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PEIRCE AND SCHRÖDER
ON THE AUFLÖSUNGSPROBLEM

Abstract. The aim of this article is Schröder’s treatment of the so called so-

lution problem [Auflösungsproblem]. First, I will introduce Schröder’s ideas;
then I will discuss them taking into account Peirce’s considerations in The

Logic of Relatives ([13, pp. 161–217] now republished in [9, pp. 288–345]).
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1. Short Historical Background

The Solution Problem in the Algebra of Logic dates back to the work of
George Boole, [5], where given a set of premises it is required to infer their
possible consequences and to reveal the relation obtaining among them. For
example, let

A, B, C, D

be our premises. Firstly, we must rewrite each of them in equational terms;
so each premise is an equation from a formal point of view. Let us collect
these equations in a unique identity A.1 What can we deduce from A?

1We can reformulate every equation in the form f(x) = 0 or f(x) = 1. We know that
f(x) + f(y) = 0 iff f(x) = 0 or f(y) = 0. So, if we know that f(x) = 0 and g(y) = 0,
then f(x) + g(x) = 0. In this way we have reduced two formulas to one. This process
is always feasible because any equation is rewritable in the form f(x) = 0. So we can
reduce many equations to only one. For example, given f1(x) = 0, . . . , fn(x) = 0, it is
f1(x) + .... + fn(x) = 0.
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To answer this question, it is necessary to solve A in a purely algebraical
way; i.e. it is necessary to pick out the values of the unknowns of A, because
a solution is a consequence of our premises.

1.1. In this sense we can say that the Solution Problem is connected to the
scope and power of the algebraical calculus settled by our premises. In fact,
it answers the question: What consequences can I deduce from the premises?

Mathematical logic developed in the 19th century primarily in the form
of logical algebra. The analogy leading to the creation of logical algebra
lay in the fact that each solution of a problem, via the setting up and

solution of an equation, is in essence the derivation of consequences

from the statement of the problem. [2, p. 33; the italic is mine]

So, the Solution Problem for Boole requires three steps:

1. transforming every premise into an equational form,

2. collecting all premises in a unique equation,

3. solving this equation by means of purely algebraic tools.

All this without reference to a possible interpretation of the symbols involved
in the process. In this context, it must be stressed that Boole was the first
one to consider the process of computation as independent from the meanings
attached to the symbols used and it was Boole again to expand the usual
meaning of interpretation in terms of quantity, accepting also qualitative

interpretations.

The idea, developed by Boole, was to extend algebraic methods beyond
quantitative problems. [2, ivi]

1.2. In the Operationskreis2 Schröder adhered to this equational view of
the Solution Problem, but later he found Peirce’s approach in terms of sub-
sumptions more natural. Peirce’s approach is preferred because it relies on
subsumptions instead of identities. Identity is not considered to be primitive
in this context, as it is defined in the following way:

A = B ←→ A ⊆ B ∧ B ⊆ A .

Using Peirce’s own words:

2[14]; now reprinted as [16].
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There is a difference of opinion among logicians as to whether ⊆ [3] or
= is the simple relation. But [. . . ] I have strictly demonstrated that
the preference must be given to ⊆ in this respect. The term simpler

has an exact meaning in logic; it means that whose logical depth is
smaller; that is, if one conception implies another, but not the reverse,
then the latter is said to be simpler. Now to say that A = B implies
that A ⊆ B, but not conversely.4

Moreover, the use of subsumption is preferable also for another aspect: it
makes manifest the subject-predicate structure of the algebraic statements.5

Nevertheless, the Schröder of the third volume of the Vorlesungen6 re-
turned to an equational view of the Auflösungsproblem. This doesn’t mean,
of course, that Schröder fully agreed with Boole. For example, from a formal
point of view, following Jevons, Schröder adopted the inclusive interpreta-
tion of sum. But this is not all. Schröder went back to an equational stance

driven also by aesthetical reasons. In fact, it is customary in the tradi-
tion beginning with Schröder to regard the algebraic calculus as a source of
aesthetical delight. We notice this also in Löwenheim and Tarski.7

But now, let us introduce the Solution Problem as depicted in the fifth
Lecture of the third volume of the Vorlesungen.

2. The Solution Problem

We will understand binary relations in a modern way, as sets of ordered
pairs and denote them by means of capital letters ‘R’ and ‘S’. Let V be an
arbitrary set and let x, y, z ∈ V . We introduce the following definitions.

V 2 df
= [ 〈x, y〉 | x ∈ V ∧ y ∈ V ] (total relation)

Λ2 df
= −V 2 (empty relation)

Id
df
= [ 〈x, y〉 | 〈x, y〉 ∈ V 2 ∧ x = y ] (identity)

Di
df
= [ 〈x, y〉 | 〈x, y〉 ∈ V 2 ∧ x 6= y ] (diversity)

−R
df
= [ 〈x, y〉 | 〈x, y〉 /∈ R ] (complement)

3I substitute Peirce’s original sign of subsumption for thypographical reasons.
4[12]; now republished in [9]. See [9, p. 111].
5In a subsumption A ⊆ B, A is the sign for the subject and B the sign for the predicate.
6[17]; now reprinted as [15].
7I refer the reader to [3]. In particular, see [3, pp. 74–77] and [3, pp. 84–85].
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R ◦ S
df
= [ 〈x, y〉 | ∃z(〈x, z〉 ∈ R ∧ 〈z, y〉 ∈ S) ] (peircean product)

R • S
df
= [ 〈x, y〉 | ∀z(〈x, z〉 ∈ R ∨ 〈z, y〉 ∈ S) ] (peircean sum)

R−1 df
= [ 〈x, y〉 | 〈y, x〉 ∈ R ] (converse)

The first four out of the above eight relations are called by Schröder modules.

2.1. Well, in virtue of Schröder’s Law8 we know that every finite set of
propositions which belong to the calculus of relatives (where any proposition
can be formulated in equational terms) is equivalent to a single equation
f = 0, where f is a polynomial, that is it is build up from the six operations
of the relative calculus (union, intersection, complement, Peircean sum and
product, and converse) and constants (determinate relatives, together with
the four modules V 2, Λ2, Id, Di). There are two possible cases:

f doesn’t contain any variable and then it’s true or false,(1)

f contains some variable.(2)

A solution for f = 0 is a system of relatives, which satisfy f once they are
put in it as the values of the unknowns. If f contains only one variable, i.e. it
has the form g(x) = 0, its solution is simply a relative t such that g(t) = 0; if
f contains n variables, i.e. it has the form g(x1, . . . , xn) = 0, then its solution
is a system of relatives t1, . . . , tn such that g(t1, . . . , tn) = 0.

Obviously, the interesting case is (2). It admits three further subcases:

f = 0 does not have a solution,
i.e., ¬∃x1, . . . , xn f(x1, . . . , xn) = 0;

(2a)

Any system of relatives satisfies f = 0,
i.e., ∀x1, . . . , xn f(x1, . . . , xn) = 0;

(2b)

Some, but not every system of relatives is a solution for f = 0,
i.e., ∃x1, ..., xn f(x1, ..., xn) = 0 ∧ ¬∀x1, ..., xn f(x1, ..., xn) = 0.

(2c)

The cases (2a) and (2b) are border-line: the equation is always true, or
always false. Thus, the proper Auflösungsproblem is given by the case (2c).
Let us focus on it.

8See below p. 7 of this paper. “[. . . ] in unsrer Algebra [der Relative] jede Ungleichung

mit der rechten Seite 0 oder 1 sich umformen lässt in eine Gleichung von ähnlichem Charak-
ter” [17, p. 151]. “[. . . ] in our Algebra [of relatives] we can transform any disequality with
the right side 0 or 1 in an equation of similar character [i.e. with the right side 0 or 1]”
(translations from this book are mine).
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Let f = 0 be of the form g(x1, . . . , xn, y) = 0; then:

(2c1) ∀x1, . . . , xn∃y g(x1, . . . , xn, y) = 0

or

(2c2)
¬∀x1, . . . , xn∃y g(x1, . . . , xn, y) = 0,
i.e., ∃x1, . . . , xn∀y g(x1, . . . , xn, y) 6= 0.

In the case (2c2), for any system of values of x1, . . . , xn such that

∀y g(x1, . . . , xn, y) 6= 0 ,

there is a function h, such that

(3) h(x1, . . . , xn) = 0 iff ∀y g(x1, . . . , xn, y) 6= 0 .

We define h(x1, . . . , xn) = 0, the resultant of the elimination of y in
g(x1, . . . , xn, y) 6= 0. In other words, h is a relation obtaining among those
relatives t1, . . . , tn which don’t satisfy g(x1, . . . , xn, y) = 0, i.e. f = 0. There-
fore the resultant answers the following question: given an equation f = 0,
what is the relation fulfilled by any relative which is not a solution of this
equation?

2.1.1. This point deserves a pause of reflexion. Geraldine Brady, in her
book on Peirce and Schröder, [7], states that Schröder in this context foresaw
Skolem functions:

This is where he [Schröder] introduces a precursor of Skolem functions,
replacing existential quantifiers by function symbols that witness them.

[7, p. 258]

This is a great misunderstanding. Schröder introduces something like Skolem
functions in another occasion, but not here. In the fifth Lecture, devoted to
the Auflösungsproblem, Schröder aimed only to find the relation obtaining
among all relations which are not solutions of a given equation of the form
F (x) = 0. Moreover, according to Brady’s reading, Schröder would have
said something like:

(4) ∀x F (x, f(x)) = 0↔ ∀x∃y F (x, y) = 0 .

Taken for granted (4), Brady’s conclusion is straightforward. However,
Schröder doesn’t state (4), but (see above (3))

∀x F (x, f(x)) = 0 ←→ ¬∀x∃y F (x, y) = 0 .
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What Schröder is searching for is the relation obtaining among all values not

satisfying a given equation. It is only in the eleventh Lecture that Schröder
tries to eliminate the existential quantifiers, producing something similar

to Skolem functions. In fact, Löwenheim refers to this Lecture proving his
famous theorem (see [10, p. 451] and [4, p. 357]).

2.2. Thanks to Schröder’s Law, we can obtain the complete resultant from
the union of all resultants, which, as I have just shown, have an equational
form; i.e. the complete resultant H(x1, . . . , xn) = 0 of the elimination of y
in g(x1, . . . , xn, y) 6= 0 is defined as follows:

H(x1, . . . , xn) = 0↔
⋃

i¬n

hi(x1, . . . , xn) = 0,

where any hi(x1, . . . , xn) = 0 is a single resultant. So the elimination problem

[Eliminationsproblem] is the problem of finding this complete resultant:

He [i.e., Schröder] rightly remarks that such problem [the solution prob-
lem] often involves problems of elimination. [9, p. 321]

It is clear that the solution problem involves an elimination problem every
time we find ourselves in a case like (2c2), i.e. everytime an equation is solved
by some system of relatives but not by any system of relatives. If a system
of relatives is a solution, or a root for f = 0, a general solution is a set of
systems of relatives for that equation, i.e. the set of all systems which are
solutions of f = 0. Now, the general root of f(x) = 0 is always reformulable
as x = g(u), with g being a relative polynomial, and u an indeterminate
relative. In other words, if x is a root of f(x) = 0, then there always exists
a relative u such that x = g(u). In symbols,

f(x) = 0 ←→ ∃u x = g(u) .

A relative polynomial g in the equivalence above must fulfill an important
requirement:

First Adventive Condition. f(x) = 0 ←→ g(x) = x.

According to this condition, g is such that if we know that x is a solution
for f(x) = 0 and we apply g to x, then we obtain x again. Now, let us
suppose that a is a solution of f(x) = 0; that is f(a) = 0. Then, there exists
a relative u such that a = g(u). So

(5) g(u) = (a ∩ [ V 2 ◦ f(u) ◦ V 2 ]) ∪ (u ∩ [ Λ2 • −f(u) • Λ2 ])

represents the general solution of f(x) = 0. In Schröder’s words:
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[The formulation of the general solution] [. . . ] gave us a hint, in what
form we ought to search for the general solution of an equation; it
taught us, first of all, that the complete solution of the equation f(x) =
0 exists in the form x = g(u).9

Well, the point is to calculate the value of the right side of (5); to do it, we
need Schröder’s Law:

Schröder’s Law ([17, p. 147]).

V 2 ◦R ◦ V 2 =

{

V 2, if R 6= Λ2

Λ2, otherwise
(i)

Λ2 •R • Λ2 =

{

Λ2, if R 6= V 2

V 2, otherwise
(ii)

Applying Schröder’s law to (5), we obtain:

V 2 ◦ f(u) ◦ V 2 =

{

V 2, if f(u) 6= Λ2

Λ2, otherwise
(5′)

Λ2 • −f(u) • Λ2 =

{

V 2, if f(u) 6= Λ2

Λ2, otherwise
(5′′)

Then, if f(u) = V 2, (5) becomes:

(5′′′) g(u) = (a ∩ V 2) ∪ (u ∩ Λ2) = a .

On the contrary, if f(u) = Λ2, we have:

(5′′′′) g(u) = (a ∩ Λ2) ∪ (u ∩ V 2) = u .

Therefore, if u is a root of f(x) = 0, then g(u) = u (it satisfies Schröder’s
Law); otherwise, g(u) = a.

9“Immerhin gabe ihre Aufstellung [i.e. der allgemeinen Lösung] einen Fingerzeig, in
welcher Form überhaupt wir auf die allgemeine Lösung einer Gleichung zu fahnden haben
werden, lehrte sie uns vor allem, dass die vollständige Lösung der Gleichung 1) F (x) = 0
existirt in der Form 2) x = g(u)” [17, p. 168].
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3. Peirce vs Schröder: the real Meaning of general Solution

Now the following problem arises: if u is not a solution, then g(u) gives us
once more the already known a. Note that Schröder relies on the existence
of a particular solution (in this case, a) to find the general one.

The rigorous solution will be completely determinated with reference
to a particular solution a of the problem [. . . ].10

Earlier in the text, Schröder, solving the Problem 3, assumes a in place of
Id and Di (see [17, p. 194]). As a matter of fact, Peirce rightly remarks:

But that [particular solution] is seldom difficult to find. Either Λ2, or
V 2, or some other trivial solution commonly offers itself. [9, p. 325]

In my opinion, to clarify the interpretation of Schröder’s work on the solution
problem it is necessary to value individually two facets:

1. The meaning of the Auflösungsproblem in itself.

2. Its use for the creation of a calculus of relations.

3.1. Peirce, in The Logic of Relatives, summarizes Schröder’s point of view
this way:

Professor Schröder chiefly occupies himself with what he calls “solution-
problem”, in which it is required to deduce from a given proposition an
equation of which one member consists in a certain relative determined
in advance, while the other member shall not contain that relative.

[9, p. 321]

Peirce is referring here to the general solution:

g(u) = (a ∩ [ V 2 ◦ f(u) ◦ V 2 ]) ∪ (u ∩ [ Λ2 • −f(u) • Λ2 ]) ,

where a is the relative determined in advance. Schröder had already occupied
himself with this problem before,11 but it is only in the Vorlesungen that
the solution problem acquires a fundamental rôle. It is such centrality that

10“Die rigorose Lösung wird hienach völlig bestimmt sein durch den Hinweis auf eine
partikulare Lösung a des Problemes, welche, als a priori erkannt, ihr zugrunde zu legen
wäre” [17, p. 195]. Schröder means that we must assume a particular solution a priori

for building up the general solution. In fact, above we assumed that a was a particular
solution of f(x) = 0 and with a we found the general solution.

11For example in [16, pp. 25–28].
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the American philosopher reproves to Schröder. Peirce, in fact, doesn’t deny
the importance of the Auflösungsproblem, but refuses only to reduce all the
logic to it:

While I am not at all disposed to deny that the so-called solution-
problems [. . . ] are often of considerable importance, I cannot admit
that the interest of logical study centres in them.

[9, ivi; the italic is mine]

It is manifest that Peirce has as a background for his logic a different and
more articulated point of view compared to Schröder’s one. For the German
mathematician the Auflösungsproblem is tightly tied to the building a cal-
culus. Peirce could agree also on this point; what he does not approve is the
extreme generality which Schröder associates with his technique of solution:

Professor Schröder attaches great importance to the generality of so-
lutions. In my opinion, this is a mistake. [9, ivi; the italic is mine]

According to Peirce, it is a mistake first of all because the general solutions
just for their generality are for the most part trivial, in the sense that they
do not contain a specific information, but are abstract:

As for general solutions, they are for the most part trivial.
[9, p. 322]

Here, Peirce seems to emphasize a procedure, which, according to his point of
view, leads to a pure and unnecessary formal play. It was not by chance, that
he previously refuted to admit the importance of rewriting every sentence
in equational terms thanks to Schröder’s Law:

When the information contained in a proposition is not of the nature
of an equation, why should we [. . . ] insist upon expressing it in the
form of an equation? [9, p. 321]

Note that Peirce, even in this quotation, doesn’t understimate Schröder’s
work: it is right to express some proposition as identities, but not every

one. According to Peirce there is neither reason nor necessity to express
every proposition as an equation, when that is not implied directly from the
information contained in it.

3.2. So far, we have reached the heart of Peirce’s critique. Exactly as it is
the specific nature of a proposition that implies its equational reformulation,
in the same way it is a specific context to determine a problem or a question.
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In Peirce’s opinion, Schröder seems to have forgotten these relations and to
have isolated a problem from its specific needs.

If we limit ourselves to finding the most general solution which contains
every possible solution, it is not possible to disagree with Peirce that such
generality leads to an extreme grade of abstraction and therefore lacks real
epistemological value. In other words, does it make sense in science to discuss
general problems (that is, abstract), when what we deal with in everyday
practice are only specific problems, i.e. relating to a given context? It is
a scientific and a precise context to determine the problematic status of a
question:

[. . . ] every question is prompted by some need that is, by some unsat-
isfactory condition of things [. . . ]. [9, p. 323]

The way Schröder deals with the Auflösungsproblem is, on the contrary,
such that the interest is shifted away from the necessity to find a remedy
(i.e. in algebraic terms, a solution for a problem) for a problematic state of
affairs, to the possibility of finding the most general formulation of a problem
whatever:

Professor Schröder endeavours to give the most general formula of a
logical problem. [. . . ] [But] To seek a formula for all logical problems
is to ask what it is [. . . ] that men inquire [. . . ], what the essence of a
question, in general, is. [9, p. 322]

In other words, while Peirce expects by the solution of a problem the answer
to a particular necessity, Schröder inquires the meaning in itself of what is
expected by the solution of a problem.

It is here where we find the difference between Peirce and Schröder: both
attend to the same solution problem, but while the first brings it back to
specific situations and, therefore, he looks for some specific answers (alge-
braically, particular solutions), the second takes it out from any context, and
give value only to answers which are the most general ones (algebraically,
general solutions). Peirce, of course, doesn’t deny the interest in general
solutions, but he thinks that they can at most pave the way to finding par-
ticular solutions; as a scientist, he exploits a universal law only to account
for a specific fact. One can object that in such cases Peirce too relies on
universal solutions, but they are for him only means to reach a particular
goal. They are not ends in themselves, because in themselves they are not
of interest for a Peircean epistemologist:
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Only in those cases in which a general solution points the way to the
particular solutions is it valuable; for it is only the particular solutions
which picture to the mind the solution of a problem; and a form of
words which fails to produce a definite picture in the mind is meaning-
less. [9, ivi].

Obviously, it is meaningless only if we don’t consider the value of the general
answers in themselves; i.e. if we use general solutions only as tools to reach
the answer to a particular problem.

3.2.1. In defense of Schröder, it may be observed that his general solution,
also in the unfortunate case when it gives again the particular solution which
has been assumed for hypothesis, it shows at least the form, under which
one can seek a possible general solution. Therefore, it allows for speaking
about a solution, only referring to its formal structure, and therefore even
in the case in which one has not found a concrete solution.

What Peirce doesn’t understand is the analysis of the various forms of
relations which Schröder is able to obtain, shifting himself to a more abstract
level. It is only thanks to the use of his solution, for example, that he is
able to prove that every reflexive relative R is such that R ⊆ Id. (see [17],
p. 199). Moreover, such solution, showing the general form of a solution,
allows to classify the problems in terms of their formal solutions.

3.2.2. But, what is a problem for Peirce?

[. . . ] a question is a rational contrivance or device, and in order to
understand any rational contrivance, experience shows that the best
way is to begin by considering what circumstances of need prompted
the contrivance, and then upon what general principle its action is
designed to fill that need. [9, pp. 322–323].

In other words, in Peirce’s view, a problem requires for its solution an ex-
amination of those conditions that determined it, that is, its contextualiza-
tion. Therefore, the right question to ask is: why did this particular problem

arise?. A satisfactory answer is obtainable by referring to a general law; so,
we must take into consideration every possible law under which it is possible
to subsume our case. In fact, our problematic situation is a particular case
of a general one, and it is solvable only by means of an appropriate princi-
ple. In this sense, a general solution, or a general principle, are not answers
in themselves, but are seen as ways to find the solution of a very specific
problem:



26 Davide Bondoni

[. . . ] special solutions are the only ones which directly mean anything
or embody any [genuine] knowledge; [. . . ] general solutions are only
useful when they happen to suggest what the special solutions will be.

[9, p. 324–325]

Peirce reckons the indubitable value of general solutions, but only if they
are not answers in themselves. But this is just what Schröder expect of a
solution. According to Schröder the importance of a general solution doesn’t
consist in the fact that it can help to solve a specific problem, but only in
its generality. On the contrary, Peirce doesn’t accept to isolate the general
solutions from a specific context:

[. . . ] I do not find much virtue in general formulæ. [9, p. 323]

I insist upon the fact that Peirce doesn’t deny the value of the general solu-
tions, but he refuses only the non-contextualized use of them that Schröder
assumes. Peirce, in fact, points out that any problem forces us to seek the
causes which determined it and the principle which allows us to solve it.
Indeed, the principle to exploit, notwithstanding that it has to be general,
has to serve the particularity of the problem. The American philosopher
doesn’t question the importance of the general solutions, but only the use
that Schröder makes of them.

3.2.3. For Peirce,

A question, I say, is an indication suggestive (in the hypnotic sense)
of what has to be thought about in order to satisfy some more or less
pressing want. [9, ivi]

For him, a problem to be meaningful has to arise from a mental puzzling,
determined from the embarrassment caused by the incapacity of giving an
answer to some situation. This embarrassment pushes the mind to seek
solutions. In a fortunate case, these solutions solve directly its worry: they
are particular solutions, as is the problem to be resolved. Nevertheless, in
many cases it is necessary to scrutinize a lot of laws, until we find that under
which our problem can be subsumed. In this way, we discard all the laws but
the ones that imply a (particular) solution to our problem. It is in this sense
that Peirce may state that only in those cases in which a general solution

points the way to the particular solutions is it valuable (see [9], p. 322). That
is, only a general solution which is helpful in finding a particular one is of
value, useful. Only a law which can concretely help us is of use.
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Of course, to understand what it is meant by this being of use, we have
to agree with Peirce in his definition of what a problem is. Peirce treats the
matter from a purely epistemological point of view. In this perspective, to
formulate a question apart from any contextual reference, contradicts the
scientist’s everyday experience: the scientist devises ad hoc algorithms to
solve particular problems; in other words, it is the problematic state of an
elusive situation that pushes the scientist to find a strategy, and therefore, a
solution to master it. It is clear that there is not any a priori strategy which
is valid for every situation. At most, one can ponder on the meaning of a
strategy; but this is another matter. If we adopt Peirce’s scheme, that is
the perspective of an average scientist, what Peirce affirms can be accepted
easily, despite the possible merits of Schröder’s work. The point is that
Schröder had no intention of playing the part of an average epistemologist.
The fact that Schröder “was a great [. . . ] step forward toward the Skolem-
Löwenheim theorem and modern model theory” [7, p. 155], in this context,
can awaken admiration or curiosity, but not interest. Such statement, in
fact, presupposes an algebraic view of the problem, not an epistemological
one.

3.2.4. Peirce himself, however, observes that a problem can arise not only
from a specific situation, but also from a purely mental necessity:

[In this case] [. . . ] the need to which the question relates is nothing but
the intellectual need of having the question answered. [9, p. 324]

The allusion to Schröder as someone who tried to answer some question only
because it was put forth is clear:

[The solution problem according Schröder is] [. . . ] to find that form of
relative which necessarily fulfils a given condition and in which every
relative that fulfils that condition can be expressed. [9, p. 325]

In other words, according to Peirce’s point of view, Schröder shows that
every solution problem amounts to stating that:

α iff f = 0 .

That is, an equation is solvable iff the relative which constitutes its solution
fulfils a given condition α. Therefore, we must find the general form in which
it is possible to rewrite any relative which satisfies α. More clearly, what
is the general form of a relative which is a solution of f = 0, and which
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fulfils α? Here, the interest is shifted from the effective discovery of relatives
which are solutions of the equation f = 0, to their most general formulation
in terms of the condition α. It is the same as asking the following question:
what do all solutions of f = 0 have in common, as regards the condition α?

This amounts to classify the problems according to the form of the rela-
tives which fulfil a given condition. In other words, it is equivalent to saying
that a problem is individuated by an opportune classification of its solutions,
according to a given principle α.

3.3. Let us proceed with the analysis of Schröder’s position. Putting oneself
in place of Schröder, as usually, is more difficult. What he does not do
is rather clear: to establish a procedure to find particular solutions of an
equation. Schröder aimed to build up an equational calculus whose main law
of inference was the Auflösungsproblem. Let a certain number of equations
A, B, C, D, etc. be given, and let us collect them in an unique identity
A using Schröder’s Law. Assuming a particular solution a, we obtain easily
the general solution of A introducing a generic relative u, which either gives
us again a, or u. In any case, such a general solution will include every
possible solution for A. Now, if A, B, C, D, . . . were our premises and
a a given conclusion, the general solution would be the set of all possible
conclusions. Thus, we have brought back the problem to find a solution for
a set of equations to that to find the conclusions of a set of premises.

Schröder doesn’t want to find a unique solution, but all of them. For this
reason he writes down the general solution, which is the set of all possible
solutions. Under this intepretation, the Auflösungsproblem reduces itself
to the question: given a set of premises, by which algorithm can every
conclusion be generated? Such an algorithm is the general solution. This is
in harmony with Schröder’s conception of a logical calculus:

A “logical calculus” is the set of formulas which can be produced in
a circle of operations with logical connecting operations.12 Schröder
calls it a characteristic mark of “mathematical logic”, or the “logical

calculus” that its derivations and inferences can be done in the form of
calculations [. . . ]. [11, p. 16 of the preprint]

Here, Peckhaus refers to the Operationskreis, but this point of view is present
also in the Vorlesungen.

12Note that the connecting operations of Schröder are not our connectives, otherwise
the passage of Peckhaus doesn’t make sense. In fact, the connectives correspond to that
operational sphere [Operationskreis] in which the formulas are derived.
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With regard to this topic, note Peirce’s classification of the various ty-
pologies of problem:

Every problem [. . . ] is either a problem of consequences, a problem of
generalization, or a problem of theory. [9, p. 324]

The problem of consequences is no other than the one that Schröder formu-
lates with extreme generality; i.e, what consequences can be derived from a
given number of premises?

4. Conclusion

To briefly sum up, I showed that in the fifth Lecture of the Vorlesungen

Schröder introduces the solution problem [Auflösungsproblem] giving it, ac-
cording to Peirce, an exaggerate importance. I have argued that the question
ought to be examined on two levels, one in relation to the meaning of the
problem in itself, the other in relation to its interpretation as a deductive
method to obtain a certain number of consequences from some premises.
From the point of view of its intrinsic meaning, I supported Peirce’s re-
marks, stressing his epistemological reading: in everyday experience of a
scientist, a problem arises only from a specific urgency.

Nevertheless, on the other hand, one could notice in Schröder’s treatment
of the Auflösungsproblem the tentative to build the theory of relatives as a
calculus; the general solution is for him the rule, the algorithm, by which to
generate, given a certain number of premises, all possible consequences from
them.

4.1. But, it is better not force too much the dichotomy Peirce-Schröder,
because the difference between them doesn’t lie in the fact that the first was
a scientist and the second a mathematician, but in the respective philosophi-
cal stances. Schröder saw himself as a discoverer who marked on a notebook
everything he encountered in an area which had never been explored, not
forgetting to stress every facets of the flora and the fauna, the likenesses, the
differences, the types, the sub-types, etc. In this way, he was able to draw
a cartography, a map, a classification of the objects he encountered. Out of
metaphor, in the third volume of the Lectures Schröder gives this classifica-
tion of the relations, not omitting any facet, with a matchless precision and
order.

This work of classifying is made also for the Auflösunsgsproblem, with
respect to a given condition α. It is impossible to deny the importance and
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the scientific value of such classification. Peirce did, because he had behind
him a pragmatic point of view. It is in this sense that is was necessary to
read the matter on two levels, one tied to philosophical and epistemological
considerations, the other to scientific and mathematical ones.

Acknowledgments. I am indebted to dr. Rafał Gruszczyński for his valuable
suggestions and corrections.
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