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FIRST-ORDER BELIEF AND

PARACONSISTENCY

Abstract. A first-order logic of belief with identity is proposed, primarily
to give an account of possible de re contradictory beliefs, which sometimes
occur as consequences of de dicto non-contradictory beliefs. A model has two
separate, though interconnected domains: the domain of objects and the do-
main of appearances. The satisfaction of atomic formulas is defined by a
particular S-accessibility relation between worlds. Identity is non-classical,
and is conceived as an equivalence relation having the classical identity rela-
tion as a subset. A tableau system with labels, signs, and suffixes is defined,
extending the basic language LQB by quasiformulas (to express the deno-
tations of predicates). The proposed logical system is paraconsistent since
φ ∧ ¬φ does not “explode” with arbitrary syntactic consequences.

Keywords: appearance, belief, identity, labelled and signed tableau, object,
paraconsistent, tableau suffix.

1. Introduction

Due to some specific properties and relations of objects, and due to limita-
tions of a reasoning agent’s knowledge, a multiplicity of real and possible
objects can appear as fused into one “object” (appearance), and, conversely,
one object can appear as split in many “objects” (appearances).1 In such a

1For the first case, see, for example, the narrative of the fusion of the two authors of the
Principia mathematica into one apparent author [17, 18]. The second case is well known,
for example, from Frege’s Phosphorus–Hesperus puzzle [10].
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context, de re contradiction in an agent’s belief can arise precisely as a con-
sequence of the agent’s de dicto non-contradictory belief. Naturally, there
are also real and possible objects which do not appear in an agent’s aware-
ness at all, and about which the agent does not believe anything at all. In
this paper we present a logic of reasoning with real and possible objects, and
real and possible appearances of the objects. The main distinguishing point
with respect to approaches in [17, 18, 16, 15, 9, 8] (discussed in [14]) is to
introduce contradictory de re beliefs, and to allow them to be consequences
of a de dicto non-contradictory belief. We partially revise and further de-
velop the semantics of [14], and propose a corresponding labelled and signed
tableau system with suffixes.

There are some characteristic technical features of the logic here pro-
posed. 1) Appearances of objects are modeled by ordered pairs 〈d, k〉, where
d is an object and k an individual constant. The constant k serves as an
agent’s “mode” through which the object is presented and referred to.2 2)
To allow contradictory beliefs we introduce the second accessibility relation,
S, on the set of possible worlds in determining the satisfaction of an atomic
formula. That results with the use of “subatomic” “quasiformulas” in the
tableau system. 3) The identity relation is non-classical, and includes the
classical identity relation as a subset.

2. Language and models

The language LQB is a first-order modal language for a logic of belief. In-
dividual constants are c, c1, c2, . . . (set C; informally, other small Latin
letters will also be used); x, y, z, x1, . . . are individual variables (set V); Pn,
Pn

1 , Pn
2 , . . . (other capital letters will be used informally), =, and E1 are

n-place predicates (set P); there are connectives ¬ and ∧, quantifier symbol
∀, abstractor λ, belief operators B1, . . . , Bn, and parentheses (∨,→, and ∃
are defined in the familiar way). Formulas are Φnt1 . . . tn, ¬φ, (φ ∧ ψ), Bi φ,
∀xφ, and (λx.φ)(k) (φ and ψ are formulas, Φn is a predicate, ti a term, k
an individual constant, and (λx.φ) is an abstraction term). λ-abstraction
disambiguates the sense in which an individual constant should be taken.
For instance, in Bi(λx.Px)(c), c is λ-dependent and is taken in the sense
in which i understands c (de dicto); in BiPc, c is taken objectively and
independently of an agent i (de re) (see, e.g., [7]).

2See [17, 18] for the comparison with the mode of presentation concept.
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We try to keep the basis of the semantics classical as far as possible.
To that end, the interpretation of all descriptive predicates at a world is
classical, and non-classical features of the satisfaction of the formulas are
achieved through the definition of the satisfaction at a world w by means
of the interpretation of predicates not at w, but at worlds S-accessible to
w. Only identity is interpreted at a world non-classically, precisely, as ≅

relation, which is conceived as an extension of the classical identity relation.
Further, we introduce a special domain A of appearances (beside the classical
domain D of objects), but in a way that keeps track of objects (real and
possible) in their appearances (an object d is always a constituent of an
appearance). Domains of an agent’s accessible worlds are restricted to the
objects as they appear to the agent (objects in set A). We note that frame
presupposes names (set C) of the language LQB.

Definition 1 (Frame). Frame F = {W,WA, R1, . . . , Rn, S,D,A,Q,
{≅w}w∈W }, where

1. W is a non-empty set of worlds (w ∈ W ),

2. WA ⊆ W ,

3. Ri ⊆ W ×WA (serial, transitive, and euclidean; i is a belief agent),

4. S ⊆ W ×W (serial, reflexive),

5. D is a non-empty set of objects,

6. A ⊆ {〈d, k〉 | d ∈ D and k ∈ C} (a set of appearances),

7. Q : W −→ ℘U \ {∅}, where Q(w ∈ WA) ∈ ℘A \ {∅}, and if wSw′ then
Q(w) = Q(w′) (‘U ’ abbreviates ‘D ∪A’),

8. for each w, ≅w ⊆ U × U such that {〈u, u〉 | u ∈ U} ⊆ ≅w, and ≅w is an
equivalence relation.

In the further text, d will be a member of D, a a member of A, and u a
member of U ; also

Dw = Q(w) ∩D,

Aw = Q(w) ∩A,

Uw = Dw ∪Aw.

Definition 2 (Model). Model M = 〈F , V 〉, where

1. V (k) ∈ D, V (k,w) ⊆ {d, 〈d, k〉 | 〈d, k〉 ∈ A} \ {∅},

2. V (Φn, w) ∈ ℘Un, closed under ≅w,
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3. V (=, w) = ≅w,

4. V (E1, w) = {u | u ∈ Q(w)}

As we can see, individual constants are sometimes rigid and sometimes non-
rigid, and it will be determined below in which context they are used rigidly
and in which non-rigidly. Non-rigid interpretation treats an individual con-
stant as a “mode of presentation” of objects. Keeping track of the objects
presented is vital for reasoning from the de dicto to the de re sense of terms.

Definition 3 (Variable assignment). Variable assignment is a mapping
v : V −→ U . Variant of a variable assignment v is a variable assignment
v[u/x] that differs form v at most in assigning u to x.

Definition 4 (Designation of a term).

1. JkKM,w
v = V (k) and JxKM,w

v = v(x), where JtKM,w
v is the designation of

a term t in a model M (at a world w) for a variable assignment v, and
where k is an individual constant,

2. [u]w = {u′ | u′ ≅w u}.

3. Satisfaction and consequence

In the definition of satisfaction below, we separately define positive, t-,
and negative, f-satisfaction to enable modeling contradictory beliefs. We
modalize the satisfaction of atomic formulas by S-accessibility relation and
choose S-necessity for the satisfaction of atomic formulas about appearances
to avoid classical inconsistencies of de dicto beliefs. In particular, to avoid
classical inconsistencies of quantified de dicto beliefs of an agent i, domains
of i-accessible worlds are restricted to set A (see Definition 1). For the
satisfaction of atomic formulas about objects S-possibility is chosen. Such
a choice of S modalities is motivated by an intuition that i will have more
logical control over i’s de dicto beliefs, than over i’s de re beliefs.3 Further, in
a special case (2b), things are identical at w if their respective ≅-counterparts
are each other’s ≅-counterparts in an S-accessible world. In that way we

3The idea of modalizing the satisfaction of formulas is familiar in paraconsistent logic.
For instance, φ∧ψ was interpreted by S. Jaśkowski in his discussive logic [13] (see also [12])
as φ∧♦ψ. In J.-Y. Béziau [1, 2] the approach is generalized to a specific four-valued logic,
where the four values 0−, 0+, 1− and 1+ are conceived as “necessarily false”, “possibly
false”, “possibly true”, and “necessarily true”, respectively.
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will obtain a desired consequence that identical thing(s) do not have to share
all their properties.

In the following definition Φn is an n-place predicate, excluding = and E.

Definition 5 (Satisfaction).

1. (a) If Jt1K
M,w
v , . . . , JtnKM,w

v are a1 ∈ A, . . . , an ∈ A, respectively, then

M, w |
t
=v Φt1 . . . tn iff (∀w′wSw′)〈a1, . . . , an〉 ∈ V (Φ, w′),

M, w |
f
=v Φt1 . . . tn iff (∀w′wSw′)〈a1, . . . , an〉 /∈ V (Φ, w′),

(b) if Jt1K
M,w
v , . . . , JtnKM,w

v are u1, . . . , un, respectively, and at least one
ui ∈ D, then

M, w |
t
=v Φt1 . . . tn iff (∃w′wSw′)〈u1, . . . , un〉 ∈ V (Φ, w′),

M, w |
f
=v Φt1 . . . tn iff (∃w′wSw′)〈u1, . . . , un〉 /∈ V (Φ, w′),

2. (a) If Jt1K
M,w
v , Jt2K

M,w
v are a1 ∈ A, a2 ∈ A, respectively, then

M, w |
t
=v t1 = t2 iff (∀w′wSw′) a1 ≅w′ a2,

M, w |
f
=v t1 = t2 iff (∀w′wSw′) a1 6≅w′ a2,

(b) if Jt1K
M,w
v , Jt2K

M,w
v are u1, u2, respectively, and at least one ui ∈ D,

then

M, w |
t
=v t1 = tn iff (∃w′wSw′)(∃u′

1 ∈ [u1]w)(∃u′
2 ∈ [u2]w)u′

1 ≅w′ u′
2,

M, w |
f
=v t1 = tn iff (∃w′wSw′)(∃u′

1 ∈ [u1]w)(∃u′
2 ∈ [u2]w)u′

1 6≅w′ u′
2,

3. M, w |
t
=v Et iff JtKM,w

v ∈ Qw,

M, w |
f
=v Et iff JtKM,w

v /∈ Qw,

4. M, w |
t
=v ¬φ iff M, w |

f
=v φ,

M, w |
f
=v ¬φ iff M, w |

t
=v φ,

5. M, w |
t
=v (φ ∧ ψ) iff M, w |

t
=v φ and M, w |

t
=v ψ,

M, w |
f
=v (φ ∧ ψ) iff M, w |

f
=v φ or M, w |

f
=v ψ,

6. M, w |
t
=v Bi φ iff (∀w′wRiw

′) M, w′ |
t
=v φ,

M, w |
f
=v Bi φ iff (∃w′wRiw

′) M, w′ |
f
=v φ.

7. M, w |
t
=v ∀xφ iff (∀u ∈ Uw) M, w |

t
=v[u/x] φ,

M, w |
f
=v ∀xφ iff (∃u ∈ Uw) M, w |

f
=v[u/x] φ.

8. M, w |
t
=v (λx.φ)(k) iff (∀u ∈ V (k,w)) M, w |

t
=v[u/x] φ,

M, w |
f
=v (λx.φ)(k) iff (∃u ∈ V (k,w)) M, w |

f
=v[u/x] φ.
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The idea of universal quantification over objects under the mode of pre-
sentation by a constant k in Definition 5, case 8, is due to R. Ye [17]. In
distinction to the semantics presented here, the mode of presentation is in
[17] agent dependent and allows empty set of objects.

Since disjunction and conditional are defined in the familiar way, the
satisfaction cases for disjunction and conditional amount to the following:

• M, w |
t
=v (φ ∨ ψ) iff M, w |

t
=v φ or M, w |

t
=v ψ,

M, w |
f
=v (φ ∨ ψ) iff M, w |

f
=v φ and M, w |

f
=v ψ,

• M, w |
t
=v (φ → ψ) iff M, w |

f
=v φ or M, w |

t
=v ψ,

M, w |
f
=v (φ → ψ) iff M, w |

t
=v φ and M, w |

f
=v ψ.

Definition 6 (Satisfiability). A set Γ of formulas is satisfiable iff there are

M and v such that for each ψ ∈ Γ, M |
t
=v ψ.

Definition 7 (Consequence). Γ |= φ iff, if M |
t
=v ψ for each ψ ∈ Γ, then

M |
t
=v φ.

Example 1. A reasoning agent i may perhaps not know that Lewis Carroll
is the same person as Charles Lutwidge Dodgson. Let a corresponding log-
ical name for ‘Lewis Carroll’ be individual constant ‘c’, and for ‘Charles L.
Dodgson’ individual constant ‘d’. In the de dicto sense, the agent i distin-
guishes person c and person d, and hence, in the de re sense, i believes of
the same person not to be self-identical. Further, the agent i may also think
that the person which is Lewis Carroll for i is not the same person which is
Lewis Carroll for an agent j.

Let us define and picture a model M where:

V (c, w1) = V (c, w3) = {Carroll, 〈Carroll, c〉},

V (d,w1) = V (d,w3) = {Dodgson, 〈Dodgson, d〉},

V (c, w2) = {Carroll, 〈Carroll, c〉},

w1 : 〈Carroll, c〉 6≅ 〈Dodgson, d〉, Dodgson 6≅ 〈Carroll, c〉,
Carroll ≅ 〈Dodgson, d〉,

w2 : 〈Carroll, c〉 6≅ 〈Dodgson, d〉,Dodgson 6≅ 〈Carroll, c〉,
〈Carroll, c〉 6≅ 〈Dodgson, c〉,

w3 : 〈Carroll, c〉 6≅ 〈Dodgson, d〉,Carroll ≅ 〈Carroll, c〉,
Carroll 6≅ 〈Dodgson, d〉

(as already mentioned, Carroll is classically identical with Dodgson).
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In the figure bellow, full arrows represent i- and j-accessibility, while dashed
arrows represent S-accessibility.

w1 w2

w3

i

j

i j

It can be shown (on the ground of Definition 5) that all the following satis-
faction claims hold in the model M pictured above:

M, w1 |
t
= Bic = c,

M, w1 |
t
= Bi(λx.(λy.¬x = y)(d))(c),

M, w1 |
t
= Bi(λx.c = x ∧ ¬c = x)(c),

M, w1 |
t
= Bi¬c = c,

M, w1 |
t
= Bi(λx.Bj(λy.¬x = y)(c))(c).

Note that although agent i has classically inconsistent beliefs, there is no
non-classical world in M.

4. Tableau system

We start from the basis of a paraconsistent signed tableau style like that of
[3], and implement labels (for “worlds”) and suffixes (for “things” satisfying
a formula).4 In the rules below in which no tableau suffix is mentioned, the
suffix (if there is any) is the same for each formula. As is familiar, α rules are
linear, and β rules are branching rules. In other cases, it will be annotated

4Bloesch’s tableau style in [3] is a many-valued tableau accomodated for paraconsistent
logic. For tableaux for finite many-valued logics see, e.g., [4, 5]. See also [6].
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whether the rule in question is a linear or a branching rule.

α α1 α2

m t φ ∧ ψ m t φ m t ψ
m f̄ φ ∧ ψ m f̄ φ m f̄ ψ

m f φ ∨ ψ m f φ m f ψ
m t̄ φ ∨ ψ m t̄ φ m t̄ ψ

m f φ → ψ m t φ m f ψ
m t̄ φ → ψ m f̄ φ m t̄ ψ

m t ¬φ m f φ
m f̄ ¬φ m t̄ φ
m f ¬φ m t φ
m t̄ ¬φ m f̄ φ

β β1 β2

m f φ ∧ ψ m f φ m f ψ
m t̄ φ ∧ ψ m t̄ φ m t̄ ψ

m t φ ∨ ψ m t φ m t ψ
m f̄ φ ∨ ψ m f̄ φ m f̄ ψ

m t φ → ψ m f φ m t ψ
m f̄ φ → ψ m t̄ φ m f̄ ψ

B B0

m t Biφ n t φ any n : mRn
m f̄ Biφ n f̄ φ any n : mRn
m f Biφ n f φ new n : mRn
m t̄ Biφ n t̄ φ new n : mRn

In the following rules, κ in suffixes is an individual constant (D-term) or
a quasiterm 〈o, k〉 (A-term, π), where o and k are individual constants.
Intuitively, o refers to an object, and k is a name of the referred object at
a label (world). In a tableau, each free variable x in a formula φ has a
corresponding suffix [κ/x] attached to φ.

γ γ0

m t ∀xφ m t Ex → φ [κ/x] any κ
m f̄ ∀xφ m f̄ Ex → φ [κ/x] any κ
m f ∃xφ m f Ex ∧ φ [κ/x] any κ
m t̄ ∃xφ m t̄ Ex ∧ φ [κ/x] any κ

δ δ0

m t ∃xφ m t Ex ∧ φ [κ/x] new κ
m f̄ ∃xφ m f̄ Ex ∧ φ [κ/x] new κ

m f ∀xφ m f Ex → φ [κ/x] new κ
m t̄ ∀xφ m t̄ Ex → φ [κ/x] new κ
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In the following rules s is t, f, t̄ or t̄.

λ λ1 λ2

m t λx.φ(k) m t φ [〈o, k〉/x] m t φ [o/x] linear rule; o already used for
m s λx. . . . (k), otherwise new o

m f̄ λx.φ(k) m f̄ φ [〈o, k〉/x] m f̄ φ [o/x] linear rule; o already used for
m s λx. . . . (k), otherwise new o

m f λx.φ(k) m f φ [〈o, k〉/x] m f φ [o/x] branching rule; new o
m t̄ λx.φ(k) m t̄ φ [〈o, k〉/x] m t̄ φ [o/x] branching rule; new o

We introduce quasiformulas (not to be confused with “pseudo-formulas”
of [17] and [18]) of the form xΦκ1 . . . κny, xκ1 ≅w κ2y, xnot Φκ1 . . . κny,
and xκ1 6≅w κ2y. Quasiformulas are used only in decomposition of atomic
formulas and other quasiformulas.

Φ-atom (only with A-terms) Φ-atom0

m t Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xΦπ1 . . . πny any n : mSn
m f̄ Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xΦπ1 . . . πny new n : mSn
m f Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xnotΦπ1 . . . πny any n : mSn
m t̄ Φx1 . . . xn [π1, . . . , πn/x1, . . . , xn] n xnotΦπ1 . . . πny new n : mSn

Φ-atom (with a D-term) Φ-atom0

m t Φt1 . . . tn [κi/ti] n xΦκ1 . . . κi/ti . . . κny new n : mSn
m f̄ Φt1 . . . tn [κi/ti] n xΦκ1 . . . κi/ti . . . κny any n : mSn
m f Φt1 . . . tn [κi/ti] n xnotΦκ1 . . . κi/ti . . . κny new n : mSn
m t̄ Φt1 . . . tn [κi/ti] n xnotΦκ1 . . . κi/ti . . . κny any n : mSn

In the rule above, κj = tj if tj does not occur in a suffix.

=-atom (only with A-terms) =-atom0

m t x1 = x2 [π1, π2/x1, x2] n xπ1 ≅ π2y any n : mSn
m f̄ x1 = x2 [π1, π2/x1, x2] n xπ1 ≅ π2y new n : mSn
m f x1 = x2 [π1, π2/x1, x2] n xπ1 6≅ π2y any n : mSn
m t̄ x1 = x2 [π1, π2/x1, x2] n xπ1 6≅ π2y new n : mSn

=-atom =-atom0 =-atom1 =-atom2

(with a D-term) l i n e a r l y
m t t1 = t2 [κi/ti] m xκ′

1
≅ κ1y m xκ′

2
≅ κ2y n xκ′

1
≅ κ′

2
y new n : mSn, new κ′

j

m f̄ t1 = t2 [κi/ti] m xκ′

1
≅ κ1y m xκ′

2
≅ κ2y n x κ′

1
≅ κ′

2
y any n : mSn

m f t1 = t2 [κi/ti] m xκ′

1
≅ κ1y m xκ′

2
≅ κ2y n x κ′

1
6≅ κ′

2
y new n : mSn, new κ′

j

m t̄ t1 = t2 [κi/ti] m xκ′

1
≅ κ1y m xκ′

2
≅ κ2y n x κ′

1
6≅ κ′

2
y any n : mSn
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In the rule above, κj = tj if tj does not occur in a suffix. For new κ′ we
chose an individual constant.

id φ id0

m xκ1 ≅ κy,m xκ2 ≅ κ′, y, n xκ1 ≅ κ2y m s φ(κ) m s φ(κ′//κ) mSn

where φ is a literal or a quasiformula.

E E0

m t Et [κ/t] m xEκ/ty
m f̄ Et [κ/t] m xEκ/ty
m f Et [κ/t] m xnot Eκ/ty
m t̄ Et [κ/t] m xnot Eκ/ty

In the rule above, κ = t if t does not occur in a suffix.
We close a path (by putting × under the path) if it contains, under the

same label (world), some quasiformula and it’s negation, or a quasiformula
π 6≅ π. A tableau is closed iff it has each path closed, otherwise a tableau is
open.

Definition 8 (Derivability, ⊢). Γ ⊢ φ iff a tableau for the labelled signed
set m t Γ ∪ {m t̄ φ} is closed.

Definition 9 (Consistency). A set Γ is consistent iff there is an open tableau
for the labelled signed set m t Γ.

Example 2. Consistent de dicto beliefs can have a de re self-contradictory
consequence. In the following example, let ‘v’ stand for ‘Venus’, ‘p’ for
‘Phosphorus’ and ‘h’ for ‘Hesperus’.

{Bi(λx.(λy.¬x = y)(p))(h), Bi(λx.x = v)(p), Bi(λx.x = v)(h)} ⊢ Bi¬v = v

1 0 t Bi(λx.(λy.¬x = y)(p))(h)
2 0 t Bi(λx.x = v)(p)
3 0 t Bi(λx.x = v)(h)
4 0 t̄ Bi¬v = v neg. cons.
5 1 t̄ ¬v = v 4, t̄ Bi, 0R1
6 1 t (λx.(λy.¬x = y)(p))(h) 1, t Bi

7 1 t (λx.x = v)(p) 2, t Bi

8 1 t (λx.x = v)(h) 3, t Bi

9 1 t (λy.¬x = y)(p) [〈c, h〉/x] 6, t λ
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10 1 t (λy.¬x = y)(p) [c/x] 6, t λ
11 1 t ¬x = y [〈c, h〉, 〈c1 , p〉/x, y] 9, t λ
12 1 t ¬x = y [〈c, h〉, c1/x, y] 9, t λ
13 1 t ¬x = y [c, 〈c1, p〉/x, y] 10, t λ
14 1 t ¬x = y [c, c1/x, y] 10, t λ
15 1 t x = v [〈c1, p〉/x] 7, t λ
16 1 t x = v [c1/x] 7, t λ
17 1 t x = v [〈c, h〉/y] 8, t λ
18 1 t x = v [c/y] 8, t λ
19 1 xv2 ≅ 〈c1, p〉y 15, t =-atom
20 1 xv1 ≅ vy 15, t =-atom
21 2 xv2 ≅ v1y 15, t =-atom, 1S2
22 1 xv4 ≅ 〈c, h〉y 17, t =-atom
23 1 xv3 ≅ vy 17, t =-atom
24 3 xv4 ≅ v3y 17, t =-atom, 1S3
25 1 t ¬v = y [〈c1, p〉/y] 11, 22–24 id
26 1 t ¬v = v 25, 19–21 id
27 1 f̄ v = v 5, t̄¬
28 1 f v = v 26, t¬
29 1 xv5 ≅ vy 28, =-atom
30 1 xv6 ≅ vy 28, =-atom
31 2 xv5 6≅ v6y 28, =-atom
32 2 xv5 ≅ v6y 27, =-atom

×

Example 3. Classically inconsistent beliefs do not explode.

Bi(P1c ∧ ¬P1c) 0 BiP2c

Tableau proof is left as an exercise.

Proposition 1.

⊢ ¬(φ ∧ ¬φ)
⊢ φ ∨ ¬φ
{φ ∧ ¬φ} ⊢ ψ (only λ-dependent terms occur)
{¬(φ ∨ ¬φ)} ⊢ ψ (only λ-dependent terms occur)
{φ ∧ ¬φ} 0 ψ
{¬(φ ∨ ¬φ)} 0 ψ

Proof. Each case can be proved in the defined tableau system. ⊣
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Although ¬(φ∧¬φ) is a theorem, φ∧¬φ does not “explode” with arbitrary
syntactic consequences.5 Hence, the proposed logical system is paraconsis-
tent.

In the following proposition, ‘φ ⊣⊢ ψ’ is short for ‘{φ} ⊢ ψ and {ψ} ⊢ φ’.

Proposition 2.

{(λx.φ)(k) ∧ (λx.ψ)(k)} ⊣⊢ (λx.φ ∧ ψ)(k)
{(λx.φ)(k) ∨ (λx.ψ)(k)} ⊣⊢ (λx.φ ∨ ψ)(k)
{(λx.φ)(k)} 0 φ(k/x)
{φ(k/x)} 0 (λx.φ)(k)
{φ(k) ∧ (λx.x = k)(k)} ⊢ (λx.φ(x))(k)
{(λx.φ(x) ∧ x = k)(k)} 0 φ(k/x))
{(λx.(λy.φ(x) ∧ ¬φ(y))(k2))(k1), (λx.(λy.(k1 = x ∧ k1 = y)(k2))(k1)} ⊢

(φ(k1/x) ∧ ¬φ(k1/x))
{Bi(λx.(λy.φ(x) ∧ ¬φ(y))(k2))(k1), k1 = k2} 0 Biψ
{∀xφ ∧ (λx.Ex)(k)} ⊢ (λx.φ)(k)
{(λx.φ ∧ Ex)(k)} 0 ∃xφ
⊢ k = k
{¬k = k} 0 ψ
{(λx.¬x = x)(k)} ⊢ ψ

Proof. Each case can be proved in the defined tableau system. ⊣

4.1. Soundness and completeness

Let us sketch a soundness and a completeness proofs with some preliminar-
ies. We call all formulas occurring in tableaux tableau formulas. The set
of tableau formulas includes, beside LQB formulas, also labelled signed for-
mulas with suffixes and labelled quasiformulas. Accordingly, we extend a
model M to a tableau model MT with a world corresponding to each label
of a tableau formula, and define V T (〈o, k〉) = 〈V T (o), k〉. The satisfaction
by a tableau model MT and v is merely a reformulation of a satisfaction by
M, w and v, where

M
T |=v l t φ[κ/x] iff M, wl |

t
=v[V T (κ)/x] φ,

M
T |=v l t̄ φ[κ/x] iff M, wl 6|

t
=v[V T (κ)/x] φ,

similarly for f and f̄,

5Note, for example, that t̄ ¬(Pc∧ ¬Pc) has a closed tableau, while t Pc∧ ¬Pc has an
open tableau.
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and where the satisfaction of labelled quasiformulas is defined in the follow-
ing way:

M
T |=v l xΦκ1 . . . κny iff 〈V T (κ1), . . . , V T (κn)〉 ∈ V T (Φ, wl),

M
T |=v l x notΦκ1 . . . κny iff 〈V T (κ1), . . . , V T (κn)〉 /∈ V T (Φ, wl),

M
T |=v l xκ1 ≅ κny iff V T (κ1) ≅wl

V T (κ2),

M
T |=v l xκ1 6≅ κny iff V T (κ1) 6≅wl

V T (κ2).

Definition 10 (Distributed satisfiability of a set Γ of tableau formulas).
A set Γ of tableau formulas is distributively satisfiable iff there is a tableau
model MT and a variable assignment v that satisfy each member of Γ.

We call a tableau T (distributively) satisfiable iff it has a distributively
satisfiable path.

Soundness

Let us outline main steps of the soundness proof.
(i) It should be shown, by mathematical induction, that if a tableau T is

distributively satisfiable, then, after the application of any tableau rule, the
resulting tableau T ′ remains distributively satisfiable. For example, suppose
that m t λx.φ(k) ∈ p, where p is a distributively satisfiable path of a tableau
T . If MT |=v p, then also M

T |=v p ∪ {m t φ [〈o, k〉/x],m t φ [o/x]} (with
o new to the path or already used for λ-dependent k in accordance with
the rules). This follows from the fact that, in terms of M satisfiability, if

M, wm |
t
=v λx.φ(k), then M, wm |

t
=v[〈d,k〉/x] φ and M, wm |

t
=v[d/x] φ, where

d ∈ V (k,wm) and JoKM,w
v = d.

(ii) After that, it should be proved that if a set ∆ of tableau formulas has
a closed tableau, then ∆ is not distributively satisfiable.6 The proof is indi-
rect. Suppose that ∆, having a closed tableau, is distributively satisfiable.
If ∆ is distributively satisfiable, the tableau for ∆ should eventually also be
distributively satisfiable (see (i)). That is impossible, since the conditions
under which a tableau for ∆ eventually closes make the tableau distributively
unsatisfiable. Thus ∆, having a closed tableau, cannot be distributively sat-
isfiable.

(iii) In a special case, suppose that φ and each ψ ∈ Γ are LQB formulas,
and that l t Γ∪{l t̄ φ} has a closed tableau. Therefore (by (ii)) l t Γ∪{l t̄ φ}

6For comparison, see Lemma 2 in [3].
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is not distributively satisfiable. Hence, if MT |=v l t Γ then M
T |=v l t φ,

and thus, if M, w |
t
=v Γ then M, w |

t
=v φ. Therefore, if l t Γ ∪ {l t̄ φ} has a

closed tableau, then Γ |= φ, that is, the soundness theorem holds.

Completeness

We give a sketch of the completeness proof.
(i) A labelled and signed Hintikka set H with suffixes should be defined

according to the tableau rules. More specifically, if for an atomic sentence
φ, m t φ ∈ H, then an appropriate labelled quasiformula l xφ′y (see the
tableau rules for the appropriate quasiformulas) should also be a member of
H. Regarding quasiformulas, it is not the case that for a quasiformula xφy,
l xφy ∈ H and l x¬φy ∈ H, or π 6≅ π ∈ H. Also, to give another example,
if a Hintikka set H contains a signed formula t Biφ with a label m, then
H contains the signed formula tφ for all labels previously introduced in the
tableau from the label m (according to B rules), or for a new label n if
previously no label is introduced from m.

(ii) It should be shown that every open path is a subset of a corresponding
Hintikka set. This follows from the fact (clear from (i)) that in building a
Hintikka set, we add each formula that can be added in accordance with
the tableau rules and, at the same time, we never fulfil the tableau closure
conditions.

(iii) By a construction of an appropriate canonical tableau model, it
should be proved that each labelled and signed Hintikka set with suffixes is
distributively satisfiable. We now briefly sketch that step of the completeness
proof. To simplify the metalanguage notation, we will write φ(κ) instead of
φ(x) [κ/x].

Definition 11 (Equivalence class). Equivalence class [k] of an individual
constant k with respect to a tableau H is the set {k′ | m xk ≅ k′y ∈
H for some m}.

Definition 12 (Canonical frame). Canonical frame FH for a Hintikka set
H is an n-tuple {W,WA, Ri, . . . , Rn, S,D,A,Q, {≅w}w∈W }, where

1. W is a non-empty set of labels of H,

2. WA ⊆ W ,

3. Ri ⊆ W ×WA (serial, transitive, and euclidean),

4. S ⊆ W ×W (serial, reflexive),
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5. D is a set of equivalence classes of individual constants in tableau LQB

formulas of H and in suffixes of H if there are any such constants, other-
wise D = {[c]},

6. A = {〈[o], k〉 | 〈o, k〉 occurs in a quasiformula or a suffix of H},

7. Q(m) = {[k] | m xEky ∈ T} ∪ {〈[o], k〉 | m xE〈o, k〉y ∈ H},

8. for each m, ≅m = {〈u1, u2〉 | m xκ1 ≅ κ2y ∈ H}, where

ui =

{

〈[o], k〉 if κi = 〈o, k〉
[k] if κi = k.

(1)

Definition 13 (Canonical model). Canonical model MH for a Hintikka set
H is a pair 〈F , V 〉, where

1. V (k) = [k], V (k,m) ⊆ {[o], 〈[o], k〉 | 〈[o], k〉 ∈ A}, V (〈o, k〉) = 〈[o], k〉,

2. 〈u1, . . . , un〉 ∈ V (Φn,m) iff m xΦκ1 . . . κny ∈ H,

3. V (=,m) = ≅m,

4. V (E,m) = {u | m xEκy ∈ H},

under the condition (1) above.

Now it should be proved that each labelled and signed Hintikka set H
with suffixes is distributively satisfied by the canonical model MH (under a
given variable assignment v, if any). Let us take quasiformulas as an exam-
ple. Suppose that m xΦκ1 . . . κny ∈ H. Thus, 〈u1, . . . , un〉 ∈ V (Φn,m) un-
der condition (1) (see Definition 13), and therefore M

H |=v m xΦκ1 . . . κny.
(iv) Finally it follows from (iii) that, if a set ∆ is not distributively

satisfiable, then ∆ is not a subset of any Hintikka set. Accordingly, if ∆ is
not distributively satisfiable, then ∆ has a closed tableau, since each open
path of a tableau is a subset of a Hintikka set (see (ii)). As a special case, if
a set l t Γ ∪ {l t̄ φ} is distributively unsatisfiable (and hence Γ |= φ), then
it has a closed tableau (that is, Γ ⊢ φ), which establishes the completeness
theorem.

Acknowledgment. I am grateful to the referee for finding an tableau related
error.
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