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THE CONSEQUENCE RELATION
PRESERVING LOGICAL INFORMATION ∗

1. Introduction

Information is contained in statements and «flows» from their structure and mean-
ing of expressions they contain. The information that flows only from the meaning
of logical constants and logical structure of statements we will calllogical infor-
mation. In this paper we present a formal explication of this notion which is proper
for sentences being Boolean combination of atomic sentences.1 Therefore we limit
ourselves to analyzing logical information flowing only from the meaning of truth-
value connectives and logical structure of sentences connected with these connec-
tives.

In (Perzanowski, 1989, p. 244) the following broad definition of the term ‘logic’
is accepted: „Logic is a theory of transforming information, i.e., the theory of the
principlesof transforming information.” Yet we maintain that not every “principle”
of e.g. Classical Propositional Calculus (CPC), preserves information after having
processed it.2 In what follows we define the consequence relation|=i , which pre-
serves logical information contained in formulas of CPC, and we give an axiomat-
ics for this relation.

∗This is a corrected version of the Polish paper (Pietruszczak, 1997). Translation by Rafał
Gruszczýnski (authorized).

1It deals with so called «qualitative aspect» of information, not its «quantitative» one (the latter is
the object of information theory studying the measure of quantity of information).

2Cf. e.g. “the principle” of reasoning according to a schemap
p∨q .
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The consequence relation|= of CPC preserves truth solely by the meaning of
truth-value connectives and the structure of sentences that is a result of properties of
these connectives. It is not the case yet that it always preserves logical information
(in a sense explained farther in the paper). The similar situation holds as well for
different non-classical logical consequence relations defined in the set of formulas
of CPC (with classical meanings of connectives).

For example, in (Zinov’ev, 1971) the author analyzes the relation|=∗ of strong
logical consequencesatisfying the following condition:ϕ |=∗ ψ iff (1) ϕ |= ψ

and (2) every variable ofψ is a variable ofϕ. The latter condition is connected
with the notion of “sense units” of a given formula, which are its propositional
variables. Thus additional condition (2) says that all “sense units” of a formula
ψ are at the same time “sense units” of a formulaϕ. In our opinion (2) is too
weak to «correct» the classical consequence relation and free it from «paradoxes».
It is because a sense of a formula is given not only by its “sense units” but also
by the meaning of logical connectives it contains and its structure. The relation|=∗

generates «paradoxes» as well. E.g.p 6|=∗ p∨q, but p∧¬q |=∗ p∨q, p∧(q∨¬q) |=∗

p∨ q andp∨ (q∧ ¬q) |=∗ p∨ q. One can ask: ifp∨ q is not a consequence ofp
itself, then what is an influence of¬q, q∨ ¬q or q∧ ¬q on it? In the first case, it
seems that lack of a “sense unit”q is «less noticeable» then lack of a “sense unit”
represented by¬q. If the “sense unit”p itself is not enough to concludep∨q, then
the “sense” contained inp∧ ¬q cannot be enough all the more. And similarly for
the two remaining cases.

In our opinion, if we accept thatp ∨ q is not a consequence ofp, then this
is not because of a variableq but p. It is not thatq is in the succedent, but not
in the antecedent. The point is that the succedent does not say «the whole truth»
that the antecedent says aboutp. In other words, the succedent is «informationally
weaker» byp than the antecedent. For the same reasons we maintain thatp∨q is not
a consequence ofp∧ q (since the succedent is «informationally weaker» than the
antecedent by bothp andq). We think, that in an acceptable consequence relation
betweenϕ andψ (whereψ is a consequence ofϕ) that «presereves information»,
the succedentψ can be «poorer in content» then the antecedentϕ, yet ψ should
extract «maximal content» fromϕ about the “sense units” ofϕ.

The axiomatization of|=∗ can be found in (Zinov’ev, 1971) and (Wessel, 1984).
Let us notice that|=∗ remains in connection with Epstein’s calculusD. If in an
implicationpϕ→ ψq of the language of the calculusD subformulas ofϕ andψ are
Boolean combinations of variables (i.e.,ϕ → ψ is a first degree implication), then
the following theorem holds:pϕ→ ψq ∈ D iff ϕ |=∗ ψ (cf. Epstein, 1990, p. 141).

As Wessel noticed in (Wessel, 1984), the relation|=∗ has some residues of the
«paradoxes» of the classical consequence relation: “everything that is built from
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variables occurring in a contradiction is a consequence of this contradiction” and
“every tautology is a consequence of everything that includes all variables of this
tautology”. Wessel defines the so calledstrict logical consequence|=∗∗ that elim-
inates these paradoxes. He accepts that:ϕ |=∗∗ ψ iff (1), (2) and (3) neitherϕ is a
contradiction norψ is a tautology of CPC (cf. (1) and (2) in the definition of|=∗).3

The «paradoxes» of the relation|=∗, that we analyzed earlier, in the text apply to
|=∗∗ as well. Others, applying to both of them, are presented in (Pietruszczak, 1992).

In Section 5 of this paper we will define the consequence relation|=i that pre-
serves information:

ϕ |=i ψ iff (a) neitherϕ is a contradiction norψ is a tautology, and
(b) information contained inψ is a part of information contained inϕ.

The notions ofa part of informationand information contained in a formula
that occur in (b) will be so defined, that (b) will entail (1) occurring in the defini-
tions of the relations|=∗ and|=∗∗. Yet the condition (2) of those definitions will not
hold. Namely, the consequence of (b) will only be the fact that the set of so called
essential variablesin ψ is not empty and is a subset of the set of essential variables
of ϕ. «Paradoxes» we mentioned before will not concern the relation|=i (see Ex-
ample5.1). In Section6 we give a different definition of |=i , and in Section7 we
axiomatize this relation.

2. Some facts of classical propositional calculi (CPC)

LetL = 〈L,∨,∧,¬〉 be a propositional language. The formulas ofL (i.e., elements
of the setL) are composed in a standard way from propositional variables being el-
ements of the denumerable setV ≔ {p0, p1, p2, . . .}, brackets and functors∨, ∧ and
¬ understood, respectively, as truth-value connectives of disjunction, conjunction
and negation. From formal point of viewL is an absolutely free algebra whereV
is its set of free generators.

In examples first three variables will be denoted by, respectively, ‘p’, ‘ q’ and
‘ r ’. The set of propositional variables of a formulaϕ ∈ L will be denoted byV(ϕ).

Let B2 be a two-element Boolean algebra in the set{0, 1}, with operations of
max, min and subtraction from 1. By homomorphism fromL toB2 we mean every
functionh from L to {0, 1}, such that:h(¬ϕ) = 1−h(ϕ), h(ϕ∨ψ) = max{h(ϕ), h(ψ)}
andh(ϕ ∧ ψ) = min{h(ϕ), h(ψ)}. Let Hom(L,B2) be the set of all such homomor-
phisms.

3Regarding a sequent calculus for the relation|=∗∗ see footnote17 and (Pietruszczak, 2004).
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By anevaluation of variableswe mean any functione on the setV, taking val-
ues in{0, 1}. Every homomorphismh ∈ Hom(L,B2) is unambiguously determined
by an evaluationh|V : V → {0, 1}. And conversely, every evaluatione: V → {0, 1}
determines uniquely some homomorphismhe from Hom(L,B2).

A formulaϕ ∈ L is a tautology(resp. acontradiction) of CPC iff for everyh in
Hom(L,B2) we haveh(ϕ) = 1 (resp.h(ϕ) = 0). LetT (resp.F) be the set of all tau-
tologies (resp. contradictions) of CPC. We say that a given formula iscontingentiff
it is neither tautology nor contradiction. LetK be the set of all contingent formulas,
i.e.,K ≔ L \ (T ∪ F).

A formula ψ is said to be aconsequenceof a formulaϕ (according to CPC)
iff for everyh ∈ Hom(L,B2) we haveh(ϕ) ≤ h(ψ). If ψ is a consequence ofϕ
(according to CPC), we write:ϕ |= ψ. For allϕ, ψ ∈ L we have:

ϕ |= ψ & ϕ ∈ T =⇒ ψ ∈ T ,

ϕ |= ψ & ψ ∈ F =⇒ ϕ ∈ F ,

ϕ |= ψ & ϕ < F & ψ < T =⇒ ϕ, ψ ∈ K .(2.1)

A formula ϕ is said to beequivalentto a formulaψ (according to CPC) iff for
everyh ∈ Hom(L,B2) we haveh(ϕ) = h(ψ). If ϕ is equivalent toψ, we write:
ϕ |=| ψ. In other words,ϕ |=| ψ iff ϕ |= ψ andψ |= ϕ. The relation|=| is a congruence
of the algebraL.

We say that a given variable isessentialin a given formula iff the logical value
of the formula can be changed by changing the logical value of this variable. To
define this notion in a formal way we introduce some auxiliary operation in the set
E of all evaluations. Forα ∈ V ande ∈ E we define the operatione−α : V → {0, 1}
by the following equation:

e−α(β) ≔















1− e(β) if α = β

e(β) if α , β

i.e.,e−α differs fromeexactly on a variableα. Forϕ ∈ L andα ∈ V we accept that

α is essential inϕ
df
⇐⇒ ∃e∈E he(ϕ) , he−α (ϕ) .

Let Ve(ϕ) ≔ {α ∈ V : α is essential inϕ}. Let us notice that

Ve(ϕ) ⊆ V(ϕ) ,(2.2)

Ve(ϕ) = ∅ ⇐⇒ ϕ ∈ T or ϕ ∈ F ,(2.3)

e1 ande2 coincide onVe(ϕ) =⇒ he1(ϕ) = he2(ϕ) ,(2.4)

ϕ |=| ψ =⇒ Ve(ϕ) = Ve(ψ) .(2.5)
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3. Logical informations in CPC

As we are interested in logical information connected only with the meaning of
truth-value connectives, thus—in case of analyzing sentential schemata fromL—
it deals solely with logical values assigned to variables fromV. For example, a
statement whose schema is ‘p∧ q’ gives logical information that both statements,
represented by ‘p’ and ‘q’, are true. A statement whose schema is ‘p ∨ q’—that
at least one of statements represented by ‘p’ and ‘q’ is true. Finally, a statement
whose schema is ‘¬p’—that a statement represented by ‘p’ is false.

3.1. Information states

We will make use of functions characterized on finite subsets of V and taking val-
ues in{0, 1}. We will call these functionsinformation statesand their set will be
denoted by ‘IS’:

s∈ IS
df
⇐⇒ s ∈ Fun(V; {0, 1}) for some finite subsetV of V.

The empty set∅ is an element of IS (∅ is a function with an empty domain, i.e.,
∅ : ∅ → {0, 1}). If ∅ stands as an «empty information state» we will denote it by ‘ø’.

Information states from IS are to represent information about the assignment of
logical values to propositional variables in the domains of these states. «Empty» in-
formation state represents «the lack of knowledge about every variable» (we know
nothing about logical values assigned to variables).

In examples—in order to shorten and emphasize notation—an information state
swith a domain{α1, . . . , αn} will be denoted by the formal sequenceα∗1 . . . α

∗
n, such

that for i = 1, . . . , n

α∗i ≔















αi if s(αi) = 1

αi if s(αi) = 0

The order of the elements of such a sequence is of no importance, i.e., sequences
that have the same elements but differ in order represent the same function from IS.

It is accidental that information states and evaluations of variables are repre-
sented by mathematical objects of the same structure. It is connected with consid-
ered scope of information; with «weak strength of expression» of formulas fromL.

Every function from IS is a binary relation inV × {0, 1}, i.e., for everys in IS,
s⊆ V× {0, 1}. A relationr ⊆ V× {0, 1} is not a function iff for some variableα both
〈α, 1〉 ∈ r and〈α, 0〉 ∈ r. For a functions instead of〈α, i〉 ∈ s we write s(α) = i.
In the set of all relations inV × {0, 1}, as the power set℘(V × {0, 1}), the following
set-theoretical operations are performable: product∩, sum∪, complement− and
subtraction\. Moreover, the set℘(V × {0, 1}) is partially ordered by⊆.
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The set IS is closed under∩ (i.e., if s1, s2 ∈ IS, thens1∩ s2 ∈ IS). Generally: if
s∈ IS andr ⊆ V × {0, 1}, thens∩ r ∈ IS ands\ r ∈ IS. Yet the set IS is not closed
under∪ (i.e., the sum of two functions may not be a function).

Remind that the domain of the functions ∈ IS is the set dm(s) = {α ∈ V :
∃i∈{0,1}〈α, i〉 ∈ s}, i.e., the set of those variables for which the value of the functions
is determined. By a restriction of a functions ∈ IS to a setV ⊆ V we mean the
function s|V, whose domain is a set dm(s) ∩ V and which takes the same values as
s for the variables from the new domain. Formally,

s|V ≔ s∩ (V × {0, 1}) .

Of course, if dm(s) ∩ V = ∅, thens|V = ø. Thus ø|V = ø ands|∅ = ø. For any
function s, t ∈ IS we have

s⊆ t ⇐⇒ dm(s) ⊆ dm(t) & ∀α∈dm(s) s(α) = t(α) ,

s⊆ t ⇐⇒ t|dm(s) = s.

We say that an information states from IS is compatiblewith an evaluatione
from E iff s⊂ e, i.e.,sassigns the same values to variables ase.

Let us notice that the empty information state ø is compatible with every eval-
uation from E.4

3.2. Alternatives of information states

By an alternative of information stateswe mean any finite subset of IS. Their to-
tality will be denoted byA, i.e.,

A ≔ {A ⊂ IS : CardA < ℵ0 } .

Intuitively, a setA fromA «informs» that at least one of the states inA is compatible
with a given evaluation.

4Thetriple 〈IS,⊇,ø〉 is Cohen’s forcing (cf.Bell, 1977, p. 44). We say that a partially ordered set
〈P,≤,1〉 with unity 1 is a forcing, if it satisfies a polarization condition:x � y ⇒ ∃z≤x z⊥ y, where

z ⊥ y
df
⇐⇒ ∼∃s(s ≤ z & s ≤ y) expresses an incompatibility condition. In case whenP is—for

some infinite setX—a setC(X) of all functions with finite domains being subsets ofX and taking
values in the set{0,1} and relation≤ is an inverse inclusion inC(X), a forcing is called theCohen’s
forcing (Cohen himself used simple inclusion; in later works the order was inverted for technical
reasons; cf. [2, p. 47]). In our caseX = V, C(X) = IS and1 = ø. The incompatibility conditions⊥ t
says that there is no function in IS such that would include boths andt. Such situation holds iff for
some variableα from dm(s) ∩ dm(t), s(α) , t(α).

The “forcing relation”, that is included in IS× L, can be defined by the following condition:

s ϕ
df
⇐⇒ ∀e∈E(s⊂ e⇒ he(ϕ) = 1). We will not deal with forcing farther in this paper.
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We say that an alternative of information statesA is true for an evaluatione
from E (in symbols:e |= A) iff at least one information state inA is compatible
with e. Formally,

e |= A
df
⇐⇒ ∃s∈A s⊂ e.

Because∅ ∈ A, so it is an «alternative» of information states as well. As such
we will denote∅ by ‘Λ’.5 There is no evaluation for which «the empty alternative»
Λ is true.

By a set of variables of an alternative Awe will mean a sum of all domains of
information states being inA, i.e.,

V(A) ≔
⋃

s∈A

dm(s) .

3.3. The set of logical information

We identify alternatives of information states that are true for the same evaluations
and we maintain that they transmit the same logical information. In the setA we
define an equivalence relation:

A � B
df
⇐⇒ ∀e∈E

(

e |= A⇔ e |= B
)

.

The relation� is reflexive, symmetrical and transitive.

Example3.1. (a) {ø, . . .} � {ø} � {p, p̄, . . .}.
(b) {p, q} � {pq, pq̄, p̄q} � {p, q, pq} � {p, p̄q} � {q, pq̄}.
(c) {p̄q̄, qr} � {p̄q̄, p̄r, qr} � {p̄q̄r, p̄q̄r̄ , p̄qr, p̄q̄r, pqr, p̄qr}.

Indeed, ife |= p̄r, thene(p) = 0, e(r) = 1 and eithere(q) = 1 or e(q) = 0. In
the first casee |= qr. In the second casee |= p̄q̄.

(d) {p̄q̄, pr̄, qr} � {p̄q̄r, p̄q̄r̄, pqr̄ , pq̄r̄, pqr, p̄qr} � {pq, p̄r, q̄r̄}.

An equivalence class of an alternativeA in relation� we will denote by [A]:

[A] ≔ {B ∈ A : A � B} .

We assume that the set of logical information is the quotient setA/�. The set of
logical information we will denote by���, i.e.,

��� ≔ A/� ≔ { [A] : A ∈ A } .

5The fact that∅ represents two different notions (ø andΛ) will not cause any formal difficulties.
The context will disambiguate which of the two notions is being represented.
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Remark3.1. A question arises: could we use, as an explication of the notion of
logical information, some representatives (i.e., some alternatives of information
states) chosen in some «canonical» way, instead of using equivalence classes of
these states? This way would have to abide by some sensible criterion of «minimal
complexity» of these alternatives. Such sensible criteria of complexity of members
of A could be for example: either a minimal number of tokens of propositional
variables occurring in a given alternative or just a number of its elements. Yet
according to these two criteria the following equivalent alternatives are «equally
minimal»: {p̄q̄, pr̄ , qr} and{pq, p̄r, q̄r̄} (see Example3.1d).

Directly from the definition we have that the relation� is acongruence with
respect to|=. Therefore we can say that logical informationI is trueat evaluation
e (in symbols:e |= I ) iff some (arbitrary) representative of the classI is true ine.
We can express it in the following different way:

e |= [A]
df
⇐⇒ e |= A .

We single out two of all logical information: logically emptyg and logically
contradictoryf.

By logically empty informationwe mean information that is true at every eval-
uation. Clearly, there exists exactly one such information which we denote byg.
It will be a counterpart of logical information contained in tautologies of CPC.
Representatives of the classg are, among others, the following alternatives: {ø}
and every alternative whose element is ø;{α, ᾱ, α1, . . . , αn}; a set of functions
Fun(V; {0, 1}) for every finite set of variablesV. Thus in particular the following
holds:g = [{ø}] = [{p, p̄}].

By logically contradictory informationwe mean the one that is not true for
every evaluation. Clearly, there exists exactly one such information that we denote
by f. It will be a counterpart of logical information contained in contradictions of
CPC. The classf has exactly one element which isΛ. Thereforef = [Λ] = {Λ}.

We fix the following notational convention: while writing particular examples
of logical information we omit «brackets of a set», i.e., instead of [{s1, s2, . . . , sn}]
we write [s1, s2, . . . , sn]. E.g., the class [{ø}] will be written down as [ø], [{pq, r̄}]
as [pq, r̄ ], etc.

Example3.2 (see Example3.1). (a) g = [ø, . . .] = [ø] = [p, p̄, . . .].

(b) [p, q] = [pq, pq̄, p̄q] = [p, q, pq] = [p, p̄q] = [q, pq̄].

(c) [p̄q̄, qr] = [ p̄q̄, p̄r, qr] = [ p̄q̄r, p̄q̄r̄ , p̄qr, p̄q̄r, pqr, p̄qr].

(d) [p̄q̄, pr̄ , qr] = [ p̄q̄r, p̄q̄r̄ , pqr̄ , pq̄r̄ , pqr, p̄qr] = [pq, p̄r, q̄r̄ ].
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3.4. Domain of information

Now we will define the notion ofan essential variable in an alternative of infor-
mation states. This definition if similar to the definition of a corresponding notion
in the setL:

α is essential inA
df
⇐⇒ ∼∀e∈E(e |= A⇔ e−α |= A) .

Let Ve(A) ≔ {α ∈ V : α is essential inA}. Clearly,Ve(A) ⊆ V(A).
To introduce a notion ofa domain of informationlet us notice that directly from

the definition we have:

Fact 3.1. For all A, B ∈ A: A � B =⇒ Ve(A) = Ve(B).

Proof. Let A � B. Then for allα < Ve(A) ande ∈ E: e |= B iff e |= A iff e−α |= A iff
e−α |= B. Soα < Ve(B), i.e.,Ve(B) ⊆ Ve(A). Similarly, Ve(A) ⊆ Ve(B).

Therefore the relation� is acongruence with respect to a functionVe(·). So
we can define a domain of informationI (in symbols: dm(I )) as a set of essential
variables of its (arbitrary) representative:

dm([A]) ≔ Ve(A) .

Obviously, dm(f) = ∅ = dm(g).

3.5. Restriction of logical information

By a restrictionof an alternativeA ∈ A to a setV of variables inV we mean an
alternativeA|V defined by the equation:

A|V ≔ { s|V : s∈ A } .

Clearly,Λ|V = Λ, {ø}|V = {ø} and forA , Λ we haveA|∅ = {ø}.
Let us prove that a restriction of an alternative is invariant with respect to�.

Fact 3.2. For every subsetV of V it holds that:

A � B =⇒ A|V � B|V .

Proof. Let A � B and lete be an arbitrary evaluation satisfyinge |= A|V. Then
for somes from A|V, s ⊂ e. Let s′ be an arbitrary element of a setA such that
s = s′|V and lete′ be an arbitrary evaluation such thats′ ⊂ e′ (clearly, there are
such s′ and e′). By hypothesese|dm(s) = s = s′|dm(s) = e′|dm(s). Now we are
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constructing a new evaluatione′′: for α from V we sete′′(α) := e(α); for α from
dm(s′) we sete′′(α) := e′(α); for the remaining variables it may be anything one
likes. The functione′′ is well defined, since dm(s) = dm(s′) ∩ V. Thus forα in
dm(s′) ∩ V we havee(α) = s(α) = s′(α) = e′(α). Sincee′′|dm(s′) = e′|dm(s′) = s′,
so s′ ⊂ e′′, i.e.,e′′ |= A. Moreovere′′ |= B, i.e., s′′ ⊂ e′′ for somes′′ in B. Hence
s′′|V ⊆ e′′|V = e|V ⊆ e, that ise |= B|V. The converse is proved analogously.

Thanks to the above fact we can introduce operation ofrestriction of informa-
tion I to a set of variablesV:

[A]|V ≔ [A|V] .

Notice thatg|V = g andf|V = f for anyV ⊆ V.

Fact 3.3. For anyI ∈ ���: I = I |dm(I ).

Proof. It is enough to show that for an arbitraryA from A, A � A|Ve(A). Let e
be an arbitrary evaluation. Ifs ⊂ e, for somes from A, then s|Ve(A) ⊆ s ⊂ e
as well. Conversely, lete |= A|Ve(A), i.e., s ⊂ e, for somes from A|Ve(A). Let
s′ be an arbitrary element ofA such thats = s′|Ve(A) and lete′ be an arbitrary
evaluation, for whichs′ ⊂ e′. Let us notice, that dm(s) = dm(s′) ∩ Ve(A) and
e|dm(s) = s = s′|dm(s) = e′|dm(s). If evaluationse ande′ coincide on the set dm(s′)
too, thens′ ⊂ e, that ise |= A. Otherwise from the set dm(s′) \ dm(s) we take all
variablesα1, . . . , αn, which take different values fore than fore′. Henceecoincide
with an evaluation (...(e′−α1

)...)−αn
on the set dm(s′). From this and from the fact

thatα1, . . . , αn are not essential inA we achieve:e′ |= A ⇔ e′−α1
|= A ⇔ · · · ⇔

(...(e′−α1
)...)−αn

|= A⇔ e |= A.

3.6. Operations on logical information

In the set��� we will introduce operations of denial, convolution and alternation
of information, which will correspond to the respective connectives of: negation,
conjunction and disjunction. These operations will be induced from some opera-
tions in the setA that are invariant with respect to the relation�.

The operation of denial⊖ : A→ A is defined as follows: forn-element (n > 0)
setA = {s1, . . . , sn} we take

t ∈ ⊖A
df
⇐⇒ t ∈ IS and fori = 1 . . . , n there are suchαi ∈ dm(si), that

dm(t) = {α1, . . . αn} i t(αi) = 1− s(αi) .

Therefore the elements of the set⊖A are these and only these functions which arise
in the following way: for every 16 i 6 n from the domain ofsi we chose one
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elementαi . If a set of pairs{〈α1, 1− s(α1)〉, . . . , 〈α1, 1− s(α1)〉} is a function (i.e.,
only one value: 0 or 1 is assigned to every variableαi), thenαi ∈ ⊖A.

Example3.3. (a) ⊖{ø} = Λ and⊖Λ = {ø}.

(b) ⊖ {p, p̄} = Λ.

(c) ⊖ {p, q} = ⊖ {pq, pq̄, p̄q} = {p̄q̄} and⊖ {p̄q̄} = {p, q}.

(d) ⊖ {pqr, q̄r̄} = {p̄q, p̄r, q̄r, qr̄}.

(e) ⊖ {pq̄, pr} = {p̄, p̄r̄, p̄q, qr̄}.

It is provable that for everye ∈ E it holds that:

(3.1) e |= ⊖A ⇐⇒ e 6|= A .

The immediate conclusion is

(3.2) A � B ⇐⇒ ⊖A � ⊖B .

Therefore the operation of denial of information may be defined as follows:

⊖[A] ≔ [⊖A] .

From the above facts we conclude that:

(3.3) e |= ⊖I ⇐⇒ e 6|= I .

Moreover,⊖g = f, ⊖f = g and generally:⊖ ⊖ I = I .
Conjunction will be connected with a binary operation of “convolution”. We

define the operationT : A × A→ A by means of the following equation:

AT B≔ { s∪ t ∈ IS : s∈ A & t ∈ B } .

Example3.4. (a) {p} T {q} = {pq}; {p, q} T {p, q} = {p, pq, q}.

(b) {p, q} T {p̄, q} = {pq, p̄q, q} and{p̄q̄} T {pq̄, r} = {p̄q̄r}.

(c) {p} T {p̄} = Λ and generally{s} T ⊖{s} = Λ.

(d) Λ T A = Λ and{ø} T A = A.

It is easily provable that

(3.4) e |= AT B ⇐⇒ e |= A & e |= B .

The immediate conclusion is:

(3.5) A � B =⇒ ATC � BTC .
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Therefore the operation of aconvolution of informationT : ��� × ��� → ���
may be defined as follows:

[A] T [B] ≔ [AT B] .

It holds that

(3.6) e |= I T J ⇐⇒ e |= I & e |= J .

This operation is idempotent, symmetrical and associative, i.e.,I T I = I , I T J =
J T I andI T (J T K ) = (I T J ) T K . BesidesI T g = I andI T f = f.

The set-theoretical sum of sets fromA is an operation that corresponds to the
connective of disjunction. It is idempotent, symmetrical and associative, besides it
satisfies the condition:

(3.7) e |= A∪ B ⇐⇒ e |= A or e |= B .

The direct conclusion of this fact is that:

(3.8) A � B =⇒ A∪C � B∪C .

Thus the operation∪ : A × A → A induces a binary operation in a set���. We
call it thealternation of information:6

[A] U [B] ≔ [A∪ B] .

Alternation of information satisfies the condition:

(3.9) e |= I U J ⇐⇒ e |= I or e |= J .

Besides the operationU is idempotent, symmetrical and associative, i.e.,I U I = I ,
I U J = J U I andI U (J U K ) = (I U J ) U K . MoreoverI U f = I andI U g = g.

Let us notice that distributivity ofT andU holds:I U (J TK ) = (I U J )T (I UK )
andI T (J U K ) = (I T J ) U (I T K ).

The above equations imply that〈���,T,U,⊖,g,f〉 is a Boolean algebra with
sumT, productU, complement⊖, zerog and unityf. A standard Boolean partial
order≤ determined in this algebra by definition:

I ≤ J
df
⇐⇒ I T J = J

satisfies the condition:

(3.10) I ≤ J ⇐⇒ ∀e∈E

(

e |= J ⇒ e |= I
)

.

Yet relation≤ is not proper for formalization of the notion ofbeing a part of
information. For example [p, q] ≤ [p], [ p, q] ≤ [pq̄] etc.

6Yet we must use a different symbol to denote it, since set theoretical sum of equivalence classes
is a standard notion characterized by the equation: [A] ∪ [B] = {C : C � A or C � B}.
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3.7. The relation of being a part of information

We will introduce the binary relation⊑ being a part ofin the set��� that will be
properly included in the relation≤. We say that informationI is a part of informa-
tion J (in symbols: I ⊑ J ) iff information J restricted to a set dm(I ) is identical
with I . Formally,

I ⊑ J
df
⇐⇒ J |dm(I ) = I .

Example3.5. [p, q] @ [p], but [p, q] ≤ [p].

Fact 3.4. The relation⊑ partially orders the set���, i.e., it is reflexive, transitive
and antisymmetrical:

I ⊑ I ,

I ⊑ J & J ⊑ K =⇒ I ⊑ K ,

I ⊑ J & J ⊑ I =⇒ I = J .

Proof. Reflexivity follows from Fact3.3. Let I ⊑ J and J ⊑ K . Then I =

K |dm(I )∩dm(J ). Therefore, by Fact3.1, dm(I ) = dm(K )∩dm(I )∩dm(J ), so dm(I ) ⊆
dm(I ) ∩ dm(J ), and hence dm(I ) = dm(I ) ∩ dm(J ). ThereforeI = K |dm(I ), i.e.,
I ⊑ K . Finally let I ⊑ J andJ ⊑ I . ThenI = I |dm(I )∩dm(J ). Hence, by Fact3.1,
dm(I ) = dm(I ) ∩ dm(J ), i.e., dm(I ) ⊆ dm(J ). In an analogous way we show
that dm(J ) ⊆ dm(I ). Thus dm(I ) = dm(J ). Hence, by Fact3.3, we have that
I = J |dm(I ) = J |dm(J ) = J .

It is easily provable that contradictory informationf is not a part of any other
information, and that it is the only its part.

Fact 3.5. For anyI ∈ ���: f ⊑ I ⇐⇒ I = f ⇐⇒ I ⊑ f.

Proof. Let I = f. Thenf ⊑ I andI ⊑ f, by Fact3.4. Overwise, letI , f and
I = [A] for someΛ , A ∈ A. ThenA|∅ = {ø}. SoI |∅ = [{ø}] = g , f, i.e.,f @ I .
Moreover,f|∅ = {Λ|∅} = {Λ} = f , I , soI @ f.

Equally easy we show that the empty informationg is a part of every other
information different fromf, and that it is not a part of informationf. Moreover,
the empty information is the only part of its own.

Fact 3.6. For anyI ∈ ���:

I , f⇐⇒ g ⊑ I ,

I ⊑ g⇐⇒ g = I .
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Proof. Let I , f andI = [A] for someΛ , A ∈ A. ThenA|∅ = {ø}. Therefore
I |∅ = [{ø}] = g, i.e.,g ⊑ I . Overwise, letg ⊑ I . Sinceg , f, sog @ f, by
Fact3.5. HenceI , f.

Moreover, letI ⊑ g, i.e.,g|∅ = I . HenceI = [ø|∅] = [ø] = g.

We say that an informationI is aproper partof an informationJ (in symbols:
I ⊏ J ) iff I ⊑ I andI , J .

Example3.6. (a) [p] ⊏ [pq] and [q] ⊏ [pq];

(b) [p] ⊏ [pq, pr] and [q, r] ⊏ [pq, pr];

(c) [p2, p3, p4] ⊏ [pp2, pp3, qp4] and [p, q] ⊏ [pp2, pp3, qp4];

(d) [p̄, r] ⊏ [ p̄q̄, qr] (see examples3.1c and3.2c);

(e) [ p̄, q] = [ p̄q̄, q] ⊏ [ p̄q̄, qr];

(f) [ p̄, qr] @ [ p̄q̄, qr].

Finally we present some facts:

I ⊑ J =⇒ dm(I ) ⊆ dm(J ) ,(3.11)

I ⊏ J =⇒ dm(I ) ⊂ dm(J ) ,(3.12)

∀V⊆V I |V ⊑ I ,(3.13)

I ⊑ J ⇐⇒ ∀V⊆V I |V ⊑ J |V ⇐⇒ ∀V⊆dm(I ) I |V ⊑ J |V .(3.14)

It is provable that⊑ is included in≤, i.e.,

(3.15) I ⊑ J =⇒ I ≤ J .

It is a proper inclusion (see Example3.5).

3.8. Logical information of formulas from L

As it is known, values of variables occurring in some formula for a given evaluation
are the only determiners of a value of this formula. More precisely, for an arbitrary
formulaϕ ∈ L: if evaluationse1 ande2 are exactly the same on the setV(ϕ), then
he1(ϕ) = he2(ϕ). Hence for everys∈ IS such thatV(ϕ) ⊆ dm(s) we can assume that
s(ϕ) is a shared valuehe(ϕ) for all these evaluationse, for which s⊆ e.

Let us define functionI on the setL and taking values in���:

I (ϕ) ≔
[

{ s∈ IS : dm(s) = V(ϕ) & s(ϕ) = 1 }
]

.
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The classI (ϕ) is calleda logical information of a formulaϕ. It is an equivalence
class of these and only these evaluations of variables occurring inϕ, for whichϕ is
true. Clearly, the following equality holds:

I (ϕ) =
[

{ s∈ IS : dm(s) = Ve(ϕ) & s(ϕ) = 1 }
]

.

It follows directly from the definition that:

e |= I (ϕ) ⇐⇒ he(ϕ) = 1 ,(3.16)

I (ψ) ⊑ I (ϕ) =⇒ ϕ |= ψ ,(3.17)

ϕ |= ψ ⇐⇒ I (ψ) ≤ I (ϕ) ,(3.18)

ϕ |=| ψ ⇐⇒ I (ϕ) = I (ψ) ,(3.19)

ϕ ∈ T ⇐⇒ I (ϕ) = g ,(3.20)

ϕ ∈ F ⇐⇒ I (ϕ) = f ,(3.21)

I (¬ϕ) = ⊖I (ϕ) ,(3.22)

I (ϕ ∧ ψ) = I (ϕ) T I (ψ) ,(3.23)

I (ϕ ∨ ψ) = I (ϕ) U I (ψ) ,(3.24)

dm(I (ϕ)) = Ve(ϕ) .(3.25)

Example3.7. (a) I (p) = [p];

(b) I (¬p) = [ p̄] and I (¬¬p) = [p];

(c) I (p∧ q) = [pq] = I (p∧ (¬p∨ q));

(d) I (p∨ q) = [p, q];

(e) I (p ⊃ r) = [ p̄, r],7

(f) I ((p ⊃ q) ∧ (q ⊃ r)) = [ p̄q̄, qr];
so I (p ⊃ r) ⊏ I ((p ⊃ q) ∧ (q ⊃ r)) (see Example3.6d)
andI (p ⊃ q) ⊏ I ((p ⊃ q) ∧ (q ⊃ r)) (see Example3.6e),8

but I (p ⊃ q) ∧ (p ⊃ r)) @ I ((p ⊃ q) ∧ (q ⊃ r)) (see Example3.6f).

4. Logical information and Boolean normal forms

We will compare the structure of logical information with some Boolean normal
forms of formulas fromL. This comparison will be useful while proving soundness
for the axiomatization of the relation preserving logical information.

7Farther in this paperp(ϕ ⊃ ψ)q is an abbreviation ofp(¬ϕ ∨ ψ)q.
8It is not always the case thatI (ϕ) ⊑ I (ϕ∧ψ) for ϕ, ψ ∈ K. For example:I (p∨q) = [p,q] @ [p] =

I ((p∨ q) ∧ p). Another example is:I ((p∨ q) ∧ r) = [pr,qr] @ [pr] = I (((p∨ q) ∧ r) ∧ p).
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4.1. Disjunctive-conjunctive normal forms

A formula ϕ from L is calledgeneralized conjunction(resp.generalized disjunc-
tion) iff there are such formulasψ1, . . . ,ψn (n > 0), thatϕ = ψ1 ∧ · · · ∧ ψn (resp.
ϕ = ψ1 ∨ · · · ∨ ψn).9 If so, the formulasψ1, . .. , ψn are called the elements of a
formulaϕ (if n = 1, thenϕ = ψ1).

Generalized conjunctionϕ is calledelementaryiff the elements ofϕ are solely
propositional variables or their negations, with reservation that the elements ofϕ

are not both a variable and its negation.10 Let ek be the set of all elementary
conjunctions.

A formulaϕ has itsdisjunctive–conjunctive normal form(in symbols:ϕ ∈ AN)
iff ϕ is a generalized disjunction whose all elements are elementary conjunctions.
Clearly,ek ( AN.

4.2. Boolean (disjunctive) normal forms

Let us agree that for everyi > 0 andb ∈ {0, 1}:

pb
i ≔















¬pi if b = 0

pi if b = 1

Moreover for every increasing sequence of natural numbers~ı = 〈i1, . . . , in〉 (i.e.,
0 6 i1 < · · · < in whenn > 0) and for every sequence of 0s and 1s〈b1, . . . , bn〉 ∈

{0, 1}n let
∧k
~ı

be an elementary conjunction:
∧k
~ı
≔ pb1

i1
∧ · · · ∧ pbn

in
,

wherek =
∑n

i=1 bi · 2n−i (i.e.,b1b2 . . . bn is a binary notation of a numberk).
Let ϕ be an arbitrary formula fromL such thatV(ϕ) = {pi1, pi2, . . . , pin}, where

~ı = 〈i1, . . . , in〉 is an increasing sequence (n > 0). We say that a sequence of 1s and
0s,〈b1, b2 . . . , bn〉, satisfiesthe formulaϕ iff he(ϕ) = 1 for every evaluatione such
thate(pi1) = b1, . . . ,e(pin) = bn.

For every formulaϕ < F we will construct itsBoolean (disjunctive) normal
form ϕ◦ (cf. Asser, 1959). A formula ϕ◦ wil l be generalized disjunction whose
elements are allcanonical elementary conjunctions(cf. Asser, 1959) built from
variables of a formulaϕ and determined by sequences of 0s and 1s satisfying the
formulaϕ. The order of the conjunctions in a disjunctionϕ◦ coincide with the order
of numbers whose sequences of binary expansions satisfy the formulaϕ.

9By convention,pψ1 ∧ · · · ∧ψnq is an abbreviation of a formulap(. . . (ψ1∧ψ2)∧ · · · ∧ψn−1)∧ψnq.
An analogical convention applies to a disjunction.

10We will not use so calledcontradictoryelementary conjunctions, whose elements are some vari-
able and its negation, e.g. ‘r ∧ ¬p∧ q∧ p’.
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Let ϕ < F and letk1 < k2 < · · · < ks (0 < s6 2n) be an increasing sequence of
natural numbers such thatkl =

∑n
i=1 bkl

i · 2
n−i for l = 1, . . . ,s, where〈bk1

1 , . . . , b
k1
n 〉,

. . . , 〈bks
1 , . . . , b

ks
n 〉 are all sequences satisfying the formulaϕ. Take

ϕ◦ ≔
∧k1

~ı
∨ · · · ∨

∧ks

~ı
.

It is obvious thatϕ◦ ∈ AN andϕ◦ |=| ϕ for ϕ < F. It follows directly from the
definition that forϕ, ψ < F: ϕ |=| ψ & V(ϕ) = V(ψ) ⇐⇒ ϕ◦ = ψ◦.

Now let us take an arbitrary formulaϕ ∈ K such thatV(ϕ) = {pi1, pi2, . . . , pin},
where~ı = 〈i1, . . . , in〉 is an increasing sequence andVe(ϕ) = {p j1, p j2, . . . , p jm},
where~ = 〈 j1, . . . , jm〉 is a (increasing) subsequence of a sequence~ı (0 < m 6 n).
We say that 0-1 sequence〈b1, b2 . . . , bm〉 essentially satisfiesthe formulaϕ iff for
every evaluatione such thate(p j1) = b1, e(p j2) = b2, . . . , e(p jm) = bm we have
he(ϕ) = 1.

Taking a subsequence~ instead of~ı and using the notion of essential satisfac-
tion instead of satisfaction, forϕwe define—analogously asϕ◦—a formulaϕ• from
AN. In other words, forϕ ∈ K the formulaϕ• is a generalized disjunction, whose
elements are all canonical elementary conjunctions built from essential variables
of the formulaϕ and determined by 0-1 sequences essentially satisfying the for-
mulaϕ. The order of these conjunctions in disjunctionϕ• is the same as the order
of numbers whose sequences of binary expansions essentially satisfy the formulaϕ.

Clearly, forϕ, ψ ∈ K we haveϕ• |=| ϕ |=| ϕ◦ andVe(ϕ) = V(ϕ•) andϕ |=| ψ ⇐⇒
ϕ• = ψ•.

Let κ ∈ ek andV be a subset ofV such thatV(κ) ∩ V , ∅. By A restriction of a
conjunctionκ to a setV we mean an elementary conjunctionκ|V formed fromκ by
removing all its elements that are variables from beyondV or negations of variables
from beyondV.

Let ϕ < F andϕ◦ = κ1 ∨ · · · ∨ κn, whereκi ∈ ek. Clearly,V(ϕ) = V(κ1) = · · · =
V(κn). For every setV such thatV(ϕ) ∩ V , ∅ we takeϕ◦|V ≔ κ1|V ∨ · · · ∨ κn|V.
It is easily provable that for every formulaϕ from K, ϕ• |=| ϕ◦|Ve(ϕ) (the equality
not necessarily holds since some elements inϕ◦|Ve(ϕ) may repeat or be in improper
order).

Forϕ from K we defineϕ•|V in an analogous way.

4.3. A comparison of formulas fromAN with sets from A

We can construct «canonical embedding» of the set of formulasek into the set of
functions IS. For the notation from the paragraph 4.1, it will be a function which
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for b1, . . . , bn ∈ {0, 1} and differentα1, . . . , αn ∈ V

ek ∋ αb1
1 ∧ · · · ∧ α

bn
n

∗
7−→
(

α1
b1

...

...
αn
bn

)

∈ IS .

Obviously, it is not an «invertible» function. It is neither injection (to conjunctions
that are different solely in order of elements we assign the same state from IS) nor
surjection (the state ø is not assigned to any elementary conjunction).

The above embedding (·)∗ is extended on the setAN by setting:

AN ∋ κ1 ∨ · · · ∨ κm
∗
7−→ {κ∗1, . . . , κ

∗
m} ∈ A .

Clearly, it also is not injection nor surjection (Λ is not among its values). For every
ϕ, ψ ∈ AN the following equality holds:

(4.1) ϕ |=| ψ ⇐⇒ ϕ∗ � ψ∗ .

It is also obvious that for everyϕ < F

(ϕ◦)∗ =
{(

α1
b1

...

...
αn
bn

)

∈ IS : V(ϕ) = {α1, . . . , αn} & 〈b1, . . . , bn〉 |= ϕ
}

,

where|= is the satisfaction defined in 4.2 (p.104). Similarly forϕ ∈ K

(ϕ•)∗ =
{(

α1
b1

...

...
αn
bn

)

∈ IS : Ve(ϕ) = {α1, . . . , αn} & 〈b1, . . . , bn〉 � ϕ
}

,

where� is the relation of essential satisfaction from Section 4.2 (p.105). Thus the
function (·)∗ assigns representatives of informationI (ϕ) to formulasϕ◦ andϕ•.

4.4. Comparison of the setAN/|=| with the set ���

From (4.1) it follows that the function (·)∗ induces one-to-one assignment from the
setAN/|=| to ���:

‖ϕ‖∗ ≔ [ϕ∗] ,

whereϕ ∈ AN and‖ϕ‖ ≔ {ψ ∈ AN : ψ |=| ϕ}. Thus for every noncontradictory
formulaϕ we haveI (ϕ) = ‖ϕ◦‖∗.11

Finally let us notice that from the above facts it follows that:

(4.2) ∀ϕ,ψ∈K
(

I (ψ) ⊑ I (ϕ) ⇐⇒ ψ• |=| ϕ•|V(ψ•)

)

,

withal the disjunctionψ• may differ fromϕ•|V(ψ•), at the most, that the second one
contains the iterative elements.

11Yet if, while constructing a set of logical information, instead of the setA, we would like to use
the setAN, then we should extend it with «an empty elementary conjunction» (the counterpart of
the empty information state ø). Otherwise, the operation of restriction of an elementary conjunction
would not be performable on every set of variables (cf. Section 4.2). Moreover, we should extend the
setAN with an object being the counterpart of the contradictory alternative of information statesΛ.
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5. The definition of the relation |=i by means
of the notion of information

Let |=i be the consequence relation preserving logical information such that it is
included inL × L:

ϕ |=i ψ
df
⇐⇒ ϕ < F & ψ < T & I (ψ) ⊑ I (ϕ) .

From above definition and Fact3.4we have:ϕ |=i ϕ iff ϕ ∈ K. Thus the relation|=i

is reflexive on the setK. Moreover, by Fact3.4, the relation|=i is transitive.
The relation|=|i is the superposition of the relation|=i and its converse, i.e.,

ϕ |=|i ψ
df
⇐⇒ ϕ |=i ψ & ψ |=i ϕ .

From the definition of|=i and by (3.17) we have:

(5.1) ϕ |=i ψ =⇒ ϕ |= ψ .

Hence, by (2.1), we have:

(5.2) ϕ |=i ψ =⇒ ϕ, ψ ∈ K .

Hence, by (2.3), (3.11) and (3.25), we have:

(5.3) ϕ |=i ψ =⇒ ∅ , Ve(ψ) ⊆ Ve(ϕ) .

From the definitions of|=|i and|=i , and by Fact3.4and (3.19), it follows that,

(5.4) ϕ |=|i ψ ⇐⇒ ϕ |=| ψ & ϕ, ψ ∈ K .

Indeed,ϕ |=|i ψ iff ϕ |=i ψ & ψ |=i ϕ iff ϕ < F & ψ < T & I (ψ) ⊑ I (ϕ) & ψ < F &
ϕ < T & I (ϕ) ⊑ I (ψ) iff I (ϕ) = I (ψ) & ϕ, ψ ∈ K iff ϕ |=| ψ & ϕ, ψ ∈ K.

Example5.1. By examples3.5–3.7:
(a) p∧ (p ⊃ q) |=i q. Indeed,I (q) = [q] ⊏ [pq] = I (p∧ (¬p∨ q)).

(b) (p ⊃ q) ∧ (q ⊃ r) |=i p ⊃ q.

(c) p ⊃ q |=|i ¬q ⊃ ¬p. Indeed,I (¬p∨ q) = [ p̄q] = I (¬¬q∨ ¬p).12

(d) p 6|=i p∨ q.

(e) p∧ ¬q 6|=i p∨ q.

(f) p∧ (q∨ ¬q) 6|=i p∨ q.

(g) p∨ (q∧ ¬q) 6|=i p∨ q.

12Yet ϕ |=i ψ does not imply¬ψ |=i ¬ ϕ. Counterexample:ϕ = ‘ p∧ q’ andψ = ‘ p’.
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6. A definition of the relation |=i by means of evaluations

In (Pietruszczak, 1992) we put forward a definition of some relation, that was meant
to be a modification of the relation|=∗∗. We will show that this definition in nothing
but different characterization of the relation|=i .

Theorem 6.1. For everyϕ, ψ ∈ L

ϕ |=i ψ ⇐⇒ ϕ |= ψ & ϕ < F & ψ < T &

∀e∈E

(

he(ψ) = 1 ⇒ ∃e′∈E
(

e′|Ve(ψ) = e|Ve(ψ) & he′(ϕ) = 1
)

)

.

In words: ϕ |=i ψ iff ϕ, ψ ∈ K, ψ is a classical consequence ofϕ and for every
evaluation satisfyingψ there is another one that coincides with the first one on a set
of essential variables of a formulaψ and satisfiesϕ.

Proof. “⇒” Let ϕ |=i ψ. Thenϕ < F, ψ < T andϕ |= ψ, by (5.1). SinceI (ψ) ⊑ I (ϕ),
soψ• |=| ϕ•|V(ψ•), by (4.2). Set an arbitrary evaluatione such thathe(ψ) = 1. Then
in ϕ•|V(ψ•) there is an elementary conjunctionκ, for whichhe(κ) = 1. Letκ′ be such
an elementary conjunction inϕ• thatκ = κ′|Ve(ψ). Clearly, there is an evaluatione′

that satisfiesκ′ and coincides witheon the setVe(ψ).
“⇐” In (Pietruszczak, 1992) it was proved that the right-handed side of the

equivalence entails the condition∅ , Ve(ψ) ⊆ Ve(ϕ). For I (ψ) ⊑ I (ϕ), by (4.2), it
is enough to show thatψ• |=| ϕ•|V(ψ•). Let he(ψ•) = 1. Then alsohe(ψ) = 1. Hence,
by assumption, there is an evaluatione′ such thathe′ (ϕ) = 1 ande′|Ve(ψ) = e|Ve(ψ).
It entails thathe(ϕ•|V(ψ•)) = 1. Conversely, lethe(ϕ•|V(ψ•)) = 1. Then there is such
ane′, thate′|Ve(ψ) = e|Ve(ψ) andhe′ (ϕ•) = 1. Sinceϕ• |= ψ•, sohe′ (ψ•) = 1. Thus
he(ψ•) = 1, becauseVe(ψ) = V(ψ•).

Corollary 6.1. If Ve(ϕ) = Ve(ψ) andϕ |=i ψ, thenϕ |=|i ψ.

Proof. Let Ve(ϕ) = Ve(ψ) andϕ |=i ψ. Thenϕ |= ψ, by (5.1); ϕ, ψ ∈ K, by (5.2);
andVe(ϕ) = Ve(ψ) , ∅, by (2.3). Hence,ψ |= ϕ, by Theorem6.1. Soϕ |=| ψ.
Hence,ϕ |=|i ψ, by (5.4).

7. The axiomatization of the relation|= i

Now we define some classℑ of consequence relations preserving information. All
members of the classℑ included inL × L. After that we will show that the relation
|=i is the smallest in the classℑ.
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A relation ≻ is a member ofℑ iff for all ϕ, ψ, χ ∈ L the following axioms
are satisfied (we will use a symmetrical relation≺≻ as superposition of≻ with its
converse≺13):

ϕ ∈ K =⇒ ϕ ≺≻ ¬¬ϕ ,(a1)

g , I (ϕ) ⊑ I (ϕ ∧ ψ) , f =⇒ ϕ ∧ ψ ≻ ϕ , 14(a2)

ϕ ∧ ψ ∈ K =⇒ ϕ ∧ ψ ≻ ψ ∧ ϕ ,(a3)

(ϕ ∧ ψ) ∧ χ ∈ K =⇒ (ϕ ∧ ψ) ∧ χ ≺≻ ϕ ∧ (ψ ∧ χ) ,(a4)

ϕ ∧ ψ ∈ K =⇒ ¬(ϕ ∧ ψ) ≺≻ ¬ϕ ∨ ¬ψ ,(a5)

(ϕ ∨ ψ) ∧ χ ∈ K =⇒ (ϕ ∨ ψ) ∧ χ ≺≻ (ϕ ∧ χ) ∨ (ψ ∧ χ) ,(a6)

ϕ ∈ K & τ ∈ T =⇒ ϕ ≻ ϕ ∧ τ ,(a7)

ϕ ∈ K & φ ∈ F =⇒ ϕ ≺≻ ϕ ∨ φ ,(a8)

ϕ ∈ K & φ ∈ F =⇒ ϕ ≺≻ φ ∨ ϕ ,(a9)

ϕ ≻ ψ & ψ ≻ χ =⇒ ϕ ≻ χ ,(a10)

I (ϕ ∧ ψ) ⊑ I (χ) & χ ≻ ϕ & χ ≻ ψ =⇒ χ ≻ ϕ ∧ ψ , 15(a11)

χ < F & χ(ϕ/ψ) < T & ϕ ≺≻ ψ =⇒ χ ≻ χ(ϕ/ψ) .(a12)

Remark7.1. Formally, (a1)–(a9) have the following forms (for allπ, σ ∈ L):

(a1′) If either π ∈ K andσ = p¬¬πq, orσ ∈ K andπ = p¬¬σq, thenπ ≻ σ.

(a2′) If π = pσ ∧ αq for someα, andg , I (σ) ⊑ I (π) , f, thenπ ≻ σ.

(a3′) π ∈ K, π = pα ∧ βq for someα, β, andσ = pβ ∧ αq, thenπ ≻ σ.

(a4′) If for someα, β, γ: eitherπ = p(α ∧ β) ∧ γq, π ∈ K andσ = pβ ∧ (α ∧ γ)q, or
π = pβ ∧ (α ∧ γ)q, σ = p(α ∧ β) ∧ γq andσ ∈ K, thenπ ≻ σ.

(a5′) If for someα, β: pα ∧ βq ∈ K and eitherπ = p¬(α ∧ β)q andσ = p¬α ∨¬βq,
or π = p¬α ∨ ¬βq andσ = p¬(α ∧ β)q, thenπ ≻ σ.

(a6′) If for someα, β, γ: eitherπ = p(α∨β)∧γq, π ∈ K andσ = p(β∧γ)∨ (α∧γ)q,
or π = p(β ∧ γ) ∨ (α ∧ γ)q, σ = p(α ∨ β) ∧ γq andσ ∈ K, thenπ ≻ σ.

(a7′) If π ∈ K andσ = pπ ∧ τq for someτ ∈ T, thenπ ≻ σ.

(a8′) If either π ∈ K andσ = pπ ∨ τq for someφ ∈ F, orσ ∈ K andπ = pσ ∨ τq
for someφ ∈ F, thenπ ≻ σ.

(a9′) If either π ∈ K andσ = pτ ∨ πq for someφ ∈ F, orσ ∈ K andπ = pτ ∨ σq
for someφ ∈ F, thenπ ≻ σ.

13I.e., for all ϕ, ψ ∈ L: ϕ ≺≻ ψ iff ϕ ≻ ψ & ψ ≻ ϕ.
14See Footnote8.
15I (ϕ) ⊑ I (χ) and I (ψ) ⊑ I (χ) does not entailI (ϕ ∧ ψ) ⊑ I (χ). Counterexample:ϕ = ‘ p ⊃ q’,

ψ = ‘ p ⊃ r ’ andχ = ‘( p ⊃ q) ∧ (q ⊃ r)’ (see Example3.7f).
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Obviously, the classℑ is not empty, since the full relationL × L is a member
of ℑ. The other member ofℑ is the relation|=i .

Theorem on the Correctness 7.1. The relation|=i is a member ofℑ.

Proof. We must prove that the relation|=i satisfies axioms (a1)–(a12). For (a1),
(a3)–(a9) and (a12) the fact follows from (5.4). For (a2) from (3.20) and (3.21).
For (a10) from Fact3.4. The axiom (a11) follows from the fact that ifϕ, ψ < T,
thenϕ ∧ ψ < T.

We put
≻◦ ≔

⋂

ℑ ≔ { 〈ϕ, ψ〉 ∈ L × L : ∀≻∈ℑ ϕ ≻ ψ } ,

By our definitions we have.

Fact 7.1. ≻◦ ∈ ℑ, ie., the relation≻◦ is the smallest one in the classℑ.

Moreover, by our definitions and by Theorem on the Correctness7.1we obtain
theCorollary on the Correctness.

Corollary 7.1 (on the Correctness).≻◦ ⊆ |=i , i.e., if ϕ ≻◦ ψ thenϕ |=i ψ.

The remaining part of this paper is devoted to proving the inverse inclusion,
that is|=i ⊆ ≻◦. In Section10 we prove:

Completenness Theorem 7.2. |=i ⊆ ≻◦, i.e.,ϕ |=i ψ thenϕ ≻◦ ψ.

From these the adequacy will follow:

Theorem on the Adequacy 7.3. |=i = ≻◦, i.e., the relation|=i is the smallest inℑ.

Further we will profit from the below lemma that we obtain in a standard way.

Lemma 7.1. ϕ ≻◦ ψ iff there is a finite sequence of pairs of formulas〈π1, σ1〉, . . . ,
〈πn, σn〉 such thatπn = ϕ andσn = ψ, and for i = 1, . . . , n at least one of the
following conditions holds:

1. for π = πi andσ = σi an antecedent of some implication from(a1′)–(a9′) is
true;

2. there arej, k < i such thatπi = π j , σi = σk andσ j = πk;

3. I (σi) ⊑ I (πi) and there arej, k < i such thatπi = π j = πk andσi = σ j ∧ σk;

4. πi < F, σi < T and there arej, k < i such thatπ j = σk andπk = σ j, andπi = χ

andσi = χ(π j/σ j) for some formulaχ.16

16For conditions 2–4 see axioms (a10)–(a12).
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8. Auxiliary properties of all relations from the classℑ

Let≻ be an arbitrary relation in the classℑ.
Let us notice that (a1) and (a10) entail that the relation≻ is reflexive onK:

(8.1) ϕ ∈ K =⇒ ϕ ≻ ϕ .

Moreover, from (a3), (3.19), (3.20), (3.21, (a2) and (a10) it follows that

(8.2) g , I (ψ) ⊑ I (ϕ ∧ ψ) , f =⇒ ϕ ∧ ψ ≻ ψ ,

and (3.20), (3.21), (a2), (8.1) and (a11) entail idempotence for∧:

(8.3) ϕ ∈ K =⇒ ϕ ≺≻ ϕ ∧ ϕ .

Let us notice also that from (a2) and (a7) follows

(8.4) ϕ ∈ K & τ ∈ T =⇒ ϕ ≺≻ ϕ ∧ τ ,

becauseg , I (ϕ) = I (ϕ ∧ τ) , f.
We prove a theorem that will be useful farther:

(8.5) χ1 ≻ χ2 & ϕ1 ≺≻ ψ1 & ϕ2 ≺≻ ψ2 =⇒ χ1(ϕ1/ψ1) ≻ χ2(ϕ2/ψ2) .

Indeed, from the antecedent of the implication, by (a12), we haveχ2 ≻ χ2(ϕ2/ψ2),
and from this, by (a10), χ1 ≻ χ2(ϕ2/ψ2). Sinceχ1 = χ1(ϕ1/ψ1).(ψ1/ϕ1), so from
the antecedent of the implication and (a12), we deriveχ1(ϕ1/ψ1) ≻ χ1. Thus, using
(a10), we haveχ1(ϕ1/ψ1) ≻ χ2(ϕ2/ψ2).

The relation≻ is idempotent for∨ in K:

(8.6) ϕ ∈ K =⇒ ϕ ≺≻ ϕ ∨ ϕ .

Indeed, by (8.3) and (a12), ¬(¬ϕ ∧ ¬ϕ) ≻ ¬¬ϕ and¬¬ϕ ≻ ¬(¬ϕ ∧ ¬ϕ). From this
(a5) and (8.5), ¬¬ϕ ≺≻ ¬¬ϕ ∨ ¬¬ϕ. And, by (a1) and (8.5), we getϕ ≺≻ ϕ ∨ ϕ.

Weprove that

(8.7) ϕ ∨ ψ ∈ K =⇒ ϕ ∨ ψ ≺≻ ¬(¬ϕ ∧ ¬ψ) .

Indeed, by (a5), ¬¬ϕ ∨ ¬¬ψ ≺≻ ¬(¬ϕ ∧ ¬ψ). Assume additionally thatϕ, ψ ∈ K.
Then, by (a1), (8.1) and (8.5), we getϕ∨ψ ≺≻ ¬¬ϕ∨¬¬ψ. From this and from (a10),
ϕ ∨ ψ ≺≻ ¬(¬ϕ ∧ ¬ψ). Assume now thatϕ ∈ K andψ ∈ F. Then, by (a8), (a1), (a5)
and (8.5), we get respectively:ϕ∨ψ ≺≻ ϕ ≺≻ ϕ∨¬¬ψ ≺≻ ¬¬ϕ∨¬¬ψ ≺≻ ¬(¬ϕ∧¬ψ).
The caseϕ ∈ F andψ ∈ K is similar – we take (a9) instead of (a8).
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Now from (8.7), (a3) and (8.5) we have:

(8.8) ϕ ∨ ψ ∈ K =⇒ ϕ ∨ ψ ≺≻ ψ ∨ ϕ .

Similarly, from (8.7), (a1), (a12) and (a10) we get:

(8.9) ϕ ∨ ψ ∈ K =⇒ ¬(ϕ ∨ ψ) ≺≻ ¬ϕ ∧ ¬ψ .

We will show that relation≺≻ «preserves» commutativity for∨ in K:

(8.10) (ϕ ∨ ψ) ∨ χ ∈ K =⇒ (ϕ ∨ ψ) ∨ χ ≺≻ ϕ ∨ (ψ ∨ χ) .

Indeed, in case ifϕ∨ψ ∈ K we have: (ϕ∨ψ)∨χ ≺≻ ¬¬((ϕ∨ψ)∨χ) ≺≻ ¬((¬ϕ∧¬ψ)∧
¬χ) ≺≻ ¬(¬ϕ∧ (¬ψ∧¬χ)). Now if (i) ψ∨ χ ∈ K we have:. . . ≺≻ ¬¬(ϕ∨ (ψ∨ χ)) ≺≻
(ϕ∨ (ψ∨χ)). In case of (ii), ifψ∨χ ∈ F the following holds: (ϕ∨ψ)∨χ ≺≻ ϕ∨ψ ≺≻
ϕ ≺≻ ϕ∨(ψ∨χ). In case ifϕ∨ψ ∈ F we have: (ϕ∨ψ)∨χ ≺≻ χ ≺≻ ψ∨χ ≺≻ ϕ∨(ψ∨χ).

Finally

(8.11) (ϕ ∧ ψ) ∨ χ ∈ K =⇒ (ϕ ∧ ψ) ∨ χ ≺≻ (ϕ ∨ χ) ∧ (ψ ∨ χ) .

Indeed, let us notice that (ϕ∧ψ)∨χ ≺≻ ¬¬((ϕ∧ψ)∨χ) ≺≻ ¬(¬(ϕ∧ψ)∧¬χ). Now,
if ϕ∧ψ ∈ K, then. . . ≺≻ ¬((¬ϕ∨¬ψ)∧¬χ). Yet if ϕ∧ψ ∈ F, then¬(ϕ∧ψ)∧¬χ ≺≻
χ ≺≻ (¬ϕ ∨ ¬ψ) ∧ ¬χ that is we also get. . . ≺≻ ¬((¬ϕ ∨ ¬ψ) ∧ ¬χ). Thus in both
cases we have:. . . ≺≻ ¬((¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ)). Now we have to consider three
cases. (A) whenϕ ∨ χ ∈ K andψ ∨ χ ∈ K. Then. . . ≺≻ ¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)).
(B) whenϕ ∨ χ ∈ K andψ ∨ χ ∈ T we can prove that (¬ϕ ∧ ¬χ) ∨ (¬ψ ∧ ¬χ) ≺≻
ϕ ≺≻ (¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ). Thus we also get:. . . ≺≻ ¬((¬ϕ ∧ ¬χ) ∨ ¬(ψ ∨ χ)) ≺≻
¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)). (C) whenϕ ∨ χ ∈ T andψ ∨ χ ∈ K, then we will show
analogously that. . . ≺≻ ¬(¬(ϕ ∨ χ) ∨ (¬ψ ∧ ¬χ)) ≺≻ ¬(¬(ϕ ∨ χ) ∨ ¬(ψ ∨ χ)). Thus
in all three cases we have:. . . ≺≻ ¬¬((ϕ ∨ χ) ∧ (ψ ∨ χ)) ≺≻ (ϕ ∨ χ) ∧ (ψ ∨ χ).

We will need a couple of more generalized theorems that we proved earlier.
The axiom (a6) will be used farther in the following form:

(8.12) (ϕ1 ∨ · · · ∨ ϕn) ∧ ψ ∈ K, ϕi ∧ ψ ∈ K =⇒

(ϕ1 ∨ · · · ∨ ϕn) ∧ ψ ≺≻ (ϕ1 ∧ ψ) ∨ · · · ∨ (ϕn ∧ ψ) .

Indeed, as inductive hypothesis, let us assume that the condition is true forn − 1.
By (a6) we get: (ϕ1 ∨ · · · ∨ ϕn) ∧ ψ ≺≻ ((ϕ1 ∨ · · · ∨ ϕn−1) ∧ ψ) ∨ (ϕn ∧ ψ). Let us
notice that by the antecedent of implication: (ϕ1 ∨ · · · ∨ ϕn−1) ∧ ψ ∈ K. Indeed, if
(ϕ1 ∨ · · · ∨ ϕn−1) ∧ ψ < K, then (ϕ1 ∨ · · · ∨ ϕn−1) ∧ ψ ∈ F, soϕi ∧ ψ ∈ F for every
i 6 n, contrary to the assumption. Therefore we can apply inductive hypothesis.
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Conditions (a5) and (8.9) will also be inductively generalized:

ϕ1 ∧ · · · ∧ ϕn ∈ K =⇒ ¬(ϕ1 ∧ · · · ∧ ϕn) ≺≻ ¬ϕ1 ∨ · · · ∨ ¬ϕn ,(8.13)

ϕ1 ∨ · · · ∨ ϕn ∈ K =⇒ ¬(ϕ1 ∨ · · · ∨ ϕn) ≺≻ ¬ϕ1 ∧ · · · ∧ ¬ϕn .(8.14)

For (8.13): by induction onn. For n = 1, by (8.1), we have¬ϕ1 ≻ ¬ϕ1. For n > 1,
by (a5), it holds that¬((ϕ1∧ · · · ∧ ϕn−1)∧ ϕn) ≺≻ ¬(ϕ1∧ · · · ∧ ϕn−1)∨¬ϕn. Assume
inductively that the condition holds forn−1. Thus in case ifϕ1∧· · ·∧ϕn−1 ∈ K, by
inductive hypothesis, we get¬(ϕ1∧· · ·∧ϕn−1) ≺≻ ¬ϕ1∨· · ·∨¬ϕn−1. Hence, by (a10)
and(a12), we get the thesis. In case ifϕ1∧· · ·∧ϕn−1 ∈ T, we haveϕ1, . . . , ϕn−1 ∈ T
andϕn ∈ K. Hence, by (8.4) and (a3), we have (ϕ1 ∧ · · · ∧ ϕn−1) ∧ ϕn ≺≻ ϕn. Now,
by (a12), we get¬(ϕ1 ∧ · · · ∧ ϕn) ≺≻ ¬ϕn. Moreover,¬ϕ1 ∨ · · · ∨ ¬ϕn−1 ∈ F and
¬ϕn ∈ K. Hence, by (a8) and (8.8), we have (¬ϕ1 ∨ · · · ∨ ¬ϕn−1) ∨ ¬ϕn ≺≻ ¬ϕn.
Finally, we use (a10).

Theabove reasoning can be carried out for an arbitrary combination of brackets
in a given conjunction.

For (8.14): analogously as for (8.13). Instead of (a5) we apply (8.9).

9. Auxiliary properties of the relation ≻◦

Obviously, the relation≻◦ has properties from Section8. Moreover, we will prove
that this relation has some additional properties that are indispensable while prov-
ing the completeness theorem7.3.

Fora start let us remark that since≻◦ ⊆ |=i , so by (5.1) and (5.2),

(9.1) ϕ ≻◦ ψ =⇒ ϕ |= ψ & ϕ, ψ ∈ K .

From axioms (a1), (a3), (a10) and (a12), and from (9.1) and (8.8) it follows that

ϕ ≺≻◦ ψ ⇒ ¬ϕ ≺≻◦ ¬ψ ,(9.2)

ϕ ∨ χ < T =⇒ ϕ ≺≻◦ ψ ⇒ ϕ ∨ χ ≺≻◦ ψ ∨ χ ,(9.3)

ϕ1 ∨ ψ2 < T =⇒ ϕ1 ≺≻◦ ϕ2 & ψ1 ≺≻ ψ2 ⇒ ϕ1 ∨ ψ1 ≺≻◦ ϕ2 ∨ ψ2 ,(9.4)

ϕ ∧ χ < F =⇒ ϕ ≺≻◦ ψ ⇒ ϕ ∧ χ ≺≻◦ ψ ∧ χ ,(9.5)

ϕ1 ∧ ψ1 < F =⇒ ϕ1 ≺≻◦ ϕ2 & ψ1 ≺≻◦ ψ2 ⇒ ϕ1 ∧ ψ1 ≺≻◦ ϕ2 ∧ ψ2 .(9.6)

The conditions (9.4) and (9.6) can be easily generalized in an inductive way:

(9.7) ϕ1 ∨ · · · ∨ ϕn < T =⇒
ϕ1 ≺≻◦ ψ1 & · · ·& ϕn ≺≻◦ ψn ⇒ ϕ1 ∨ · · · ∨ ϕn ≺≻◦ ψ1 ∨ · · · ∨ ψn ,

(9.8) ϕ1 ∧ · · · ∧ ϕn < F =⇒
ϕ1 ≺≻◦ ψ1 & · · ·& ϕn ≺≻◦ ψn ⇒ ϕ1 ∧ · · · ∧ ϕn ≺≻◦ ψ1 ∧ · · · ∧ ψn .
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Now we will prove a couple of lemmas that will be necessary to prove com-
pleteness.

Lemma 9.1. For all κ ∈ ek there is suchϕ ∈ AN that V(κ) = V(ϕ) and¬κ ≺≻◦ ϕ.

Proof. By (8.13), (a1), (a10), (9.3) and the factek ( K.

Lemma 9.2. Let ϕ1, . . . ,ϕn ∈ AN for n > 0. Let ϕ1 ∧ · · · ∧ ϕn ∈ K. Then there is
suchψ ∈ AN that V(ψ) ⊆ V(ϕ1 ∧ · · · ∧ ϕn) and (ϕ1 ∧ · · · ∧ ϕn) ≺≻◦ ψ.

Proof. Induction onn. (I) For n = 1: by (8.1) we set thatψ = ϕ1.
(II ) Forn = 2: assume thatϕ1 = κ1∨ · · ·∨ κm, ϕ2 = λ1∨ · · · ∨λl , wherem, l > 0

andκi , λi ∈ ek ( K. We will consider three cases:
(i) Let l = 1 = m. Then by hypothesisκ1 ∧ λ1 ∈ ek ( AN. Hence, by (8.1), we

cansetψ = κ1 ∧ λ1.
(ii) Let m+l = k > 1 andm> 1. Then, by (a6), we get (κ1∨(κ2∨· · ·∨κm))∧ϕ2 ≺≻◦

(κ1 ∧ ϕ2) ∨ ((κ2 ∨ · · · ∨ κm) ∧ ϕ2).
Assume that forn = 2 the lemma is true for allmandl such thatm+ l < k. By

hypothesis and (9.1) one of the following three cases holds:
(a) κ1 ∧ ϕ2, (κ2 ∨ · · · ∨ κm) ∧ ϕ2 ∈ K. By inductive hypothesis, there are such

ψ1, ψ2 ∈ AN thatκ1∧ϕ2 ≺≻◦ ψ1 and (κ2∨· · ·∨κm)∧ϕ2 ≺≻◦ ψ2, andV(ψ1) ⊆ V(κ1∧ϕ2)
andV(ψ2) ⊆ V((κ2∨ · · · ∨ κm)∧ ϕ2). By hypothesis and (9.1), we can apply (9.4) to
get(κ1 ∧ ϕ2) ∨ ((κ2 ∨ · · · ∨ κm) ∧ ϕ2) ≺≻◦ ψ1 ∨ ψ2. Thus forψ = ψ1 ∨ ψ2 ∈ AN, by
(a10), we haveϕ1 ∧ ϕ2 ≺≻◦ ψ. Moreover,V(ψ) ⊆ V(ϕ1 ∧ ϕ2).

(b) κ1 ∧ ϕ2 ∈ K and (κ2 ∨ · · · ∨ κm) ∧ ϕ2 ∈ F. By inductive hypothesis, there is
suchψ ∈ AN thatκ1∧ϕ2 ≺≻◦ ψ andV(ψ) ⊆ V(κ1∧ϕ2). By (9.3), (κ1∧ϕ2)∨((κ2∨· · ·∨

κm)∧ϕ2) ≺≻◦ ψ∨((κ2∨· · ·∨κm)∧ϕ2), from (a8) we getψ∨((κ2∨· · ·∨κm)∧ϕ2) ≺≻◦ ψ.
Hence, by (a10), we getϕ1 ∧ ϕ2 ≺≻◦ ψ. Moreover,V(ψ) ⊆ V(ϕ1 ∧ ϕ2).

(c) κ1 ∧ ϕ2 ∈ F and (κ2 ∨ · · · ∨ κm) ∧ ϕ2 ∈ K. Analogously to (b).
(iii) Let m+ l > 2 andl > 1. Analogously like (ii).
(III) For n > 2: assume that the lemma in question is true for allm < n.

Consider two cases:
(i) ϕ1 ∧ · · · ∧ ϕn−1 ∈ K. Then, by inductive hypothesis, there is suchψ′ ∈ AN

thatϕ1∧· · ·∧ϕn−1 ≺≻◦ ψ
′ andV(ψ′) ⊆ V(ϕ1∧· · ·∧ϕn−1). Hence, by hypothesis and

(9.5), we haveϕ1∧· · ·∧ϕn ≺≻◦ ψ
′∧ϕn. By assumption and from (9.1), ψ′∧ϕn ∈ K.

Therefore, by inductive hypothesis, there is suchψ ∈ AN thatψ′ ∧ ϕn ≺≻◦ ψ and
V(ψ) ⊆ V(ψ′ ∧ ϕn) ⊆ V(ϕ1 ∧ · · · ∧ ϕn). By (a10) we getϕ1 ∧ · · · ∧ ϕn ≺≻◦ ψ.

(ii) ϕ1 ∧ · · · ∧ ϕn−1 < K. Thenϕ1 ∧ · · · ∧ ϕn−1 ∈ T andϕn ∈ K. Hence, by (8.4)
and(a3), we getϕ1 ∧ · · · ∧ ϕn ≺≻◦ ϕn.

We repeat considerations from (III) for an arbitrary combination of brackets.
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Lemma 9.3. For everyϕ ∈ AN ∩ K there is suchψ ∈ AN ∩ K that V(ψ) ⊆ V(ϕ) and
¬ϕ ≺≻◦ ψ.

Proof. Assume thatϕ = κ1∨ · · · ∨ κn, wheren 6 1 andκi ∈ ek ( K for i = 1, . . . , n.
By (8.14) we get that¬(κ1 ∨ · · · ∨ κn) ≺≻◦ ¬κ1 ∧ · · · ∧ ¬κn.

By Lemma9.1 there are suchϕ1, . .. , ϕn ∈ AN that for i = 1, . . . , n we have
V(κi) = V(ϕi) and¬κi ≺≻◦ ϕi.

Let us notice that sinceϕ,¬κi ∈ K for 1 6 i 6 n, so for everym 6 n we
have¬κ1 ∧ · · · ∧ ¬κm ∈ K. Hence by induction, applying (9.6), we can show that
¬κ1 ∧ · · · ∧ ¬κn ≺≻◦ ϕ1 ∧ · · · ∧ ϕn. By Lemma9.2 there is suchψ ∈ AN that
V(ψ) ⊆ V(ϕ1 ∧ · · · ∧ ϕn) and ϕ1 ∧ · · · ∧ ϕn ≺≻◦ ψ. Thus, using (a10), we get
¬ϕ ≺≻◦ ψ.

Lemma 9.4. For everyϕ ∈ K there is suchϕa ∈ AN that V(ϕa) ⊆ V(ϕ) andϕ ≺≻◦ ϕa.

Proof. Induction on the construction of the formulaϕ.
(I) ϕ ∈ V. Thenϕ ∈ AN andϕ ≺≻◦ ϕ, by (8.1).
(II ) ϕ = ¬ψ. Thenψ ∈ K. As inductive hypothesis, let us assume that forψ

the theorem holds, i.e., there is suchψa ∈ AN that V(ψa) ⊆ V(ψ) andψ ≺≻◦ ψa.
Thus, using (9.2), we get¬ψ ≺≻◦ ¬ψa. From Lemma9.3 we get suchψ ∈ AN that
V(ψ) ⊆ V(ψa) and¬ψa ≺≻◦ ψ. Hence, by (a10), we getϕ ≺≻◦ ψ.

(III) ϕ = ψ ∨ χ. Consider three cases. (i)ψ, χ ∈ K. By inductive hypothesis,
there are suchψa, χa ∈ AN that V(ψa) ⊆ V(ψ) and V(χa) ⊆ V(χ), andψ ≺≻◦ ψa

and χ ≺≻◦ χa. By (9.4), we haveϕ ≺≻◦ ψa ∨ χa. Clearly, ψa ∨ χa ∈ AN and
V(ψa ∨ χa) ⊆ V(ϕ). (ii) ψ ∈ K andχ ∈ F. Then by (a8), we haveϕ ≺≻◦ ψ. By
inductive hypothesis, there is such,ψa ∈ AN that V(ψa) ⊆ V(ψ) andψ ≺≻◦ ψa. By
(a10), we haveϕ ≺≻◦ ψa. (iii) ψ ∈ F andχ ∈ K. Analogously as for (ii).

(IV) ϕ = (ψ ∧ χ). Consider three cases. (i)ψ, χ ∈ K. By inductive hypothesis,
there are such,ψa, χa ∈ AN thatV(ψa) ⊆ V(ψ) andV(χa) ⊆ V(χ), andψ ≺≻◦ ψa and
χ ≺≻◦ χ

a. By (9.6), we haveϕ ≺≻◦ ψa∧ χa. Clearly,V(ψa∧ χa) ⊆ V(ϕ). By (9.1) and
Lemma9.3, there is suchψ ∈ AN that V(ψ) ⊆ V(χa ∧ ψa) andψa ∧ χa ≺≻◦ ψ. Thus
from (a10) we getϕ ≺≻◦ ψ. (ii) ψ ∈ K andχ ∈ T. Then by (8.4), we haveϕ ≺≻◦ ψ.
By inductive hypothesis, there is such,ψa ∈ AN that V(ψa) ⊆ V(ψ) andψ ≺≻◦ ψa.
From (a10) we haveϕ ≺≻◦ ψa. (iii) ψ ∈ T andχ ∈ K, analogously as (ii).

Lemma 9.5. Let i1 < i2 < · · · < in and forκ ∈ ek let V(κ) = {p j1, p j2, . . . , p jm} ⊆

{pi1, pi2, . . . , pin}, where j1 < j2 < · · · < jm. Then there are differentκ1, . . . , κ2n−m ∈

ek such thatκ ≺≻◦ κ1 ∨ · · · ∨ κ2n−m and V(κi) = {pi1, pi2, . . . , pin}.

Proof. Let k1 < k2 < · · · < kn−m and {k1, k2, . . . , kn−m} = {i1, i2, . . . , in} \ { j1, j2,
. . . , jm}. By (8.4), (a3), (a6) (a4), (9.6) and (9.4), we haveκ ≺≻◦ κ∧ (pk1 ∨¬pk1) ≺≻◦
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(κ∧pk1)∨(κ∧¬pk1) ≺≻◦ κ
1
1∨κ

0
1, whereκ1

1 andκ0
1 are different respectively fromκ∧pk1

andκ∧¬pk1 in this, that their elements are ordered according to increasing indexes
of variables. In a second step, for a variablepk2 we analogously getκ1

1 ≺≻◦ κ
11
12∨ κ

10
12

andκ0
1 ≺≻◦ κ

11
12∨ κ

10
12. Hence, by (9.4) and (a10), we haveκ ≺≻◦ κ11

12 ∨ κ
10
12∨ κ

01
12∨ κ

00
12.

These steps are repeated forn−mand we getκ ≺≻◦ κ11...1
12...n−m∨κ

11...0
12...n−m∨· · ·∨κ

00...0
12...n−m.

Finally we have 2n−m of different elements .

Lemma 9.6. If ϕ ∈ K, thenϕ ≺≻◦ ϕ◦.

Proof. Forϕ ∈ K let V(ϕ) = {pi1, pi2, . . . , pin}, wherei1 < i2 < · · · < in.
By Lemma9.4, there is suchϕa ∈ AN that ϕ ≺≻◦ ϕa andV(ϕa) ⊆ V(ϕ). Thus

ϕa = κ1 ∨ · · · ∨ κm, wherem > 0 andκ1, . . . , κm ∈ ek. By (a3), (a4), (8.3), (9.5)
and(a10), we can show thatκi ≺≻◦ κ

′
i , where fori 6 m we haveV(κ′i ) = V(κi) and

κ′i are different fromκi , only in this, that no element of a conjunctionκ′i repeats and
all elements are ordered according to an increasing indexes of variables. Hence, by
(9.7), we haveϕa ≺≻◦ κ

′
1 ∨ · · · ∨ κ

′
m.

Now, by Lemma9.5, for everyi 6 m there is suchϕa
i ∈ AN thatV(ϕa

i ) = V(ϕ)
andκ′i ≺≻◦ ϕ

a
i . Hence, by (9.7), we haveϕ ≺≻◦ ϕa

1∨· · ·∨ϕ
a
m. Next, by (8.10), (8.6) and

(8.8), we can delete recurrent elementary conjunctions in a disjunction ϕa
1∨· · ·∨ϕ

a
k

and order it such thatϕ ≺≻◦ ϕa ≺≻◦ κ
k1
1 ∨ κ

k2
2 ∨ · · · ∨ κ

kl
l , wherek1 < k2 < · · · < kl

and for j 6 l numberk j is equal to the sum
∑n

i=1 b
kj

i · 2
n−i , in which b

kj

i = 0, if in

κ
kj

j there is¬pi andb
kj

i = 1, if in κ
kj

j there ispi .

It remains to prove thatϕ◦ = κk1
1 ∨ · · · ∨ κ

kl
l . By (9.1), ϕ |=| κk1

1 ∨ · · · ∨ κ
kl
l . Set an

arbitrary 0-1 sequence〈b1, . . . , bn〉. It satisfies a formulaϕ iff it satisfies disjunction
κk1

1 ∨ · · · ∨ κ
kl
l , i.e., for somej 6 l the sequence satisfies conjunctionκ

kj

j . The last

condition is equivalent to the fact thatb
kj

i = bi for all i 6 n. Hence it follows— from

the one side—that in disjunctionκk1
1 ∨· · ·∨κ

kl
l there are all elementary conjunctions

determined by sequences satisfying a formulaϕ—from the other—that only such
conjunctions.

Lemma 9.7. If ϕ ∈ K, thenϕ◦ ≺≻◦ ϕ•.

Proof. If V(ϕ) = Ve(ϕ), thenϕ◦ = ϕ•, so we get the thesis from (8.1).
Let V(ϕ) = {pi1, pi2, . . . , pin} for i1 < i2 < · · · < in and pik < Ve(ϕ) for some

k 6 n. Thus for every evaluatione : V→ {0, 1} we havehe(ϕ) = h
e−pik (ϕ). Hence it

follows that for every〈b1, . . . , bn〉 ∈ {0, 1}n: pb1
i1
∧ · · · ∧ pbk

ik
∧ · · · ∧ pbn

in
occurs in

ϕ◦ iff pb1
i1
∧ · · · ∧ p1−bk

ik
∧ · · · ∧ pbn

in
occurs inϕ◦. Therefore, either both conjunction

occur inϕ◦ or neither of them. Moreover, by (a3), (a4), (a6) and (8.4), we have
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(pb1
i1
∧ · · · ∧ pbk

ik
∧ · · · ∧ pbn

in
) ∨ (pb1

i1
∧ · · · ∧ p1−bk

ik
∧ · · · ∧ pbn

in
) ≺≻◦ (pb1

i1
∧ · · · ∧

pbk−1
ik−1
∧ pbk+1

ik+1
∧ · · · ∧ pbn

in
) ∧ (pbk

ik
∨ p1−bk

ik
) ≺≻◦ (pb1

i1
∧ · · · ∧ pbk−1

ik−1
∧ pbk+1

ik+1
∧ · · · ∧ pbn

in
).

By the above facts and (8.8) together with (9.7) we can «eliminate» fromϕ◦ a
variable pik, i.e.,ϕ◦ ≺≻◦ ψ1, whereψ1 is different from the restriction ofϕ◦ to the
set{pik , . . . , pik−1, pik+1, . . . , pin}, in this, that it does not include recurring elements.
Subsequently, in the same way, we eliminate the second inessential variableϕ in
ψ1, getting suchψ2 thatϕ◦ ≺≻◦ ψ1 ≺≻◦ ψ2 (we now apply the above facts toψ1). In
an analogous way we eliminate all inessential variables inϕ, gettingϕ◦ ≺≻◦ ϕ•, by
(8.8) and (a10).

Lemma 9.8. Let ϕ ∈ K and letV be an arbitrary nonempty set included inVe(ϕ)
such thatϕ•|V < T. Thenϕ• ≻◦ ϕ•|V.

Proof. Let ϕ• = κ1 ∨ · · · ∨ κn. Proof by induction on a number of variables in the
setV(ϕ•) \ V. If it is empty, thenϕ• = ϕ•|V.

(I) Let pk be the only element of the setV(ϕ•)\V. Consider two possible cases:
(i) For someb ∈ {0, 1} a formulapb

k occurs in everyκi for i 6 n. Then, by the
equations proved so far, for everyi 6 n we haveκi ≺≻◦ κ

′
i ∧ pb

k, whereκ′i is a κi

with pb
k deleted (i.e. we movepb

k to the last place inκi). Since all assumptions in
the antecedent of the implication (8.12) are satisfied, then we getϕ• ≺≻◦ (κ′1 ∨ · · · ∨
κ′n) ∧ pb

k. Sinceκ′1 ∨ · · · ∨ κ
′
n = ϕ

•|V andg , I (ϕ•|V) ⊑ I ((κ′1 ∨ · · · ∨ κ
′
n) ∧ pb

k), thus
we can apply (a2) and (a10) acquiringϕ• ≻◦ ϕ•|V.

(ii ) pk occurs inκi1 , κi2, . . . , κim, where 0< m < n and i1 < i2 < · · · < im 6 n,
and¬pk occursκ j1, κ j2, . . . , κ jn−m, where j1 < j2 < · · · < jn−m 6 n. Clearly,ϕ• ≺≻◦
(κi1∨· · ·∨κim)∨(κ j1∨· · ·∨κ jn−m), and both elements of the second of disjunctions are
in K. Therefore the antecedent of the implication is satisfied (8.12), thus, similarly
to (i), by (9.4), we getϕ• ≺≻◦ ((κ′i1 ∨ · · · ∨ κ

′
im

)∧ pk)∨ ((κ′j1 ∨ · · · ∨ κ
′
jn−m

)∧¬pk). By

(8.11) we haveϕ• ≺≻◦
(

(κ′i1∨· · ·∨κ
′
im

)∨((κ′j1∨· · ·∨κ
′
jn−m

)∧¬pk)
)

∧
(

pk∨((κ′j1∨· · ·∨

κ′jn−m
) ∧ ¬pk)

)

. Again applying (8.11) together with (8.8) and (9.6), we getϕ• ≺≻◦
(κ′i1∨· · ·∨κ

′
im
∨κ′j1∨· · ·∨κ

′
jn−m

)∧(κ′i1∨· · ·∨κ
′
im
∨¬pk)∧(pk∨κ

′
j1
∨· · ·∨κ′jn−m

)∧(pk∨¬pk).
(The transformations were permitted since by the assumptions the whole formula
and respective subformulas are inK.) Disjunctionκ′i1 ∨ · · · ∨ κ

′
im
∨ κ′j1 ∨ · · · ∨ κ

′
jn−m

differs fromϕ•|V at the most in the order of elements. Since the antecedent in the
implication (a2) is satisfied then, applying (8.8) we getϕ• ≻◦ ϕ•|V.

(II ) Applying inductive hypothesis, similarly to (I), we will prove the theorem
for an arbitrary (finite) number of elements of the setV(ϕ•) \ V.
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10. Proof of the fact: |=i ⊆ ≻◦

Applying (4.2) and lemmas from Section9, we can prove that|=i ⊆ ≻◦.
Let ϕ |=i ψ. By (5.2), we haveϕ, ψ ∈ K, and by (5.3), we get∅ , Ve(ψ) ⊆ Ve(ϕ).

Moreover, by (4.2), ψ• |=| ϕ•|V(ψ•).
Now, by lemmas9.6, 9.7 and 9.8, we haveϕ ≺≻◦ ϕ◦ ≺≻◦ ϕ• ≻ ϕ•|V(ψ•) and

ψ• ≺≻◦ ψ
◦ ≺≻◦ ψ.

Sinceψ• |=| ϕ•|Ve(ψ), soϕ•|V(ψ•) can differ fromψ• at the most in the fact that
it contains recurring elements. Hence, by (8.6) and some other equations, we get
ϕ•|V(ψ•) ≺≻◦ ψ

•. Thus, from (a10), we getϕ ≻◦ ψ.

11. A sequent calculus for the relation|= i

Let { pϕ ⊢ ψq : ϕ, ψ ∈ L } be a set of sequents. The sign ‘⊢’ does not mark binary
relations onL. The sequentpϕ ⊢ ψq is a «new formula» that renders the argument
with assumptionϕ and claimψ. The formulaϕ is called theantecedentandψ is
called thesuccedentof the sequentpϕ ⊢ ψq. A sequentpϕ ⊢ ψq is calledcorrect iff
ϕ |=i ψ.

Let us build, in the set of all sequents, the calculusCi that will satisfy Theorem
on the Adequacy11.2: a sequentpϕ ⊢ ψq is athesis ofCi iff ϕ |=i ψ, i.e.,pϕ ⊢ ψq
is correct.17

Given sequent is anaxiomof Ci iff it satisfies the following two conditions:

(i) neither the antecedent of this sequent is a contradiction nor its succedent is a
tautology;

(ii) the sequent has one of the following fifteen forms:

ϕ ⊢ ¬¬ϕ(A1)

¬¬ϕ ⊢ ϕ(A2)

ϕ ∧ ψ ⊢ ϕ if I (ϕ) ⊑ I (ϕ ∧ ψ)(A3)

ϕ ∧ ψ ⊢ ψ ∧ ϕ(A4)

(ϕ ∧ ψ) ∧ χ ⊢ ϕ ∧ (ψ ∧ χ)(A5)

ϕ ∧ (ψ ∧ χ) ⊢ (ϕ ∧ ψ) ∧ χ(A6)

¬(ϕ ∧ ψ) ⊢ ¬ϕ ∨ ¬ψ(A7)

17In (Wessel, 1984) in the set of all sequents Wessel gave an axiomatization for therela-
tion |=∗∗ creating the calculus ofstrict logical consequenceFs. Yet—as it has been proved in
(Pietruszczak, 2004)—his axiomatization is too weak for|=∗∗. In (Pietruszczak, 2004) one can find
thecalculusVFs for |=∗∗ that is complete.VFs is an «extension to completeness» of the calculusFs,
i.e., for allϕ, ψ ∈ L: ϕ |=∗∗ ψ iff the sequentpϕ ⊢ ψq is a thesis ofVFs.
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¬ϕ ∨ ¬ψ ⊢ ¬(ϕ ∧ ψ)(A8)

(ϕ ∨ ψ) ∧ χ ⊢ (ϕ ∧ χ) ∨ (ψ ∧ χ)(A9)

(ϕ ∧ χ) ∨ (ψ ∧ χ) ⊢ (ϕ ∨ ψ) ∧ χ(A10)

ϕ ⊢ ϕ ∧ τ(A11)

ϕ ⊢ ϕ ∨ φ(A12)

ϕ ∨ φ ⊢ ϕ(A13)

ϕ ⊢ φ ∨ ϕ(A14)

φ ∨ ϕ ⊢ ϕ(A15)

whereτ ∈ T andφ ∈ F.

Lemma 11.1. All axioms of the calculusCi are correct sequents.

Proof. For the axiom (A3), by assumptions:ϕ∧ψ < F, ϕ < T andI (ϕ) ⊑ I (ϕ∧ ψ).
Soϕ ∧ ψ |=i ϕ. For the others axioms: antecedents (A) and succedents (S) are
members ofK, andA |=| S. HenceA |=|i S, by (5.4).

Moreover, the calculusCi hasthreerules of inference:

ϕ ⊢ ψ ψ ⊢ χ

ϕ ⊢ χ
(R1)

χ ⊢ ϕ χ ⊢ ψ

χ ⊢ ϕ ∧ ψ
if I (ϕ ∧ ψ) ⊑ I (χ)(R2)

ϕ ⊢ ψ ψ ⊢ ϕ

χ ⊢ χ(ϕ/ψ)
if χ < F andχ(ϕ/ψ) < T(R3)

These rules arecorrect in the following sense: when applied to correct sequents
they yield a correct sequent.

Lemma 11.2. Three rules of inference of the calculusCi are correct.

Proof. (R1): the relation|=i is transitive. (R2): if χ |=i ϕ andχ |=i ψ, thenχ < F
andϕ, ψ < T. Soϕ ∧ ψ < T andχ |=i ϕ ∧ ψ, by the additional assumption. (R3): if
ϕ |=i ψ andψ |=i ϕ, thenϕ, ψ ∈ K andϕ |=| ψ. Thusχ |=| χ(ϕ/ψ) andχ, χ(ϕ/ψ) ∈ K,
by the additional assumption. Henceχ |=|i χ(ϕ/ψ).

We say that a sequent is athesisof calculusCi iff there is its derivation, i.e., it
is derivable in finite number of steps from the axioms by the rules of inference.

From lemmas11.1and11.2we obtain:

Theorem on the Correctness 11.1. All theses ofCi are correct sequents.
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Proof. As we showed, all axioms ofCi are correct sequent. Moreover, all rules
of Ci always lead from correct sequents to correct sequents. Thus, by induction
overCi, we see that every derivable sequent is correct.

From Remark7.1 it follows that:

Lemma 11.3. A sequentpϕ ⊢ ψq is a thesis of the calculusCi iff ϕ ≻◦ ψ.

Proof. A finite sequence of sequentspπ1 ⊢ σ1q, . . . ,pπn ⊢ σnq is a derivation of
the sequentpϕ ⊢ ψq iff a finite sequence of pairs of formulas〈π1, σ1〉, . . . ,〈πn, σn〉

satisfies the conditions from Remark7.1. Thus, by Remark7.1, a sequentpϕ ⊢ ψq
is athesis of the calculusCi iff ϕ ≻◦ ψ.

From Theorem on the Adequacy7.3and Lemma11.3it follows that:

Theorem on the Adequacy 11.2. A sequent is a thesis ofCi iff it is correct.

Proof. ϕ |=i ψ iff ϕ ≻◦ ψ iff the sequentpϕ ⊢ ψq is a thesis of the calculusCi .
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