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NORMATIVE INCONSISTENCY:
An Xstit Account

Abstract. In this paper we take inspiration from a couple of authors on how
to think about normative (in)consistency, and then show how to conceive
of normative inconsistency in an xstit framework. One view on normative
inconsistency is from von Wright, and the other from Hamblin. These two
accounts share a conception of normative inconsistency, but their formal
frameworks are very different. We propose a way to get the best of both
views on normative inconsistency by using an xstit framework, mixed with
a version of Anderson’s reduction of deontic logic to alethic modal logic. We
consider variations on those ideas and relate it to a work of Ruth Barcan
Marcus.
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1. Introduction

The goals of this paper are threefold. First, we will present some previous
formulations of normative consistency, in particular those from [23] and
[13], and draw lessons from those for developing accounts of normative
consistency. Second, using a framework based on xstit logic, we develop
an account of normative consistency, show how it heeds those lessons,
and how it relates to logical consistency. Finally, we discuss the technical
and philosophical upshot of this account of normative consistency and
draw some connections with ideas from [17]. Although there are some
counterintuitive epiphenomena which arise from the formal analysis, it
indicates important directions for further research to remove those issues.

In the following section we discuss the ideas of von Wright and Ham-
blin. What is needed to make the most of the ideas from those authors is
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a language that can express norms and action. In Section 3.1 we present
the logic xstit to represent action, and Section 3.2 is a discussion of how
to extend xstit to represent norms and the account of normative sys-
tems that we are assuming. Section 4 contains our formal development
of normative inconsistency in the xstit framework. Finally, we provide
some interpretation of the formal results and possible variations of the
formal concepts of Section 2. We conclude with a brief summary.

2. (In)Consistency of Codes: Some Background

Intuitively, normative inconsistency is different from regular logical in-
consistency. While a normative code that is logically inconsistent should
not also be normatively consistent, a normative code can be normatively
inconsistent without being logically inconsistent. How this intuition is
met differs depending on the framework. In this section we will present
two.

2.1. Von Wright

Our discussion of formal accounts of normative inconsistency starts with
[23].1 Von Wright formulates a way of making sense of deontic logic as a
logic of rational norm-making. When von Wright says ‘norm’ he means
either a proposition Oϕ or a proposition Pϕ which are interpreted as
‘ϕ is obligatory’ and ‘ϕ is permitted’, respectively. The norms Oϕ are
called O-norms and Pϕ are called P-norms. Also, von Wright says that
genuine norms are those where the proposition ϕ is contingent.

A necessary condition for rational norm-making, on von Wright’s
view, is that norm-makers intend their norms to be followable. Norma-
tive consistency can then be defined in terms of followability: a set of
norms is normatively consistent if and only if it is followable.

The concept of followability is explained formally in terms of the
contents of sets of norms. The content of Oϕ is ϕ, and the content of
Pϕ is ϕ. But there are different ways that a set of norms can fail to be
followable. A set of obligations can be unfollowable when their contents
conflict. That is, if Γ is a set of O-norms, then Γ is followable if and only
if {ϕ : Oϕ ∈ Γ } is consistent.

But von Wright notes that a set of P-norms is always followable.
Even when P ¬ϕ and Pϕ are both in the set, any agent can do one or the

1 A similar system can be found in [2].
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other, they need not do both. However, a set of mixed norms, i.e., both
P- and O-norms, will be unfollowable if something is both obligatory and
omissible, i.e., Oϕ and P ¬ϕ are both in the set. This leads von Wright
to a definition of normative consistency as (conN ): for a set of mixed
norms Γ, conN (Γ) iff for each Pϕ ∈ Γ, {ψ : Oψ ∈ Γ }∪{ϕ } is logically
consistent.

This provides an interesting and intuitive sense of normative inconsis-
tency. There are two kinds of normative inconsistency. First, requiring
that something be done, and permitting that it not be done. That
first kind of inconsistency is for the case of mixed norms. The other is
having conflicting obligations. Of course the unfollowability of a set of
O-norms, implies that the set is not consistent in the conN sense. Thus,
both senses of normative inconsistency can be captured under the conN

sense alone.
Although von Wright ultimately defines normative consistency in

terms of logical consistency, he does not upset the basic intuition above:
{ Oϕ,O ¬ϕ } is normatively inconsistent, while being logically consis-
tent, classically speaking. His requirement that that set of norms be
normatively inconsistent produces a logical relationship between Oϕ and
O ¬ϕ, thus defining basic deontic logic.

There are three lessons to draw from this approach. First, the lan-
guage is not very expressive. We might do better if we thought about
normative inconsistency in another framework, i.e., one that expresses
action in some way. Second, as von Wright suggests we should not start
with deontic logic, but rather take normative consistency as basic. Third,
followability is a good intuitive conception of normative consistency, and
what we need to explore is how that notion relates to logical consistency,
if it does at all.

2.2. Hamblin

[13] offers a more subtle sense in which norms can conflict or be incon-
sistent.2 If we think about actions as transitions from one state of the
world to another, and the world as a whole tree that branches into the
future, then we have Hamblin’s formal model. Each path from node to
node in the tree, i.e., a branch, is a sequence of actions an agent might
take, and so displays a way the world might unfold as a result of those

2 There are other accounts of normative inconsistency that take inspiration from
Hamblin, but use different formal frameworks, see [6].
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actions. Hamblin thinks of norms as sets of transitions between nodes in
such trees. Each norm, i.e., set of transitions, represents all of the il legal

transitions according to a set of norms. So if a transition is in the norm
N, then that transition transgresses against the norm. A set of norms or
code is then the union of the individual norms.

This model for thinking about action and norms allows Hamblin to
identify a sense of normative inconsistency that departs from the tech-
nical definition von Wright gives in terms of logical consistency, but re-
mains true to the sprit of von Wright’s idea of being followable. Note that
Hamblin was not responding to von Wright or vice versa. These seem to
be independent and isolated discussions of normative consistency. For
Hamblin, inconsistency in a set of norms, i.e., a set of transitions in a
tree, arises when an agent is placed in a situation where all of the transi-
tions available to her are illegal. This is what Hamblin calls a quandary.
Note that in Hamblin’s formalism logical consistency does not connect to
normative consistency at all since there is not a language to represent the
norms. Therefore, Hamblin’s account conforms to the basic intuition.

The primary innovation in Hamblin’s work is that there are different
types of normative inconsistency which correspond to the degree of ease
an agent has in avoiding a quandary. This is referred to as a normative
code’s level of quandary freeness. We will not discuss the various kinds
of quandaries Hamblin distinguishes in detail since we are just using
Hamblin’s work to motivate our own. However, here are two types of
quandary freeness defined by Hamblin to keep in mind for later discus-
sion: there are norm sets where there is no way for an agent to end up
in a quandary (total quandary freeness), and there are others where an
agent has to pick a particular sequence of transitions to avoid a quandary
(strategic quandary freeness).

There are three lessons to take on board from Hamblin’s work. First,
there is an issue to do with expressiveness. On Hamblin’s account, norms
and actions are simply sets of transitions, and no language is provided
for representing those norms. We will endeavour to fix that gap. Second,
Hamblin’s formalism is ready made for his discussion; while it is enlight-
ening, if a more common framework is used, his distinctions can be more
widely applied. Lastly, the proliferation of kinds of inconsistency which
correspond to how easy it is to avoid a quandary is something to keep
in mind. Whereas for von Wright the two kinds of inconsistency could
be captured in one easy condition, we can always ask whether that same
simplification can be effected.
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3. Representing Norms and Actions

One of our lessons from above was that we need a way to represent
action. To do this we introduce xstit logic which allows us to represent
the effects of choice. How to make sense of norms will come after.

3.1. The Xstit Formalism

The stit (sees-to-it-that) language that we use is called xstit in [8, 7], but
the version here differs slightly.3 Xstit is a logic like the standard stit
logic from [5], but instead of seeing to something now/instantaneously,
choices determine possible future states. The language is constructed
from a finite set of agents Ag and an infinite set of atomic propositions
from At. Sets of agents are denoted by capital Roman letters A,B,C.
We can then define a language Lxstit as follows:

ϕ := ⊥ | p | ¬ϕ | �ϕ | [A xstit]ϕ | Xϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ

The notation [A xstit]ϕ is more in-line with that from dynamic logic
since it says that A sees to it that ϕ in the next state. �ϕ means that
ϕ is historically necessary. That just means, however, that ϕ is true
relative to every history at this moment. This will become clearer when
we introduce the semantics. Xϕ means that in the next state relative
to the history we are in, ϕ is true. We will define the other boolean
connectives in the usual manner.

Like in [5], the semantics evaluates formulas relative to histories and

moments. A history is a set of moments that is linearly ordered. This is
modelled as follows:

Definition 1. An xstit frame is a triple F = 〈S,H,E〉 such that:

1. S 6= ∅ are called the static states.
2. H 6= ∅ is a set of orders sets 〈h,<h〉 such that for each h ∈ H

(a) h ⊆ S and 〈h,<h〉 is isomorphic to Z with its usual order, and

3 The Xstit formalism is definitely a choice of focus in formalism. There are
other approaches to the logic of norms which have a different focus cf. [10]. There
the author takes actions as the basic focus of norms in a dynamic logic setting, and
the deontic operators apply directly to those actions. Agents, locations, times, etc.,
are all subsequently dealt with as parts of situations in which the norms are applied.
This Xstit approach takes something of the reverse view by including agents and the
effects of their actions and defining deontic concepts from those components.
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(b) if s ∈ h ∩ h′, then { s′ : s′ <h s } = { s′ : s′ <h′ s }. Since each
order is isomorphic with Z, there is a unique successor and pre-
decessor in h for each s ∈ h, we refer to these by lub(s, h) and
glb(s, h), respectively. We generalize lub in the following way
lub(s) = { s′ : ∃hlub(s, h) = s′ } to give the set of successors of s.4

3. E : S × H × P(Ag) → P(S) is called an h-effectivity function. The
effectivity function assigns a set of static states to each triple (s, h,A).
The function E must obey the following conditions:
(a) if s 6∈ h, then E(s, h,A) = ∅

(b) if s′ ∈ E(s, h,A), then s′ ∈ lub(s)
(c) if s ∈ h, lub(s, h) ∈ E(s, h,A)
(d) E(s, h,∅) = lub(s), if s ∈ h
(e) if s ∈ h, then E(s, h,Ag) = { lub(s, h) }
(f) if A ⊆ B, then E(s, h,B) ⊆ E(s, h,A)
(g) if A ∩ B = ∅ and s ∈ h ∩ h′, then there is h′′ with s ∈ h′′

and E(s, h′′,A) and E(s, h′′,B) are contained in E(s, h,A) and
E(s, h′,B), respectively.5

4. A dynamic state is a history-static state pair (s, h), and the domain
of F, |F|, is the set of dynamic states such that s ∈ h.

We will pause to explain the conditions. The first condition is stan-
dard in modal logic. Condition 2a says that we can order each history
like Z: . . . s−2, s−1, s0, s1, s2, . . . the set of integers. 2b says that these
histories as a collection form a tree: there is a common trunk and once
two histories diverge, they will not join other histories. Actually, it
says that the histories form a forest; the histories can be a collection of
non intersecting trees. However, we will require that the histories form
just one tree that is

⋂
H 6= ∅. Such a frame/model will be called a

regular, universal frame/model. This should conjure images of S5 being
incapable of distinguishing the class of universal relations from the class
of equivalence relations. The logic of xstit similarly cannot distinguish
the regular universal models from the larger class of regular models.

The notion of effectivity function comes from game/social choice the-
ory, see [1], and was brought into logic in coalition logic (cf. [18]). In

4 The rationale behind lub and glb is to put the terminology in line with that
from order theory: least upper bound and greatest lower bound, respectively.

5 The condition g in [8] and [7] is different in that it only requires that E(s, h, A)∩

E(s, h′, B) 6= ∅, but that does not seem to suffice for completeness of the system
presented here.
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general, an effectivity function represents what a group of agents is ca-
pable of bringing about: what results they can be effective in achieving.
Since E(s, h,A) ⊆ lub(s), by condition 3b, for each s ∈ S, the effectivity
function selects a set of states from the possible continuations given the
current static state. When s′ ∈ E(s, h,A), A’s action/choice relative
to h guarantees that s′ is one of the possible next states. Moreover, if
s′ 6∈ E(s, h,A) but s′ ∈ lub(s), then s′ is not one of the next states given
As collective choice indexed to h.

Each effectivity function is evaluated at a dynamic state (s, h): a
history-static state pair. Condition 3a states that it only makes sense
for agents to be effective for anything at dynamic states where the static
state is in the history, i.e., s ∈ h. This condition is mainly to make E a

function, rather than a partial function. 3b says that the only states that
agents can be effective for bringing about are those that follow in some
history running through the current static state. Essentially, agents can
only constrain the possible outcomes, not create new ones.

3c says that any set of agents is effective to constrain the outcomes
to at least the immediate successor  relative to h of the current static
state. 3d says that the effectivity of the empty set of agents is all of the
possible continuations from a static state. The empty set of agents is
considered to be Nature’s effectiveness; Nature sets the range of possible
outcomes.

3e requires that the total set of agents, Ag, determines the successor
state of s at h for each (s, h) ∈ |F|. The next state in a history can be
completely determined by the whole set of agents. Broersen and Meyer
point out that although the next static state is determined by the set of
all agents, static states are only half of the auxiliary parameters in the
evaluation of formulas. The set of agents does not determine the next
dynamic state.

3f states that the more choices that are made, the more the outcomes
are constrained. That results in the anti-monotonicity of effectivity func-
tions. Finally, 3g states that the choices of agents never eliminate what
other agents are effective for. This is referred to as independence of

agency.
The models of xstit are given as follows:

Definition 2. An xstit model M is an xstit frame F with a valuation
v : At → P(S).

We can then give the semantics for the language Lxstit:
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Definition 3. Truth or satisfaction of a formula in Lxstit relative to a
model M and (s, h) ∈ |M| is defined by:

• (s, h) � p iff s ∈ v(p)
• (s, h) 2 ⊥
• (s, h) � ¬ϕ iff (s, h) 2 ϕ
• (s, h) � ϕ ∧ ψ iff (s, h) � ϕ and (s, h) � ψ
• (s, h) � �ϕ iff for all h′ with s ∈ h′, (s, h′) � ϕ
• (s, h) � Xϕ iff (lub(s, h), h) � ϕ
• (s, h) � ϕ ⊃ ψ iff (s, h) 2 ϕ or (s, h) � ψ
• (s, h) � [A xstit]ϕ iff for all s′ ∈ E(s, h,A) and h′ ∋ s′, (s′, h′) � ϕ

Satisfiability of a set of formulas Γ is defined as: there is some
model M = 〈F, v〉 and (s, h) in the domain of M, |M| = |F|, such
that M, (s, h) � ϕ for each ϕ ∈ Γ. As usual we simplify that by writing
M, (s, h) � Γ. A set Γ xstit entails a formula ϕ (Γ �X ϕ) iff for each
xstit model M and (s, h) ∈ |M| such that M, (s, h) � Γ, M, (s, h) � ϕ
also. We denote the set dynamic states at which ϕ is true/satisfied in
the model M by JϕKM, and as usual reference to the model is often left
implicit.

Note that in this semantics when a non-historical formula ϕ, that is
a formula without xstit or X operators, is true, then it is true relative to
all the coincident dynamic states. Formally, this means if M, (s, h) � ϕ,
and ϕ is a non-historical formula, then M, (s, h′) � ϕ for all h′ with
s ∈ h′.

There are two things that we should look at and put to rest before
moving on, both of which have to do with agent responsibility in xstit
logic. There is something intuitively unusual about the standard xstit.
Note two aspects about the satisfaction condition of [A xstit] (what could
be called the Chellas xstit corresponding to [A cstit : ϕ] in regular stit
logic). First is that each agent sees-to-it-that all tautologies are true.
Since tautologies hold at every moment-history pair, they will hold at
all the (s, h) such that s ∈ lub(s′) and s ∈ h, i.e., all the state/history
pairs that follow s′. Of course E(s′, h,A) ⊆ lub(s), so any tautology will
be true at all history/state pairs made from static states in E(s′, h,A).
This might strike some as odd since no agent is responsible for making a
tautology true. The second thing to notice is that what choice is made
depends on the history and moment (static state), not just the moment.
Relative to a moment, an agent might be able to see to many different
sets of outcomes, but relative to a dynamic state, since the xstit operators
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are evaluated relative to a history, there is only one set of outcomes the
agent(s) can see to. Each choice corresponds to or is indexed to a history.

Now we can deal with the oddity of seeing to tautologies. The Chellas
xstit does not seem like it has much to do with agency, but when we are
discussing ways that normative systems are inconsistent, that will not
involve a requirement of agency. We will see more about this when
we have discussed normative inconsistency in the xstit framework. The
way taken to represent responsibility is via a deliberative xstit operator
[A xdstit]ϕ which is true just when [A xstit]ϕ and ϕ is not true in all
possible next states. The reason there is responsibility in the xdstit case
is because it was possible for ϕ not to be the case in the next states. So
A’s choice was the cause of ϕ; A is agentive in the truth of ϕ.

A related issue is how responsibility is distributed between the mem-
bers of A in xstit logic. In regular stit logic, so-called ‘group stit’ dis-
tributes effectiveness in an even manner. The set of outcomes that a
group can determine is simply the intersection of the sets of outcomes
that each of the members of A can determine. That assumption is not
made in xstit logic. The outcome of a group choice may not be ana-
lyzable as the intersection of the choices of the group’s members. That
assumption may strike some as odd, but assigning individual responsi-
bility from a group choice/decision is a philosophically difficult problem,
cf. [22]. With this assumption we are simply not taking a stand on the
matter. Even if we did analyze group choice as the intersection of indi-
vidual choices, however, it would result in a smaller class of effectivity
functions as defined in Definition 1. Now we will turn to the proof theory
for xstit.

A Hibert-style proof theory for Xstit can be given as follows:

Definition 4. Assume that A,B ⊆ Ag, p ∈ At and ϕ, ψ ∈ Lxstit,

CL Some axioms for classical logic
(p) p ⊃ �p

S5 for �:
• �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)
• �ϕ ⊃ ϕ
• �ϕ ⊃ ��ϕ
• ϕ ⊃ �¬�¬ϕ
KD for each of [A xstit]ϕ and X :
• [A xstit](ϕ ⊃ ψ) ⊃ ([A xstit]ϕ ⊃ [A xstit]ψ)
• [A xstit]ϕ ⊃ ¬ [A xstit] ¬ϕ
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• X(ϕ ⊃ ψ) ⊃ (Xϕ ⊃ Xψ)
• Xϕ ⊃ ¬X¬ϕ
[DetX] ¬X¬ϕ ⊃ Xϕ
[NA] [A xstit]ϕ ⊃ [A xstit]�ϕ
[SettX] [∅ xstit]ϕ ≡ �Xϕ
[XSett] [Ag xstit]ϕ ≡ X�ϕ
[C-mon] [A xstit]ϕ ⊃ [A ∪ B xstit]ϕ
[Indep-G] ♦ [A xstit]ϕ ∧ ♦ [B xstit]ψ ⊃ ♦([A xstit]ϕ ∧ [B xstit]ψ),
where A ∩ B = ∅

For the rules we have modus ponens (MP) and the necessitation rule:
If ⊢ ϕ, then ⊢ ♣ϕ for ♣ ∈ {�, X } ∪ { [A xstit] : A ⊆ Ag }. Note that
♦ = ¬�¬. Since all of the axioms are in the Salquvist class, the axiom
system is complete with respect to its Kripke models. By an unravelling
argument it can be shown that the axioms are complete with respect to
the class of regular models, i.e., those of Definition 2, and regular univer-
sal models. Now we will discuss how to represent norms with xstit logic.

3.2. Norms

To represent norms, we will make an assumption about the nature of
norms. The assumption we make is that norms are constructed in a more
or less Searlean manner as in [19, 20]. This is to say that a normative
system is made up of a set of status function declarations. A status func-
tion declaration creates social items by imposing special roles on objects
or persons that they could not perform or hold in virtue of their physi-
cal constitution. A favourite example of Searle’s is money/currancy. A
paper banknote cannot simply play the role it does based on its physical
constitution. It plays the role it does because we treat it as having that
function; we impose that function on the piece of paper.

A system of norms on Searle’s account can then be represented by
a collection of constitutive rules, these are the rules that specify the
status functions. These norms are represented as so-called count-as con-

ditionals, and take the form ‘x counts as y in context C’. An example
of a count-as conditional that we might formulate is: Emma seeing to it
that the dishes are washed counts as seeing to it that her weekly chores
are completed in the context of our household rules. The collection of
count-as conditionals that would be needed to specify any actual norm
system would be enormous and very complex, but the assumption is that
it would be possible to analyze such norm systems in terms of them.
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However, we are working with a simplified formal system, particularly
one that is propositional, albeit it can represent certain modalities of
action. But to represent the count-as conditional, we have to extend
the language with a special conditional: →. The count-as conditional,
however, has been studied by various authors, cf. [11, 15]. What is clear
from those studies is that there is no consensus on how the count-as
conditional behaves. But there is consensus that it does not behave like
a material conditional. If we follow the approach in [15], then we can
extend the logic in such a manner that incorporates a conditional → with
a semantics that can be manipulated very easily and give → different
properties.

To interpret →, we add to models M = 〈S,H,E, v〉 = 〈F, v〉 a func-
tion f : |F| × P(|F|) → P(|F|). Alternatively, the function f is such that
for each proposition X (set of dynamic states), and dynamic state (s, h),
f((s, h), X) is another proposition. The way we interpret →, then is:

M, (s, h) � ϕ → ψ ⇐⇒ JψK ⊆ f((s, h), JϕK).

Having said all of this, we do not want to commit to a particular set of
logical properties for →, apart from being able to detach the consequent
when the antecedent is true. But what we say in what follows is not
affected as long the logic that is used when extended by →, is complete
with respect to the class of models that is extended with the function
f . Giving such a completeness proof would take us too far off track,
and we can see how it would proceed using the usual canonical model-
type constructions in [9] anyway. Thus we will suppress reference to
→, assuming that there is such a logic in place. There is, however,
another aspect of representing norms that we must include in our later
discussions.

One of the fundamental parts of a normative system is to define
what duties and rights its subjects have. This can be accomplished via
constitutive, counts-as norms by using Anderson’s reduction of deontic
logic to alethic modal logic allows use a violation constant V , see [4]. This
method is suggested by [11] and in a different manner in [12]. Anderson’s
reduction simply adds a new symbol V to the language of alethic modal
logic, and interprets it as ‘There is a violation’. Thus, it is not a personal
violation, i.e., one attributed to a particular individual.

In Anderson’s original work he assumed that V can not be true
at every possible world: ¬�V was an axiom. What that means from
an intuitive understanding is that it would always be possible to avoid
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violations. However, we do not share that assumption because that as-
sumption implies that one could not create an incoherent sets of norms.
Indeed, the whole point of this discussion is to investigate that possibility.

In this extended formalism, norms are represented by sentences that
stipulate what counts as what, and in particular what counts-as a viola-
tion. For example, when we are trying to specify the illegality of speeding
while driving a car in a school zone we can do it as follows: driving over
60 km/h in a car on particular roadways in a certain vicinity of a school
counts as a violation in the context of the traffic code. Formally, this
would be represented as ϕ → V , where ϕ encodes the antecedent of the
English sentence above.

We can also specify other legal/deontic relations particularly those
from [16] which are representations of the legal relations in [14]. The
central deontic/legal concepts that we should look at representing are:
duties, prohibitions, rights, permissions, and powers.

To say that an agent or group has a power is simply expressed via the
xstit operator: A has the power to bring about ϕ iff ♦ [A xstit]ϕ is true,
i.e., it is possible for A to see to ϕ. The way that duties are specified in
this reduction is as: A has a duty to bring about ϕ iff A failing to bring
about ϕ counts as a violation.

Prohibitions can be defined as well as A bringing about ϕ counts as
bringing about a violation. Permissions are tricky since we are talking
about permission relative to a code, and there is a long standing debate
regarding internal and external permissions (see [3, 21]). An internal
permission is an explicit permission in the code that says something
is permitted. An external permission is one that that is simply not
prohibited by the code. But following [24], we look at explicit/internal
permissions in this setting as playing no genuine role since an explicit
permission to bring about ϕ does not provide any new options unless
the permission is granted as an exception to a prohibition or duty in
some particular circumstance. Thus permissions, when meaningful, are
written into the rules as exceptions to duties or prohibitions. Thus if
something is not prohibited, it is permitted, but that is just to say:
bringing about ϕ is not prohibited.

Rights are represented as kinds of prohibitions. A would have a right
to ϕ when all of the other agents would be in violation if they block A

from achieving ϕ. Formally,

∨
B⊆Ag\A([B xstit] ¬♦ [A xstit]ϕ) → V .
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That is, some group other than A making A unable to see to ϕ counts
as a violation.

Formally, we have added the violation constant V to the already
extended xstit language with →. But the violation constant is treated
as any other atomic sentence. Thus v(V ) can be any subset of S. In
what follows the violation constant will play a crucial role since it will
be central to defining when a code is unfollowable at a dynamic state
(s, h).

As a brief aside, note that there is an interesting expression in this
new language: [A xstit](ϕ → ψ). This expresses that A brings it about
that ϕ counts as ψ. Thus we can express that agents bring about norms,
as they often do. However, we will leave investigation of that and norm
change for another paper.

We are now in a position to indicate how we make good on some of
the goals derived from the discussion of von Wright and Hamblin. We
have a language in which we can express action  in a certain manner.
Most importantly in the extended language which we will dub LI

xstit,
that is Lxstit extended with → and V , we get a language in which we
can represent norms. The notions of satisfiability, consequence, provabil-
ity, and consistency will all carry over to this extended language. The
formulation also assumes a certain conception of norms that is fairly
popular. Searle’s account may not be popular in all of its details, but
specifying norm systems as count-as conditionals is fairly common. Thus
norm systems or codes can simply be specified formally as a set of LI

xstit

sentences, Γ,∆, . . .. Note that although we have specified deontic rela-
tions, we have not assumed a deontic logic of any sort. Whatever deontic
logic that might be derived is one that would arise from the logic of the
language LI

xstit, which we will refer to as ⊢ix  ix is an xstit logic for
institutions. Institutions, after all, are specified by their norms. Now
that we have laid down a rough philosophical and formal framework for
representing norms, we can consider normative inconsistency.

4. Normative Inconsistency

We will interpret the notion of normative inconsistency in terms of norms
being transgressed which connects to our discussion of Hamblin in Sec-
tion 2. In Hamblin’s case the content of norms are represented as sets of
transitions; they are the transitions that disobey the norms. Consistency
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corresponds to quandary freeness, i.e., avoiding situations where all of
the transitions are transgressions. To translate this idea into the xstit
framework presented above, we have to discuss some aspects of norms
not touched on yet.

The metaphysics of norms presented above takes norms to be con-
stitutive rules. We say that a norm is in force when it is in effect, valid,
recognized, . . . ; in other words a norm is in force when it is a norm.
Driving on the righthand side of the road is a norm in force in North
America, it is not in force in Britain. The account of Section 3.2 analyzes
norms as status function declarations. In our formalism, the formulas
correspond to the content of the status functions which have been de-
clared. It is the act of declaration that would bring a norm into force.
However, we will not represent that act in the formalism. We represent
the effect of such acts of declaration by stipulating that a norm is in
force when the formula corresponding to its content is true.

In our formal model, then, any formula can represent a norm. That
may seem odd, but it is supposed to permit us to model the fact that
certain social facts are brought about by a declaration. For example,
suppose a certain group is granted a certain legal power ϕ. That would
correspond to the truth of ♦ [A xstit]ϕ. But we also want to allow the
possibility that certain basic social facts be declared true by fiat: that
would correspond to the truth of an atomic sentence. Of course we do
not think that every basic fact, if there are such things, would be under
the control of institutional powers. But this formal system is an abstract
language, so any atomic sentence could be interpreted as something that
is under institutional control.

A normative system or code is represented by a set of formulas ∆;
as an abuse of terminology we will identify the norms with formulas. A
code need not be a theory since it is supposed to represent the collection
of norms explicitly promulgated. Therefore, a code is in force when each
of its member formulas is true. Thus, in the formal models, we say
that a code ∆ is in force at a dynamic state (s, h) in a model M, when
M, (s, h) � ∆.

Consider the theory of a dynamic state, i.e., {ϕ : M, (s, h) � ϕ }. In
our framework that could be a code. Indeed, which formulas are distin-
guished as norms of a code is something that is decided external to the
formal model. Nonetheless, we would like to distinguish certain things
simply happening, i.e., certain formulas being true at some states, from
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being a norm that is in force. To accomplish this we introduce a technical
concept for codes, that of being sustained in force.

Definition 5. Let

AFT(s, h) = { (s′, h′) ∈ |M| : s ∈ h′ & s ≤h′ s′ } .

A code ∆ is sustained in force at a point (s, h) in an LI
xstit-model M, in

symbols M, (s, h) ⋖ ∆, iff for each (s′, h′) ∈ AFT(s, h), M, (s′, h′) � ∆.6

Note that |M| = { (s, h) ∈ S ×H : s ∈ h }. Also, if M, (s, h) ⋖ ∆,
then M, (s, h) � ∆. When ∆ is sustained in force at (s, h), it is satisfied
at (s, h), and it is satisfied at every state “after” that one. The set
of states in AFT(s, h) are all states that are potentially after (s, h),
they are all ways the world could turn out after (s, h). This definition
requires any code that can be sustained in force to be LI

xstit-consistent
(by completeness). As an abuse of notation will we say s′ ∈ AFT(s, h)
iff there is h′ with s′ ∈ h′ and (s′, h′) ∈ AFT(s, h). We can now return
to our development of normative consistency.

When we consider the consistency of a code ∆ we will look at char-
acteristics of how it is sustained in force. This dovetails with Hamblin’s
account of looking at how a code is followed over time, and it also al-
lows us to distinguish which formulas are parts of the code from those
which are true on particular occasions. That is particularly important
for representing how a code is transgressed.

In Hamblin’s framework, a transgression of a code is making one of
the transitions that is in its representation; a code is represented by all
of its illegal transitions. In the xstit framework, we can represent that
a code has been transgressed by the truth of the violation constant V .
But there is a difficulty that will arise in representing transgressions in
terms of the violation constant.

The problem is as follows: Suppose that M, (s, h) � V . Now ask
‘which code has been violated?’ As we stated before, which code is in
force at a dynamic state is a matter of perspective; it could be any set
of formulas satisfied at (s, h). Thus, whether the truth of the violation
constant is considered a violation of a particular code is also dependant
on that perspective. This is a technical decision, and our reason for
setting the problem aside will be dealt with in Section 5.1.

6 ‘AFT’ is an abbreviation of ‘after’.
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As an abuse of notation that we will use in the following discussion we
shorten ‘for any s′ ∈ E(s, h,A), and s′ ∈ h′, s′, h′ � V ’, to ‘E(s, h,A) ⊆
JV K’. Although this is an abuse of notation, it is not too misleading
because V does not contain X or [A xstit] operators, so when it is true
at a dynamic state it is true at all coincident dynamic states.

We want to characterize normative consistency as the followability
of a code. But, as we learned from Hamblin, how followable a code is, is
a matter of degree. We should also be careful to distinguish two senses
in which a code can be followable.

One sense in which a code is followable is that of being implementable,
and another sense is when it is obeyable. When a code is logically (LI

xstit-
)inconsistent then it is not implementable since it could never be in force,
let alone sustained in force. But, as the reader might have guessed, the
formal meaning we will give to a code being implementable is that of
being sustainable in force.

Definition 6. ∆ is implementable iff there is an LI
xstit-model M, and

(s, h) ∈ |M| such that M, (s, h) ⋖ ∆.

This is a generalization of logical consistency: generalizing consis-
tency when ⊢ix is the notion of logical consequence, and the set has to be
satisfiable continuously. Since it is a generalization of logical consistency,
we will require that every code which is not implementable, must also be
normatively inconsistent. A code can fail to be non-implementable in a
number of ways. { p,¬p } is not implementable since it is not consistent.
But {Xp,¬p } is not implementable since it could not be satisfied at
two consecutive dynamic states. In this investigation we will not worry
further about the syntactic make up of implementable codes.

Next we have to consider how obeyable a code can be; that is the
central sense of normative inconsistency that we will focus on for the
rest of the paper. Following Hamblin’s ideas, a code is bad when it puts
its subjects in a quandary, i.e., leaves them with no legal transitions. An
agent is in a quandary when the code is unobeyable.

4.1. Norm Inconsistency, Semantically

In our framework a code has been obeyed when V is false or no trans-
gression has occurred. Thus, the code has not been obeyed when V is
true. A group of agents A would be in a quandary, then, when all of A’s
choices lead to violation states. But the mere existence of a situation
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where an agent/group is in a quandary does not seem damning for a
code; it may be possible to make a series of bad decisions and end up
in a quandary. But an isolated, independent, and free series of decisions
by an agent that leads to a quandary may not be the fault of the code.

If quandaries are too easy to come by, then we can say that the code
is not obeyable. Thus we have to provide a precise and formal way of
characterizing what it means to say that a quandary is “too easy to
come by”.

To be in a quandary is to be in a position to only xstit a violation, i.e.,
E(s, h,A) ⊆ JV K for all h such that s ∈ h. A more limited version of this
is simply when A can xstit V , i.e., E(s, h,A) ⊆ JV K for some h. Let’s
say that A is in a ‘bad situation’ at (s, h) when E(s, h,A) ⊆ JV K. A
code that could never lead to a bad situation would be a utopian code.
So clearly isolated incidents of xstit-ing V is a kind of unproblematic
situation, although not ideal. What we should be worried about are
codes that give rise to bad situations in too many cases, and now our
task is to quantify what constitutes ‘too many cases’.

We are attempting to treat normative consistency within logic, inde-
pendent from deontic logic, and in a formal manner. We take a cue for
normative inconsistency from logical inconsistency. For logic, inconsis-
tency means no models make all the formulas true. Thus, ‘too many’ is
interpreted as the extreme or limit case of all models. In treating nor-
mative inconsistency as a logical property it makes sense to deal with
similar extreme cases: all or some.

Thus, normative inconsistency arises when bad situations arise in
all models. But in our framework there are two other parameters that
should be included when considering how often bad situations arise in
all models when a code is sustained in force.

(1) in all models after a code is sustained in force, how frequently do
bad situations arise?

(2) in all models after a code is sustained in force, how many groups
frequently end up in bad situations?

These questions can be interpreted as asking about properties of
classes of xstit models that sustain a code ∆ in force. Each of the
questions corresponds to a restricted quantifier. The quantifier which
corresponds to the ‘all models after the code is sustained in force’ is (A)
∀ M, (s, h)⋖∆, of course. But the other two questions can be represented
as asking about (B) ∀/∃(s′, h′) ∈ AFT(s, h), and (C) ∀/∃A ⊆ Ag. The
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(B) quantifier allows us to ask question 1, i.e., after ∆ is sustained in
force, do bad situations arise at all or only some dynamic states after?
The last quantifier (C) allows us to ask whether bad situations arise for
all or only some groups? Using these quantifiers we can get a well defined
collection of putative quandaries by looking at all of the ways to arrange
these quantifiers.

Formally, we can arrange the quantifiers as follows: The (s, h)-values
in the kind (A) quantifier depend on the model M, so we cannot alternate
the (A) and (B) quantifiers as in: ∀(s, h)∀M. However, the A variables
are not model dependent; they are part of the language. So alternating
the type (A) and (C) quantifiers as in ∀A∀M is intelligible. Given the
intelligibility of these arrangements of quantifiers, we have the full range
of possibilities for quandaries. Each potential quandary will take the
form Q1, Q2, Q3, E(s′, h′,A) ⊆ JV K, whereQ1 is either ∀M or ∀A ⊂ Ag,
Q2 is either ∀M or ∀A ⊂ Ag or ∀(s′, h′) ∈ AFT(s, h), and Q3 is either
∀A ⊂ Ag or ∀(s′, h′) ∈ AFT(s, h). There is a complete, enumerated
list  up to obvious logical equivalences obtained by switching adjacent,
matching quantifiers  in the appendix.

Each of these conditions represents a potential problem for a code
∆, if the models of ∆ satisfy that condition. Each condition offers an
interpretation of ‘frequently’. The conception of ‘frequently’ is deter-
mined by the different arrangements of quantifiers. However, we can
do some pruning to cut away unproblematic conditions, conditions that
are arguably too strict. We do this by interpreting the model theoretic
conditions in intuitive ways.

We have already excluded any condition that has ‘∃M(s, h) ⋖ ∆’ by
analogy with logical inconsistency. But we can see an independent reason
to reject conditions starting with ‘∃M(s, h) ⋖ ∆’. We ask: what if there
is a model in which everyone is in a bad situation all of the time? Such a
condition is not really problematic, it should be expected. Our intuition
is that it should be possible for everyone to be bad all of the time; it
should not be an act of logic or of legislation that the code is sometimes
obeyed, regardless of the way the world turns out. Agents should be
free to disobey the rules imposed on them. Let’s consider some other
conditions.

Consider the condition:

∀M, (s, h) ⋖ ∆∃A ⊆ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
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we suggest that this condition can be true of the class of models that
sustain ∆ in force without ∆ being problematic. The condition says
that in any model, there will be a group who could end up in a bad
situation. That kind of possibility is to be expected of a set of rules. A
code’s subjects should run the risk of getting into trouble, if they make
illegal decisions. Indeed, this should be the case for every group in every
model  except ∅. That means

∀M, (s, h) ⋖ ∆∀(∅ 6=)A ⊆ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

is unproblematic as well.
Also consider the following condition:

∃A ⊆ Ag, ∀M, (s, h) ⋖ ∆, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K .

It says that there is a group that in any model can be in trouble. This
condition is a bit more worrisome since it is kind of discriminatory. It
implies that one particular group must be extra careful and not step out
of line. Of course we have groups like that, e.g., police. So a particular
group running the risk of getting into trouble should not be a worry.

What makes for worrisome conditions are those which do not allow
a code’s subjects any choice in getting into trouble. That makes the
really worrisome conditions those in which someone is always in trouble
in every model after the code is sustained in force. The conditions that
instantiate that kind of worry are7

1. ∀M, (s, h)∀A ⊆ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
3. ∀M, (s, h)∃A ⊆ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
9. ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), ∃A ⊆ Ag, E(s′, h′,A) ⊆ JV K

12. ∃A ⊆ Ag, ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

In the case of 1, everyone is always in a bad situation. That’s bad
when it is forced by legislation. Since in every model everyone is in a
bad situation, we can say that that condition is due to the elements
of the code and not the actions of the code’s subjects. Similarly with
condition 3. In each model, there is a group that is always in trouble. It
is only a completely misanthropic code that would require that somebody
must be persecuted. In condition 9 someone/group is always in trouble,
although who is in trouble may depend on the dynamic state/situation.

7 The numbers refer to those found in the appendix.
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Again it is a misanthropic code that would force that condition. Finally,
condition 12 is also a problem: it is discrimination. One particular group
is always in trouble in every model, regardless of the model. That kind
of issue can certainly be blamed on the code rather than its subjects.

There are two other conditions that instantiate the same worry as
above, but in a very direct manner. Consider:

T1 ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K
T2 ∀M, (s, h)∃(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K

T1 says that in every model, and every situation after the code comes
into force is a bad situation. That is clearly undesirable for similar
reasons as above. Condition T2 is also, in a sense, undesirable. It says
that in every model, after the code is in force we are guaranteed some
sequence of choices that leads us into a quandary, i.e., leads us into a
situation where there are no decisions that allow us to obey the code.
Note that T2 is equivalent to

∀M, (s, h) ⋖ ∆∀A ⊆ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

Which is condition 2 in the appendix and was considered above, but
above we required that the group be non-empty. If condition 2 holds,
then for any model that sustains ∆ in force at (s, h), every group can,
at some point in AFT(s, h), xstit a violation. So that is true of ∅, and
lub(s′) = E(s′, h′,∅) ⊆ JV K so T2 is true. And if T2 is true, then
E(s′, h′,∅) = lub(s′) ⊆ JV K, so for any A, A will xstit a violation at
(s′, h′). So condition 2 is true as well. Although condition 2 is problem-
atic, it can be folded into T2.

We give these special conditions some names to make them easy to
refer to. We have already introduced the T-quandary terminology  total
quandaries  for quandaries that result from V being true everywhere.
What we will do now is refine this a bit. There is another kind of
total quandary that might arise where a particular state s is such that
lub(s) ⊆ JV K after the code comes into force, whenever it comes into
force. This means that there is no way to proceed without everyone
possibly ending up in a quandary, and if that follows by legislation that
is a problem. We call that a ‘TE-quandary’ (Total Existential quandary).
A T-quandary is condition T1 and a TE-quandary is condition T2. Note
that if there is a T-quandary, then there is a TE-quandary.

We introduce another kind of quandary called a global quandary or
G-quandary for short. We also introduce a second kind of G-quandary
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that we call a GE-quandary to parallel the T-types. The G-types are
made up of conditions 1 and 9. In condition 9, there is always someone
in trouble, potentially anyone can be in trouble, so it is a problem for
everyone, i.e., a global problem. Finally, we will call conditions 3 and 12
Discriminatory Quandaries (DE- and D-quandary, respectively). This is
because they are similar in that they discriminate against at least one
particular group. In 3 that group may depend on the model, in 12 it
does not. Again we note that D-quandaries imply DE-quandaries.

So we can finally arrive at a definition for the types of quandaries.

Definition 7. We say that an implementable code ∆ has a

• T-quandary iff every model M with (s, h) such that M, (s, h) ⋖ ∆ is
such that ∀s′ ∈ AFT(s, h), lub(s′) ⊆ JV K

• TE-quandary iff every model M with (s, h) such that M, (s, h)⋖∆ is
such that ∃s′ ∈ AFT(s, h), lub(s′) ⊆ JV K

• G-quandary iff every model M with (s, h) such that M, (s, h) ⋖ ∆ is
such that ∀A ⊆ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

• GE-quandary iff every model M with (s, h) such that M, (s, h)⋖∆ is
such that ∀(s′, h′) ∈ AFT(s, h), ∃A ⊆ Ag, E(s′, h′,A) ⊆ JV K

• D-quandary iff ∃A ⊆ Ag such that for every model M with (s, h) such
that M, (s, h) ⋖ ∆, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

• DE-quandary iff every model M with (s, h) such that M, (s, h)⋖∆ is
such that ∃A ⊆ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

Now we can raise two questions about what kinds of codes lead to G,
T, or D-type quandaries. The definitions of the quandaries were given
in terms of conditions on models, so we may want to attempt to charac-
terize those conditions by what those codes can prove. In Section 4.2 we
ask: what conditions on the consequences of codes correspond, if any,
to the quandaries? The second question to raise is whether there are
connections between the kinds of quandaries.

As it turns out, the conditions on quandaries are very similar given
the formalism that we are working with. We can connect them according
to the following theorem.

Theorem 1. Given an implementable code ∆, the following conditions

are equivalent:
• ∆ has a G-quandary

• ∆ has a GE-quandary

• ∆ has a D-quandary
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• ∆ has a DE-quandary

• ∆ has a T-quandary.

This is proved in the appendix. The upshot of this theorem is that
the only difference between the quandaries, really, is 5/6 of them on one
side and TE on the other. But the other five all imply TE.

The big, counterintuitive jumps in proving Theorem 1, like from D
to T or GE to G, that cause the collapse are forced because of the
anti-monotonicity of the effectivity function, the fact that E(s, h,Ag) =
{ lub(s, h) } for any s ∈ h, and that if M, (s, h) � V , then M, (s, h′) � V
for all h′ with s ∈ h′. We will discuss more about the technical issues
and what they mean in Section 5.1.

From the semantic side of things we can define the consistency of a
normative system as quandary freeness, like Hamblin, but all that we
need to ensure quandary freeness is that there is no TE-quandary. Thus
we are in a position much like that of von Wright’s condition. However,
it does not reduce simply to regular inconsistency since to have a TE-
quandary the code must be LI

xstit-consistent.

4.2. Normative Inconsistency, Syntactically

We can move on to our question about characterizing the quandaries in
terms of provability. Consequence can usually be related to consistency,
i.e., Γ ⊢ ϕ iff Γ ∪ { ¬ϕ } is inconsistent. With normative inconsistency
and consequence, it is different. The normative consistency of a set
∆ connects to LI

xstit-consequence indirectly. But we can show a tight
relationship between the LI

xstit-consequences of a set related to a code
and the quandaries. We first have to build up some technical results to
support our investigation. The proofs for the results are in the appendix.

We first define a set ∆if for ‘∆-in force’. ∆if is constructed as follows:

∆if = {�Xnδ | δ ∈ ∆ & n ∈ N } .

So for any δ ∈ ∆, we have �δ ∈ ∆if , �XXXXδ ∈ ∆if , XXXXδ ∈ ∆if

and δ ∈ ∆if , for instance. Now we can make an observation:

Observation 1. M, (s, h) ⋖ ∆ if and only if M, (s, h) � ∆if .

To continue we require one more lemma.

Lemma 1. Suppose that there is a (s, h) in M, such that M, (s, h) � ∆if ,

and (s′, h′) ∈ AFT(s, h). Then M, (s′, h′) � ∆if
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Now that we have these results we can show how to define conditions
on provability that will translate into quandaries and back. Because we
have Theorem 1, we really only need two results, one for T and one
for TE. However, we can provide more specific results for most of the
types of quandaries. We collect the conditions together in Theorem 2.
Recall that the set Ag is finite, and so P(Ag) is finite. As another bit
of notational convenience, let ∆V = { ¬♦Xn�XV | n ∈ N }.

Theorem 2. If ∆ is a code, ⊢=⊢ix, and ∆if 0 ⊥, then

• ∆ has a T quandary iff ∆if ⊢ �XV
• ∆ has a TE quandary iff ∆if ∪ ∆V ⊢ ⊥
• ∆ has a G quandary iff ∆if ⊢

∧
A∈P(Ag) [A xstit]V

• ∆ has a GE quandary iff ∆if ⊢
∨

A∈P(Ag) [A xstit]V
• ∆ has a D quandary iff ∆if ⊢ [A xstit]V for some A ∈ P(Ag)
• ∆ has a DE quandary iff ?

There is not a clear condition that matches up for the DE case. But
because of the equivalence of DE to D, we do not have to worry about
representing the condition here. Now we are finally in a position to
provide a definition of normative consistency for our system.

Clearly normative consistency conN will have something to do with
the existence of quandaries. Fortunately, in the current situation, if there
is a quandary of any type (T,G,D), then there is a TE-quandary. But
that means if we say that a code does not have a TE-quandary, then it
will not have any of the other problematic quandaries either. But there
is also the situation of standard, or LI

xstit-inconsistency, i.e., ∆ ⊢ix ⊥.
A code that is simply inconsistent is rather problematic, at least from a
logical standpoint.

A code ∆ that is inconsistent can not be satisfied at all, so it can
not do its job in our setting, by completeness. But it is also a prob-
lem if a code is not implementable, i.e., ∆if ⊢ix ⊥. As we noticed in
Observation 1, the consistency of ∆if is necessary and sufficient for ∆
to be implementable. So if ∆if ⊢ix ⊥, then it is no good, normatively
speaking. By the monotonicity of ⊢ix, if ∆ ⊢ix ⊥, then ∆if ⊢ix ⊥.
That means the consistency of ∆if implies the usability/implemtability
of ∆. Thus part of being a normatively consistent code is for ∆if to be
consistent. The other part, as you might have guessed, is for there to be
no TE-quandary.

When there is a TE quandary, it follows that ∆if ∪ ∆V ⊢ix ⊥. If
∆if ⊢ix ⊥, then by monotonicity of ⊢ix, ∆if ∪ ∆V ⊢ix ⊥. So if there
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is no TE-quandary, then ∆if 0ix ⊥. Thus, if no TE-quandary, ∆ is
normatively consistent. Ultimately, we have the following definition.

Definition 8. A code ∆ is normatively inconsistent iff it has a TE-
quandary. So we can define normative inconsistency conN (∆) formally
as follows

conN (∆) ⇐⇒ [∆if ∪ ∆V ⊢ix ⊥]

5. Discussion

There are a number of questions any formal work in philosophy must
address. In the case of LI

xstit, we need to ask two of particular interest.
1) Given that there is a counterintuitive collapse of the quandary con-
ditions, which relies on the formal framework, how appropriate is that
formal framework? Or put another way: how realistic are the assump-
tions of the xstit framework? We will deal with that in Section 5.1. 2)
Are the characterizations of a quandary and normative consistency any
good? Are they reasonably presented? We will deal with that largely in
Section 5.2.

5.1. Technical Issues

In answering question 1 above we will deal with four topics. First, we will
consider the semantics of the xstit operator, particularly the conditions
that are placed on the effectivity functions. Second, we will consider vari-
ations of the quandary conditions, focusing on how groups are portrayed.
Third, we will consider how responsibility for action is represented, and
how it interacts with quandaries. Finally, we will explain some technical
difficulties with representing when a code is violated at a dynamic state.

The semantics of xstit is supposed to represent the effects of choices
in an evolving world. However, some people may take issue with the as-
sumptions of the model. In the xstit models, time is discrete. Although
mathematical models of time tend to be continuous, the intended range
of applications for Xstit models are systems that evolve by discrete steps.
Indeed, it is basic in one of the most commonly used mathematical mod-
els in economics: game theory.

Of real interest are the the assumptions 3e, 3f, and 3g on the effec-
tivity function. Condition 3e requires that all of the members of Ag can
direct the course of events very specifically. It says that when Ag gets
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together at (s, h), and decides to make the decision indexed to h, they
can guarantee that the next state is lub(s, h). Usually people are not so
powerful, things could go awry.

We must pause to note where these assumptions come from. Ef-
fectivity functions come from cooperative game theory, and they are a
representation of the power that coalitions have in a game. These con-
ditions guarantee what is called a ‘playable effectivity function’ for the
game, see [18]. In a game, the outcome is completely decided by all of
the decisions of the players. But what we want is a slightly more general
formalism: discrete, but still leaves room for indeterminacy. Thus we
may want to drop that assumption.

In the proof of Theorem 1, however, all that is needed when using con-
dition 3e is condition 3c which provides us with lub(s, h) ∈ E(s, h,Ag).
Thus, dropping 3e leaves the results intact.

Condition 3f, the anti-monotonicity condition, is tricky. It is tricky
because we have to ask what E(s, h,A) really means. As we have dis-
cussed above in Section 3.2 we do not deal with how responsibility is
distributed over a collective action, but what collective choice is does
play a role here. E(s, h,A) represents A’s choice, the choice indexed to
h, at the state s. But it is odd to think of choices in this way since, in the
models, there are choices indexed to h at lots of states. What intuitive
aspect of choice would that correspond to? The only thing that makes
sense in this case is if h were some sort of plan, or making the choice
relative to h would be to adhere to a specific plan. But then 3f requires
a substantive assumption about the nature of cooperation. It requires
that larger groups be more effective in achieving their plans.

Is that assumption reasonable? Maybe not. Remember, too many
cooks spoil the broth. The lesson of that idiom is that it is difficult to
get people to cooperate. But the difficulty involved in getting people to
cooperate is not part of this model. All that is represented is successful
cooperation. Intuitively, the more people who successfully cooperate, it
seems, the better chance they have at achieving their goal. So maybe 3f
is not unreasonable.

Condition 3g:
• if A ∩ B = ∅ and s ∈ h ∩ h′, then there is h′′ with s ∈ h′′ and

E(s, h′′,A) and E(s, h′′,B) are contained in E(s, h,A) and E(s, h′,
B), respectively.

says that if disjoint groups are effective for some outcomes, they can not
interfere with each other’s effectiveness for those outcomes: ‘outcome’ in
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this case means ‘proposition’. The way that is represented in this case is
that both disjoint groups have choices indexed to the same history that
have similar outcomes to their original choices. This condition also raises
questions about how to interpret E(s, h,A). If we interpret E(s, h,A) as
A acting according to h as a plan, then 3g says that there is a common
plan for any two disjoint groups to achieve similar outcomes as their
original choices. But that seems too strong of an assumption to make.

The intuitive idea behind 3g, which comes from regular stit theory,
seems reasonable. If a is really effective to bring about a proposition,
then no one else should be able undermine that. How that is repre-
sented in this model is by 3g, and if we think Indep-G, is an acceptable
representation of the intuitive idea, 3g is the reasonable condition  the
canonical model demonstrates that fact. At this point, it does not seem
reasonable to dismiss the formalism as flawed.

Next we will deal with one aspect of the quandary conditions. The
quandary conditions refer to groups simply as A ⊆ Ag. In the proofs of
the results, it seems like cheating to allow ∅ to be a group. One might
object that such a group is degenerate: it does not have any members! It
may also seem like cheating to allow A = Ag. The, perhaps, surprising
thing is that Theorem 1 is still provable when the group quantifier is
replaced with QA : ∅ 6= A 6= Ag.

More explicitly:

Theorem 3. For an implementable code ∆, the following are equivalent:

G2 Every model M with (s, h) such that M, (s, h) ⋖ ∆ is such that

∀A ⊆ Ag(∅ 6= A 6= Ag), ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
GE2 Every model M with (s, h) such that M, (s, h) ⋖ ∆ is such that

∀(s′, h′) ∈ AFT(s, h), ∃A ⊆ Ag(∅ 6= A 6= Ag), E(s′, h′,A) ⊆ JV K
D2 ∃A(∅ 6= A 6= Ag) ⊆ Ag such that for every model M with (s, h)

such that M, (s, h) ⋖ ∆, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
DE2 Every model M with (s, h) such that M, (s, h) ⋖ ∆ is such that

∃A ⊆ Ag(∅ 6= A 6= Ag), ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

Proof. Here we will provide a proof sketch. The reason is that all of
these are equivalent to their corresponding original quandaries. Imme-
diately we have the following relationships: G implies G2, D2 implies D,
GE2 implies GE, and DE2 implies DE. For the other directions, any time
one of the original quandaries is assumed to hold, there is a T-quandary.
That means for any group, at any dynamic state after ∆ is sustained in
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force, E(s′, h′,A) ⊆ JV K. To show that G2 implies G, assume G2 and
suppose that M, (s, h) ⋖ ∆ and (s′, h′) ∈ AFT(s, h). From G2 there is
A 6= ∅ and A 6= Ag, such that E(s′, h′,A) ⊆ JV K. And by condition 3f
E(s′, h′,Ag) ⊆ E(s′, h′,A). But that is the case for every h′′ such that
s′ ∈ h′′ and any set of agents. But,

⋃

h′′ : s′∈h′′

E(s′, h′′,Ag) = lub(s′) ⊆ JV K.

Therefore, there is a T-quandary, and by Theorem 1, a GE-quandary.

Technically, that means there was no cheating going on in the original
definitions of the quandaries in order to get the result. The counterintu-
itive collapse of all these distinctions is not found in the definitions. The
problem, if we can call it that, is with the formal framework itself. Where
we place the blame is with the Anderson-style reduction. Although we
have offered particular ways of representing certain kinds of norms using
the reduction, the results do not hang on those representations, nor on
the conditional used (provided the logic is complete). What matters is
that the violation constant is impersonal. The obvious solution would
be to use violation constants for each agent: Va. These would say ‘a is in
violation’. We will return to why this is dubious in the next section. Next
we will discuss the technical characterization of responsibility in relation
to the quandaries, and how violations need not be indexed to a code.

What about responsibility? If a code has a T or TE-quandary (a
T-type quandary), then no one/group is properly responsible for the
violations. Indeed, no one need be responsible in the sense of xdstit
for any violation. If a code has a T-type quandary, there is definitely
a problem, but we can not hold anyone responsible for the violation.
There is no way for any group, or individual, to have done otherwise, or
even to have the violation not occur.

Does that mean these quandaries are meaningless? No. The thought
that responsibility is important for wrongdoing is a conceptual one to do
with the law or morality. Indeed, problems with codes do not concern
people’s actions or choices, they concern problems with how the code
is put together. The code does not provide opportunities for agents to
act that will avoid violations when there is a T-quandary: the code is
completely problematic. The fault lies with the code or  at best  the
code’s makers; the fault does not lie with the code’s patients.

As promised in Section 2, we wanted to explain why we did not index
the violations to a code. First, we only wanted to consider one code in
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this framework to keep things simple. But as we asked before: how
might we attribute a violation as arising from one set of formulas true
at a dynamic state from another?

The obvious solution is to say that V arises from ∆ at (s, h), if there
is a set Γ ⊂ {ϕ : M, (s, h) � ϕ }, and ∆ ∪ Γ ⊢ix V . But that will not do
since either V ∈ {ϕ : M, (s, h) � ϕ } or not, so this definition does not
give us any assistance. But we could make a refinement.

What we want is that the violation results because of some set of,
social and/or natural, facts. Of course, facts are represented by formulas.
Thus as long as the set of facts added to ∆ does not mention V , we might
get something that we want. Denote by at(Γ) the set of atoms used in
formulas in Γ. Then we can define when ∆ has been violated as follows:

Definition 9. ∆ is violated in the model M, at (s, h) ∈ |M| iff there is
a set Γ ⊆ {ϕ : M, (s, h) � ϕ } such that V 6∈ at(Γ) and ∆ ∪ Γ �ix V .

There are two potential problems with this definition. First, and
least seriously, is that it requires information about all models to be
used to evaluate something within one model. Second, it is not clear
how using this definition will affect the technical results.

In future work we will include this as part of the definition of what
it means for a code to be sustained in force. What is clear about such
an adjustment is that it will not affect Theorem 1, but it will affect
our syntactic characterization. That requires a representation of when a
code can be sustained in force, and when the definition is refined in this
way, the connection seems to break down.

5.2. Philosophical Issues

We next turn to the question of whether this formulation of normative
consistency is any good. We have already dealt with that question some,
at least whether it is technically sound, in the last section. But now we
can ask whether it is philosophically sound. One way to approach this
is to see if anyone else has had a similar idea. Another is to consider
other representations of quandaries. It turns out that a similar notion is
contained in [17]. But first we will look at an alternative formulation of
quandaries suggested by an anonymous referee to a previous iteration of
this paper.

In our version of a quandary, we represent the failure to obey by
E(s, h,A) ⊆ JV K. But a failure to obey could also be represented as
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a failure to guarantee non-violation. In similar notation that would be
E(s, h,A) ∩ JV K 6= ∅; that condition is what we now mean by ‘bad
situation’. Thus in each of the original quandaries we simply replace
E(s, h,A) ⊆ JV K with E(s, h,A) ∩ JV K 6= ∅, except in the case of the
T-quandaries, lub(s) ⊆ JV K is replaced by lub(s) ∩ JV K 6= ∅. If X is the
name of an original quandary, X3 will denote the new quandary. Since
E(s, h,A) is never empty when s ∈ h, any of the original quandaries
implies any of the new quandaries. Thus D will imply D3, for example.

The T-quandaries in this case cease to be problematic. Each of them
now says that a violation follows every state where the code is in force.
But that is not worrisome; it is commonplace for there to be some way
to break the rules. We can give similar justifications for keeping the
other 3-versions of the quandaries as was done in Section 4.1. What is
more interesting, however, is how the remaining quandaries relate to one
another. It is left as an exercise to demonstrate the following:

Theorem 4. For an implementable code ∆, the following relationships

hold:
• D3 is equivalent to DE3,

• DE3 implies GE3,

• G3 implies GE3,

• G3 implies D3.

In this case, there is no collapse of the quandaries, at least not
entirely. And from Theorem 4 it follows that as long as there is no
GE3-quandary, none of the other quandaries obtain. So we could define
normative consistency in terms of the non-existence of a GE3-quandary.
But we should not be overzealous. Let’s consider that condition. The
GE3 quandary is:

GE3 Every model M with (s, h) such that M, (s, h) ⋖ ∆ is such that
∀(s′, h′) ∈ AFT(s, h), ∃A ⊆ Ag, E(s′, h′,A) ∩ JV K 6= ∅, and so
consistency would be its negation: either not implementable or

∼GE3 Some model M and (s, h) such that M, (s, h)⋖∆, and a (s′, h′) ∈
AFT(s, h) where for every A ⊆ Ag, E(s′, h′,A) ∩ JV K = ∅.

But ∼GE3 is far too weak of a condition for consistency, intuitively
speaking. If there is merely some state in some model where all of the
groups can guarantee non-violation, it could be that it is only in that
particular circumstance that the code can be obeyed. We should expect
better from a consistent code. Thus we reject that characterization of
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normative consistency. But there is an alternative reason for sticking
with our original conception of normative consistency, at least for the
moment.

In her [17], Marcus introduces a notion of consistency for moral rules.
She says “we can define a set of rules as consistent if there is some possible
world in which they are all obeyable in all circumstances in that world”
(p. 128). Marcus makes clear that what she is after is not a sufficient
condition for a set of rules to be moral or even morally binding. At
most it is a necessary condition on a morally binding set of rules/norms.
We have taken an even more liberal approach by detaching questions of
consistency from those of whether a general set of norms, not just moral
norms, is in force.

Why does Marcus choose this definition? She is drawing an analogy
with logical consistency. A set of sentences Γ is logically consistent
iff there is a possible world in which each member of Γ is true. For
Marcus, then, the conditions of a norm being obeyable is analogous to a
declarative sentence being true. She also gives a reason for using obeyable

rather than obeyed:

I want to allow for the partition of cases where a rule-governed action
fails to be done between those cases where the failure is a personal
failure of the agent  an imperfect will in Kant’s terms  and those
cases where “external” circumstances prevent the agent from meeting
conflicting obligations. To define consistency relative to a kingdom of
ends, a deontically perfect world in which all actions that ought to
be done are done, would be too strong; for that would require both
perfection of will and the absence of circumstances that generate moral
conflict. [17]

Marcus wants to define moral consistency in a way that may allow
moral dilemmas to arise even if a system of moral norms is consistent.
What is crucial is that consistency does not require the possibility of
avoiding moral conflict. A set of moral norms can be consistent even
if people do not follow the norms. Even if people a long long time
ago in a galaxy far far away are able to obey the norms, the norms
are consistent. This notion of consistency may not satisfy many moral
philosophers since the notions of consistency they might prefer are those
to do with this world, and these people. However, that is beside the
point for the moment; logical investigations should start with general
investigations and try to find the lowest common denominator, then try
to capture what specific philosophers want.
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Now that Marcus’ definition has been introduced and her reasons
behind the definition’s formulation been mentioned, it is time to analyze
more closely the ideas in the definition. First, we will stipulate that
the concern is with rules that can be represented within this formal
framework. Does that include moral norms? That is an argument we
will set aside. Recall Marcus’ definition: Γ is normatively consistent
iff there is some possible world in which they(Γ) are all obeyable in all
circumstances in that world. The concepts included in the definition that
need explication are as follows:
• How should we understand rules/norms?
• How should we understand ‘possible world’?
• How should we understand ‘all circumstances’?
• How should we understand ‘Obeyable’?
In our discussion, we have offered ways of understanding each of these
questions. Rules/norms are represented by sets of LI

xstit-formulas, pos-
sible worlds are represented by LI

xstit-models, circumstances are repre-
sented by static states in the models, and so we are just left with repre-
senting how to obey the norms.

But representing ‘obeyable’ requires a choice of perspective. Our
version of obeying from above can be characterized as follows: A has
obeyed the code at (s, h) when E(s, h,A) 6⊆ JV K, let’s call this version A
of obeying. So A’s choice does not guarantee a violation state. This does
not rule out that a violation state could occur, it might, but we need
not say that A did not obey. It was out of A’s control; the world just
did not turn out in A’s favour. However, someone might suggests that
merely not guaranteeing a violation is not sufficient to obey; in order
to obey a code violation must be avoided completely. Thus A obeys at
(s, h) when E(s, h,A) ⊆ J¬V K or, equivalently, E(s, h,A) ∩ JV K = ∅.
Let’s call this version B of obeying.

Our version of normative consistency is the negation of aTE-quandary

∼TE There is a model M and (s, h) such that M, (s, h) ⋖ ∆ in which
for all s′ ∈ AFT(s, h), lub(s′) ∩ J¬V K 6= ∅

i.e., there is a model in which there is always a non-violation state that
follows any state at which ∆ is in force. With ∼TE we can accommodate
both versions of obeying, but in different ways. Suppose that M, (s, h)⋖
∆ is a model which is a witness to the normative consistency of ∆. At
any state s′ ∈ AFT(s, h), there is s′′ ∈ lub(s′) such that s′′ 6∈ v(V ).
Thus, by condition 3f on effectivity functions, E(s′, h′′,Ag) ⊆ J¬V K
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where lub(s′, h′′) = s′′. That means Ag is able to obey ∆ at any state
according to version B.

On the other hand, in the same model as above, given any group
A, s′′ ∈ E(s′, h′′,A) by condition 3c, so E(s′, h′′,A) 6⊆ JV K. There-
fore, according to version A, every group can obey at each state. It
might be objected that Ag’s ability to avoid violation should not confer
obeyability since it may take the whole group to avoid violation and
that is too restrictive. Indeed, legislators may have designed a code
in a communistic manner. The legislators may think that it is our re-
sponsibility to cooperate in our choices to such a degree that it require
the cooperation of all of society to obey the rules they lay down. Thus
our formal framework can make sense of Marcus’ semi-formal account of
normative/moral consistency. Within our framework, however, we can
see a number of ambiguities which can be parsed apart. Formalism that
allows us to unambiguously see hidden distinctions has been held up as
a value, if not the value, of formal work since the time of Russell’s “On
Denoting”.

Finally, as promised, we return to the issue of individualised viola-
tion constants. The frameworks that employ Anderson-style reductions
provide a formal language in which one could formulate the rules for a
system. If the rules have to be specified in such a way that they include
who is in violation, that seems odd. Whether someone is in violation
of a code depends on what they did; packing that into one sentence
removes, we think, the interest in presenting a model which includes ac-
tion. Including specific violation constants would beg questions against
distributions of responsibility for collective effects. We could introduce
violation constants for each group of agents as VA in an effort to avoid
begging those questions, but then the relationship between group and
subgroup violation is also at issue. We prefer to take the more philosoph-
ically neutral position of using an impersonal violation constant. What
this analysis demonstrates is that, although many distinctions can be
explicated, more refinement is needed to get things right. But that is
the case with most formal analyses.

6. Conclusion

In this paper we have combined intuitive ideas about normative incon-
sistency and previous formal representations of them, then shown how
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to represent these informal/formal notions in an xstit framework. We
have also characterized the notion of normative inconsistency in both
the semantic and syntactic setting of the extended xstit language LI

xstit.
This characterization leads to a simple definition of normative incon-
sistency making good on one of the lessons learned from von Wright:
try to combine separate notions of normative consistency into one. But
we have also been able to distinguish normative consistency from logical
consistency, at least in relation to LI

xstit-consistency through Definition 8
and Theorem 2. This maintains our basic intuition that they are sepa-
rate notions, and we can see their exact relationship once we have fixed
a formal framework.

Any intuitive notion will take on certain characteristics of the formal
framework in which it is explicated, such is the nature of explication.
This framework offers, we believe, interesting further avenues of research.
Particularly around notions of obeyability. Perhaps other versions of
quandaries/inconsistency can be uncovered.

Technical Appendix

Below is a list of the conditions. But we have omitted one of two equiva-
lent conditions where two universal quantifiers or two existential quanti-
fiers are adjacent. For example: if the condition is of the form ∀M∀Aϕ,
we keep that formulation, and leave out the equivalent ∀A∀Mϕ.

1. ∀M, (s, h)∀A ⊂ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
2. ∀M, (s, h)∀A ⊂ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
3. ∀M, (s, h)∃A ⊂ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
4. ∀M, (s, h)∃A ⊂ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
5. ∃M, (s, h)∀A ⊂ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
6. ∃M, (s, h)∀A ⊂ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
7. ∃M, (s, h)∃A ⊂ Ag, ∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
8. ∃M, (s, h)∃A ⊂ Ag, ∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
9. ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), ∃A ⊂ Ag, E(s′, h′,A) ⊆ JV K

10. ∃M, (s, h)∀(s′, h′) ∈ AFT(s, h), ∃A ⊂ Ag, E(s′, h′,A) ⊆ JV K
11. ∃A ⊂ Ag, ∀M, (s, h)∃(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K
12. ∃A ⊂ Ag, ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K

The possible T-quandaries are

T1 ∀M, (s, h)∀(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K
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T2 ∀M, (s, h)∃(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K
T3 ∃M, (s, h)∀(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K
T4 ∃M, (s, h)∃(s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K

Proof of Theorem 1. We will proceed by showing that T-quandaries
implies G-quandaries and D-quandaries, then that G-quandaries imply
T-quandaries and D-quandaries imply T-quandaries. Since it is trivial
that in each type of quandary X, X implies XE for X=T,G,D, we com-
plete the proof by showing that DE-quandaries imply GE-quandaries,
and GE-quandaries imply G-quandaries.

It is easy to see that if ∆ has a T-quandary, then ∆ has both G
and D-quandaries. Let M be any model of ∆ such that (s, h) ∈ |M|,
and M, (s, h) ⋖ ∆. If ∆ has T quandary, all states after the code is
sustained in force only have successor states that are V states, i.e., for
all (s′, h′) ∈ AFT(s, h), lub(s′) ⊆ JV K. So whatever any group is effective
for is going to be a set of V states, i.e., for all A ⊆ Ag, and (s′, h′) ∈
AFT(s, h), E(s′, h′,A) ⊆ JV K since E(s′, h′,A) ⊆ lub(s′). Since M was
arbitrarily chosen, ∆ has a G-quandary. Under the same condition of
∆ having a T-quandary, for any M, (s, h)⋖ ∆, and (s′, h′) ∈ AFT(s, h),
E(s′, h′,∅) = lub(s′) ⊆ JV K. But that will be true for A = ∅ ⊆ Ag for
any model, so ∆ has a D-quandary.

Now we show that G implies T. Suppose ∆ has a G-quandary. Then
in any model with (s, h) such that M, (s, h) ⋖ ∆, every group is such
that it is always effective for violations, i.e., for all A ⊆ Ag, and
(s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K. But that means ∅ is effec-
tive for violations, i.e., E(s′, h′,∅) ⊆ JV K for all (s′, h′) ∈ AFT(s, h).
But that is just to say that lub(s′) ⊆ JV K by condition d on effectivity
functions. Since M was arbitrarily, chosen ∆ has a T-quandary.

To show D implies T suppose ∆ has a D-quandary, i.e., there is
A such that for any model with (s, h) such that M, (s, h) ⋖ ∆, for
all (s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K. But then by the anti-
monotonicity of E and because A ⊆ Ag, E(s′, h′,Ag) ⊆ JV K. But that
holds for every s′ ∈ h′. Let s′′ ∈ lub(s′), arbitrary s′ from AFT(s, h).
Then there is h′′ such that s′′ ∈ h′′ and (s′′, h′′) is in AFT(s, h) since s′

is. But also lub(s′, h′′) = (s′′, h′′), and E(s′, h′′,Ag) ⊆ JV K (because it
holds for all elements of AFT(s, h)). But then (s′′, h′′) � V , so s′′ ∈ JV K.
Since s′′ was arbitrary, lub(s′) ⊆ JV K, i.e., ∆ has a T-quandary.

From DE to GE is simple since if for each model with (s, h) such
that M, (s, h) ⋖ ∆, there is an A, call it B, such that for any (s′, h′) ∈
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AFT(s, h), E(s′, h′,B) ⊆ JV K, then for any (s′, h′) ∈ AFT(s, h) there is
an A, viz. B, such that E(s′, h′,A) ⊆ JV K, i.e., ∆ has a GE-quandary

So we are left with showing that GE implies G. Suppose that for each
model with (s, h) that M, (s, h)⋖∆, and any (s′, h′) ∈ AFT(s, h), there
is A ⊆ Ag, such that E(s′, h′,A) ⊆ JV K, i.e., ∆ has a GE-quandary. We
want to show that ∆ has a G-quandary, that is for any M, (s, h) ⋖ ∆,
and A ⊆ Ag, and (s′, h′) ∈ AFT(s, h), E(s′, h′,A) ⊆ JV K. So let
M, (s, h) ⋖ ∆, and B ⊆ Ag and (s′, h′) ∈ AFT(s, h). We will show that
lub(s′) ⊆ JV K. That will imply E(s′, h′,B) ⊆ JV K, and since B and
(s′, h′) were chosen arbitrarily, ∆ will have a G-quandary.

Suppose that h′′ ∋ s′. Then (s′, h′′) ∈ AFT(s, h), so there is A′ such
thatE(s′, h′′,A′) ⊆ JV K. By the anti-monotonicity of E, E(s′, h′′,Ag) ⊆
JV K so lub(s′, h′′) ∈ JV K. Since h′′ was arbitrarily chosen, lub(s′) ⊆ JV K
as we wanted. Thus ∆ has a G-quandary.

Just for fun we can show that GE implies DE. If GE is true, then for
each model with (s, h) that M, (s, h) ⋖ ∆, and any (s′, h′) ∈ AFT(s, h),
there is A ⊆ Ag, such that E(s′, h′,A) ⊆ JV K. As we noticed, that
means E(s′, h′,Ag) ⊆ JV K, for each (s′, h′) ∈ AFT(s, h). But then T is
true, and so D is true and D implies DE.

Proof of Observation 1. Suppose that M, (s, h) � ∆if . Note that
M, (s, h) � ∆ since �[∆] ⊆ ∆if and �[∆] ⊢ix δ for each δ ∈ ∆, and ⊢ix

is sound. Then let (s′, h′) be “after” (s, h), so s, s′ ∈ h′, and let δ ∈ ∆.
Suppose, without loss of generality, that s′ is the n-successor of h′ from
s. Then �Xnδ ∈ ∆if , by definition. But that means (s, h) � �Xnδ,
(s, h′) � Xnδ and (s′, h′) � δ, also by definition. Since δ was arbitrarily
chosen, (s′, h′) � ∆. (s′, h′) was also arbitrary, so M, (s, h) ⋖ ∆.

For the other direction suppose M, (s, h) ⋖ ∆. Then let δ ∈ ∆ (i.e.,
�Xnδ ∈ ∆if ). Clearly, (s, h) � ∆ since �[∆] ⊆ ∆if . Let h′ be such that
s ∈ h′. Take the n-th h′-successor of s, call it s′, then by assumption
(s′, h′) � δ. But that means that (s, h′) � Xnδ, and since h′ was arbi-
trarily chosen, (s, h) � �Xnδ, and since n was also arbitrary this holds
for all n ∈ N. That means ∆if is satisfied at (s, h).

Proof of Theorem 2. Here we will prove the T case, the TE case and
the GE case, all of the other cases proceed in a similar manner.

(T case) [⇒] Suppose that ∆ has a T-quandary. So every model M
with (s, h) such that M, (s, h)⋖∆ is such that ∀s′ ∈ AFT(s, h), lub(s′) ⊆
JV K, and there is M′ ⋖ ∆. That means M′, (s′′, h′′) � ∆if , for some
(s′′, h′′) and so by completeness ∆if 0ix ⊥. Let M, (s, h) � ∆if . By



410 Gillman Payette

Observation 1 M, (s, h)⋖∆. But that means lub(s′) ⊆ JV K for any s′ in
AFT(s, h). Suppose s ∈ h′. Then (s, h′) ∈ AFT(s, h), so lub(s) ⊆ JV K.
But that means M, (s, h′) � XV , and since h′ was arbitrary M, (s, h) �
�XV . Since M, (s, h) was arbitrary, ∆if �ix �XV , and by completeness
∆if ⊢ix �XV .

(T case) [⇐] Suppose that ∆if ⊢xp �XV and ∆if 0ix ⊥, then by
soundness ∆if �ix �XV , and by completeness and Observation 1 there
is M′ such that M′ ⋖∆. Suppose M, (s, h)⋖∆, and let s′ ∈ AFT(s, h).
Then (s′, h′) �ix ∆if by lemma 1 for any h′ with s ∈ h′, so (s′, h′) �ix

�XV . But that happens only when lub(s′) ⊆ JV K. Since s′ was arbitrary
it holds for any s′, and since M, (s, h) was arbitrary, T holds.

(TE case) [⇒] Suppose that ∆ has a TE-quandary. So every model M
with (s, h) such that M, (s, h)⋖∆ is such that ∃s′ ∈ AFT(s, h), lub(s′) ⊆
JV K, and there is an implementation of ∆. The latter assumption means
M′, (s′′, h′′) � ∆if for some (s′′, h′′), and so by completeness, and Ob-
servation 1, ∆if 0ix ⊥. Let M, (s, h) � ∆if . Then, M, (s, h) ⋖ ∆,
by Observation 1, and that means there is s′ ∈ AFT(s, h) such that
lub(s′) ⊆ JV K. And there is a history h′ with s′ ∈ h′. s′ must be the nth
h′-successor from s for some n ∈ N, and (s′, h′) � �XV . But that means,
(s, h′) � Xn�XV . And so (s, h) � ♦Xn�XV . Since M and (s, h) were
arbitrary, there are no models of ∆if ∪ { ¬♦Xn�XV : n ∈ N }. That
means, by completeness of ⊢ix, ∆if ∪ { ¬♦Xn�XV : n ∈ N } ⊢ix ⊥.

(TE case) [⇐] Suppose that ∆if ∪ ∆V ⊢ix ⊥, and ∆if 0ix ⊥, then 
by completeness and Observation 1  there is M′ and (s′, h′) ∈ |M| such
that M′, (s′, h′)⋖∆ from the latter assumption. Suppose M, (s, h)⋖∆.
Then (s, h) � ∆if , by Observation 1. By compactness of ⊢ix there must
be n1, . . . , nk ∈ N such that ∆if ∪ { ¬♦Xni�XV : 1 ≤ i ≤ k } ⊢ix ⊥.
But that means ∆if ⊢ix

∨
1≤i≤k

♦Xni�XV by classical logic, and by
soundness of ⊢ix, ∆if �ix

∨
1≤i≤k

♦Xni�XV . What this means is that
♦Xni�XV is true at (s, h) for some 1 ≤ i ≤ k. Let it be ni, i.e.,
(s, h) � ♦Xni�XV . Then there is h′ with s ∈ h′ and (s, h′) � Xni�XV .
Let s′ be the nith h′-successor from s, then (s′, h′) � �XV . But that
means lub(s′) ⊆ JV K. Since M and (s, h) were arbitrary, there is a
TE-quandary.

(GE case) [⇒] Suppose that ∆ has a GE quandary. So every model
M with (s, h) such that M, (s, h)⋖∆ is such that ∀(s′, h′) ∈ AFT(s, h),
∃A ⊆ Ag, such that E(s′, h′,A) ⊆ JV K, and there is M′ ⋖ ∆. That
means M′, (s′′, h′′) � ∆if for some (s′′, h′′). Suppose that M, (s, h) � ∆if .
Then there is A ⊆ Ag such that E(s′, h′,A) ⊆ JV K by assumption
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for any (s′, h′) ∈ AFT(s, h). That means, since (s, h) ∈ AFT(s, h),
(s, h) � [A xstit]V , and so (s, h) �

∨
A∈P(Ag) [A xstit]V . Since M, (s, h)

was arbitrary, ∆if �ix

∨
A∈P(Ag) [A xstit]V . By completeness, ∆if ⊢ix∨

A∈P(Ag) [A xstit]V .
(GE case) [⇐] Suppose ∆if ⊢ix

∨
A∈P(Ag) [A xstit]V and ∆if 0ix ⊥.

Then, by soundness, ∆if �ix

∨
A∈P(Ag) [A xstit]V , and by completeness

and Observation 1, there is M′ and (s′, h′) ∈ |M| such that M′, (s′, h′)⋖
∆. Suppose for some M, M, (s, h) ⋖ ∆, and let (s′, h′) ∈ AFT(s, h).
Then (s′, h′) � ∆if by lemma 1, and so (s′, h′) �

∨
A∈P(Ag) [A xstit]V

from our assumption. Thus for some A ⊆ Ag, E(s′, h′,A) ⊆ JV K. So
there must be A such that E(s′, h′,A) ⊆ JV K for any (s′, h′) since it was
arbitrary. And because M and (s, h) were arbitrary, GE holds.

The other cases follow similar patterns.
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