔ T(ψ)q.

In the further considerations we will use also a function from ForMPC− to For.

Definition 5.3. m: ForMPC− −→ For is a function that satisfies the conditions i, j =

1, 2, . . . :

1. m(P j(ci)) = pRh−1(ci)(g
−1(P j))q = pRai

p jq,

2. m(¬ϕ) = p¬m(ϕ)q,

3. m(ϕ ∧ ψ) = pm(ϕ) ∧m(ψ)q,

4. m(ϕ ∨ ψ) = pm(ϕ) ∨m(ψ)q,

5. m(ϕ→ ψ) = pm(ϕ)→ m(ψ)q,

6. m(ϕ↔ ψ) = pm(ϕ)↔ m(ψ)q.

From the above definitions it follows an obvious conclusion:

Corollary 5.1. For any ϕ ∈ ForMPC− : T(m(ϕ)) = ϕ.

Now we will present some more complicated lemmas:

Lemma 5.1. Let ϕ ∈ For. If T(ϕ) is a substitution of CPC theorem, then ⊢ ϕ.

Proof. Let m(T(ϕ)) be a substitution of some CPC theorem. Hence ⊢ m(T(ϕ)).

Since T(m(T(ϕ))) = T(ϕ), so S(m(T(ϕ))) = S(ϕ). Thus ϕ and m(T(ϕ)) are similar.

Thus ⊢ ϕ, by Corollary 2.1.

Lemma 5.2. Let Φ ⊆ For be consistent in MR. Then T(Φ) is also consistent.

Proof. Let us take any consistent set of formulas Φ and assume that T(Φ) is in-

consistent. According to the definition, it means one can prove any MPC− formula

on its ground, using only the CPC deductive tools, in particular, the formula of the

schema χ ∧ ¬χ for any χ ∈ ForMPC− . Because a proof is finite, so there is a finite

set of formulas Ψ ⊆ Φ, that T(Ψ ) = {T(ψ1), . . . ,T(ψn)} and T(Ψ ) ⊢CPC χ ∧ ¬χ.

Using n-times the CPC deduction theorem, the schema (A → (B → C)) →

(A ∧ B → C) and MP, we can prove: ⊢CPC T(ψ1) ∧ · · · ∧ T(ψn) → χ ∧ ¬χ. Ap-

plying the law (A → B) → (¬B → ¬A) and MP, we obtain: ⊢CPC ¬(χ ∧ ¬χ) →

¬(T(ψ1) ∧ · · · ∧ T(ψn)). The predecessor of it is a CPC theorem, so using MP,

we have: ⊢CPC ¬(T(ψ1) ∧ · · · ∧ T(ψn)), what, by definition of T, is equivalent to
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⊢CPC T(¬(ψ1 ∧ · · · ∧ ψn)). From the Lemma 5.1 it follows: ⊢ ¬(ψ1 ∧ · · · ∧ ψn).

Hence, Ψ ⊢ ¬(ψ1 ∧ · · · ∧ ψn) and Ψ ⊢ (ψ1 ∧ · · · ∧ ψn) ∧ ¬(ψ1 ∧ · · · ∧ ψn). Because

Ψ ⊆ Φ, we have Φ ⊢ (ψ1 ∧ · · · ∧ ψn) ∧ ¬(ψ1 ∧ · · · ∧ ψn). However, the schema of a

CPC theorem is the following schema: ⊢ (B1 ∧ · · · ∧ Bn) ∧ ¬(B1 ∧ · · · ∧ Bn) → D,

a substitution of Duns Scotus law. Hence, we have: Φ ⊢ ϕ, for any formula ϕ from

For. According to Definition 2.4, it means that the set Φ is inconsistent, which

contradicts the assumption.

Definition 5.4. A model M for the set ForMPC− is any pair 〈U, d 〉, where U is a

nonempty set (the universe of M ), d is a mapping from the set of individual letters

IL into the set U, and from the set of unary predicates Pred into the set P(U).

Let us notice that because the MPC− language consists only of sentences (i.e.,

formulas not containing any free variables), the truth of any formula in any inter-

pretation does not depend on the assignment of free variables.

Lemma 5.3. Let Φ ⊆ For. The following facts are equivalent:

(a) there is a modelM for For such thatM |= Φ,

(b) there is a model M for ForMPC− such that M |= T(Φ).

Proof. For any model M = 〈W, d, v〉 for For we put, U ≔ W , d (ci) ≔ d(ai) and

d (Pi) ≔ {w ∈ W : v(w, pi) = 1}, for any i = 1, 2, . . . . Let M ≔ 〈U, d 〉; M is a

model for ForMPC− .

By induction on the construction of A ∈ AE we prove that for any i = 1, 2, . . . :

(∗) M |= T(Rai
A) ⇐⇒ M |= Rai

A .

If A = p j for some j = 1, 2, . . . : M |= T(Rai
p j) iff M |= P j(ci) iff d (ci) ∈ d (P j) iff

v(d (ci), p j) = 1 iff v(d(ai), p j) = 1 iffM |= Rai
p j.

As inductive hypothesis, let us assume that B and C be such expressions from

AE that satisfy the condition (∗). We have the following cases:

M |= T(Rai
¬B) iff M |= t(ai,¬B) iff M |= ¬t(ai, B) iff M 6|= t(ai, B) iff

M 6|= T(Rai
B) iffM 6|= Rai

B iff v̄(ai, B) = 0 iff v̄(ai,¬B) = 1 iffM |= ¬Rai
B.

M |= T(Rai
(B∧C)) iffM |= t(ai, B∧C) iffM |= t(ai, B)∧t(ai,C) iffM |= t(ai, B)

and M |= t(ai,C) iff M |= T(Rai
B) and M |= T(Rai

C) iff M |= Rai
B and M |= Rai

C

iff v̄(ai, B) = 1 and v̄(ai,C) = 1 iff v̄(ai, B ∧ C) = 1 iffM |= Rai
(B ∧C).

Analogously, we prove (∗) for ‘∨’, ‘→’ and ‘↔’. Moreover, by induction on

the construction of ϕ ∈ For we prove that for any i = 1, 2, . . . :

(∗∗) M |= T(ϕ) ⇐⇒ M |= ϕ .



Completeness ofMinimal Positional Calculus 159

Let Φ ⊆ For. We assume that there is a model for For such that M |= Φ. Then

M |= T(Φ), by (∗∗).

Moreover, for any model M = 〈U, d 〉 of ForMPC− we put, W ≔ U, d(ai) ≔ d (ci)

and: v(w, pi) = 1 if w ∈ d (Pi), and v(w, pi) = 0 if w < d (Pi), for any i = 1, 2, . . . .

LetM ≔ 〈W, d, v〉;M is a model for For.

By induction on the construction of A ∈ AE and ϕ ∈ For we prove (∗) and (∗∗).

Thus, by (∗∗), if there is a M of ForMPC− such that M |= T(Φ), then there is a model

for For such thatM |= Φ.

Now we can come back to the Completeness Theorem.

Proof on Theorem 5.1. Let us take any set of formulas Φ and any formula ϕ. Let

us assume that Φ |= ϕ, but simultaneously Φ 0 ϕ. So, from Lemma 2.3, we know

that Φ ∪ {¬ϕ} is a consistent set. Hence, from the Lemma 5.2 we obtain that the

set T(Φ∪ {¬ϕ}) is also consistent one. Since this is a set of MPC formulas, we can

apply to it the Gödel-Malcev Theorem: Let Ψ be a set of sentences of first-order

logic. If Ψ is consistent, then there is a model M such that M |= Ψ . Hence, there is

a model M such that M |= T(Φ∪ {¬ϕ}). Therefore, from the Lemma 5.3, there is a

modelM such thatM |= Φ∪{¬ϕ}, what contradicts the assumption thatΦ |= ϕ.

6. Increasing the power of expression

The system MR can describe aspects of only such reasonings, in which only indi-

vidual terms of positions occur. However, we would like to take into account also

the sentences of the following type:

At some time the Polish-Lithuanian army won Grunwald Battle.

At any time it is raining in Toruń.

These sentences do not say anything about any specific positions in which the sen-

tence is realized, but say that at some or at all positions something is realized.

Shortly speaking, they include quantifiers.

If we would like to describe this linguistic phenomenon, we should extend the

language, adding to the alphabet: i) quantifiers ‘∀’ and ‘∃’, ii) positional variables:

Var = {x, x1, x2, x3, . . .}, and allow the new grammar forms: ’Rxi
A’, ’∀xi

ϕ’, ’∃xi
ϕ’

etc. Let us denote the outlined language by Forq. It needs some new deductive

tools, concerning rules of quantifying. As axioms, we could, for example, add all

schemas of MPC theorems and the generalization rule.

We have also to modify the specific axioms, allowing positional variables. Tak-

ing into consideration the new tools and modifying the notion of proof, we obtain

the system MRq with quantifiers.
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(Ax0x) An axiom of MRq is any formula from Forq which is built with exactly

one variable ‘x’ (without positional letters) and is a substitution of some

tautology of CPC.

We introduce specific axiom for any atomic expressions A, B ∈ AE:

Rx¬A↔ ¬RxA ,(Ax1x)

RxA ∧ RxB→ Rx(A ∧ B) ,(Ax2x)

Moreover, if A ∈ AE is a theorem of CPC, the following formula is an axiom:

(Ax3x) RxA .

One can easily see that the constructed system MRq is an extension of the initial

system MR. Indeed, by the generalization rule and the axiom p∀x ϕ(x) → ϕ(ai)q

we obtain the axioms (Ax0)–(Ax3) of MR.

The description of MRq from semantic aspects would need some new notions,

such as an assignment of positional variables and being satisfied in a model under

an assignment. After consideration of new cases with quantifiers and positional

variables, we could define an interpretation I as a pair 〈M, a〉, whereM is a model

and a is an assignment of variables from Var into the universe of M. Truth in an

interpretation I = 〈M, a〉 means being satisfied in the model M under the assign-

ment a. Modifying prior proofs from earlier sections, in the obvious way, we could

prove the Theorem on the Correctness as well as the Completeness Theorem of the

extended system MRq.

We shall show that MRq is a conservative extension of MR.

Theorem 6.1. For any ϕ ∈ For: ϕ is a theorem of MR iff ϕ is a theorem of MRq.

Proof. Let ϕ ∈ For. If ϕ is a theorem of MR, then ϕ is also a theorem of MRq. On

the other hand, let ϕ is a theorem of MRq. Then, by the Completeness Theorem

for MRq, ϕ is a tautology, i.e., ϕ is true in any interpretation I = 〈M, a〉. Since

ϕ includes neither quantifiers nor positional variables from Var, so ϕ is true in any

model M. Hence, by the Completeness Theorem for MR, we have that ϕ is a

theorem of MR.

Theorem 6.1 says that there are not any specific, new theorems expressed in the

old language, that can not be proved in the system MR.

It is possible to express some other interesting property of the system MRq. It

has analogous features like every open first-order theory.
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At first, we remind some facts concerning first-order theories. We use the fol-

lowing well-known symbols: a first-order theory T = 〈L ,C ,Ax〉, where L is a

language, C is the consequence operation on L determined by deductive tools of

Classical Predicate Calculus and, finally, Ax is a set of specific axioms. The lan-

guage is an ordered triple L = 〈A, T, F〉, where A is alphabet, T is the set of all

terms and F is the set of all formulas.

The symbol Ao will denote the alphabet that we obtain from A, when we omit

quantifiers and individual letters. The set of all formulas built with Ao will be

denoted by Fo and its members will be called open formulas. The language of

open formulas L o = 〈Ao, T o, Fo〉. The sign C o will denote consequence operation

on L o determined by MP, the rule of substitution for free individual variables and

a set of schemas of CPC axioms, where metavariables represent members of Fo.

Preserving the above symbols, there is a generally true theorem for all first-

order theories:

Theorem ([3]). If Ψ ⊆ Fo then C o(Ψ ) = C (Ψ ) ∩ Fo.

The very analogous theorem we can obtain for the consequence relations deter-

mined by the system MRq.

7. Summary

The R operator had almost the extensional interpretation. The statement was real-

ized at a point, when it was true at this point. As we said at the beginning, we can

interpret it in a more intentional way. If one assumes that the set of positions has a

structure, R can be interpreted as follows: a statement is realized at some position

a, when from a is accessible a position b (not necessarily different from a) at which

the sentence is true. This interpretation makes us weaken the axioms. For exam-

ple, in some structure, from one position can be accessible positions, such that at

the former one the sentence ¬p is true, but at the latter one the sentence p is true.

This example makes the axiom schema (Ax1) be false. The approach provides new

interesting questions about minimal axioms for the intensional interpretation of R

and the further extensions following from the class of structures that can be defined

by some formulas.
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{jarmuzek,pietrusz}@uni.torun.pl


	
	
	
	
	
	
	
	

	
	
	
	
	

