Modeling of the current and future potential distribution of Atlas cedar (Cedrus atlantica) forests revealed shifts in the latitudinal, longitudinal and altitudinal range towards more humid conditions

Abdelkrim Arar, Yassine Nouidjem, Rabah Bounar, Slimane Tabet, Yacine Kouba

DOI: http://dx.doi.org/10.12775/EQ.2020.022

Abstract


Environmental forcing affects biodiversity in some parts of the biosphere where many sensitive species, including endemic and rare species, respond through changes in their geographical distribution. Modelling of spatial dynamics of species is crucial to advance our understanding of species’ adaptive behaviour and sensitivity to environmental changes and forcings. The present study aimed at assessing suitable habitats of the Atlas cedar (Cedrus atlantica) in North Algeria for the current period (1990–2000) and predicting its future range in 2050 and 2070, following climate warming scenarios. The Maximum Entropy (MaxEnt) model was used to model the present and future potential distribution of Atlas cedar forests. A total of 1,328 occurrence records obtained from field surveys and 50 environmental variables were used. These variables included 19 climatic variables (WorldClim database), 21 edaphic proprieties (SoilGrids database), and 10 topographic traits (retrieved from a 30 m digital elevation model). MaxEnt showed high predictive power with a significant value of Area Under Curve (AUC=0.988). Potential distribution of Cedrus atlantica forests for the present period was confined to mountain areas (predicted potential range size = 2089 km²). Environmental factors with the highest percentage of contribution included: soil total nitrogen (22.2%), elevation (20.5%), mean temperature of the most humid quarter ‘Bio8’ (18.8%), slope (12.9%), soil total carbon (10.3%), and precipitation of the driest month ‘Bio14’ (3.4%). The species range is expected to reduce significantly under future climate change scenarios (decline of about 70.4–80.6% of its current potential distribution), with a shift towards more humid conditions, in this case to the north and east towards more humid climates and mesic habitats. The predicted shifts in the altitude gradient follow in the direction of higher elevations, with the disappearance of cedar forests at low altitudes. This indicates that the identified Atlas cedar refugia resulting from climate change are determined by humidity. Our findings provide information on the magnitude of environmental forcings that seriously threaten Cedrus atlantica forests in drought-prone areas in North Africa. It is therefore necessary to implement effective strategies to preserve and protect more sensitive forests.

Keywords


agroforestry; trees; priorities; agroforestry policy; Sustainable Development Goals

Full Text:

PDF

References


Abel-Schaad D., Iriarte E., López-Sáez J.A., Pérez-Díaz S., Sabariego Ruiz S., Cheddadi R. & Alba-Sánchez F., 2018, Are Cedrus atlantica forests in the Rif Mountains of Morocco heading towards local extinction? The Holocene 28(6): 1023–1037. https://doi.org/10.1177/0959683617752842

Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H.(T.), Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S.W., Semerci A. & Cobb N., 2010, A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

Amici V., Marcantonio M., La Porta N. & Rocchini D., 2017, A multi-temporal approach in MaxEnt modelling: a new frontier for land use/land cover change detection. Ecol. Inform. 40: 40–49. https://doi.org/10.1016/j.ecoinf.2017.04.005

Aoubouazza M., 2018, Estimation des besoins en eau du Cèdre à Ras El Ma et à Boutrouba (Moyen Atlas Central tabulaire). Revue Marocaine des Sciences Agronomiques et Vétérinaires 6(1): 36–47.

Arar A., Chenchouni H. & Benabderrahmane M.C., 2009, Climate change and desertification risks assessment in Aurès region (Eastern of Algeria) by using of Geomatic data. Presentation at the Int. Joint Assembly of IAMAS–IAPSO–IACS “MOCA–2009”, Montreal, Canada.

Arar A., Tabet S., Nouidjem Y., Bounar R. & Chenchouni H., 2019, Projected small-scale range reductions of Cedrus atlantica forests due to climate change at the Belezma National Park (Algeria), [in:] H. Chenchouni, E. Errami, F. Rocha, L. Sabato (eds). Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism. Springer, Cham: 15–19. https://doi.org/10.1007/978-3-030-01683-8_4

Booth T.H., Nix H.A., Busby J.R. & Hutchinson M.F., 2014, BioClim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20(1): 1–9. https://doi.org/10.1111/ddi.12144

Bouahmed A., Vessella F., Schirone B., Krouchi F. & Derridj A., 2019, Modeling Cedrus atlantica potential distribution in North Africa across time: new putative glacial refugia and future range shifts under climate change. Regional Environmental Change 19: 1667-1682. https://doi.org/10.1007/s10113-019-01503-w

Boudy P., 1950, Economie forestière Nord-Africaine, Tomme 2 Monographie et traitement des essences forestières. Fasc II. Ed. Larousse, Paris.

Boukcim H., Pagès L. & Mousain D., 2006, Local NO3− or NH4+ supply modifies the root system architecture of Cedrus atlantica seedlings grown in a split-root device. Journal of Plant Physiology 163(12): 1293–1304. https://doi.org/10.1016/j.jplph.2005.08.011

Cheddadi R., Fady B., François L., Hajari L., Suc J.P., Huang K., Demarteau M, Vendramin G.G. & Ortu E., 2009, Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records and modern genetic diversity. Journal of Biogeography 36: 1361–1371. https://doi.org/10.1111/j.1365-2699.2008.02063.x

Cheddadi R., Henrot A. J., François L., Boyer F., Bush M., Carré M., Coissac E., De Oliveira P.E., Ficetala F., Hambuckers A., Huang K., Lézine A.-M., Nourelbait M., Rhoujjati A., Taberlet P., Sarmiento F., Abel-Schaad D., Alba-Sánchez F. & Zheng Z., 2017, Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Frontiers in Ecology and Evolution 5: art. 114. https://doi.org/10.3389/fevo.2017.00114

Chenchouni H., 2010, Drought-induced mass mortality of Atlas Cedar forest (Cedrus atlantica) in Algeria, [in:] J.A. Parrota, M.A. Carr (eds), The International Forestry Review, 33th IUFRO World Congress. 23–28 August 2010, Seoul, Korea.

Chenchouni H., 2017, Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands. Science of Total Environment 575: 660–671. https://doi.org/10.1016/j.scitotenv.2016.09.071

Chenchouni H., Abdelkrim S.B. & Athmane B., 2008, The deterioration of the Atlas Cedar (Cedrus atlantica) in Algeria. Proceednigs of international conference “Adaptation of forests and forest management to changing climate with emphasis on forest health: a review of science, policies, and practices”, Umeå, Sweden, pp. 25-28. Swedish University of Agricultural Sciences (SLU), FAO & IUFRO.

Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R., Bucci S.J. Feild T.S., Gleason S.M., Hacke U.G., Jacobsen A.L. Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mencuccini M., Mitchell P. J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S., Westoby M., Wright I.J. & Zanne A.E., 2012, Global convergence in the vulnerability of forests to drought. Nature 491(7426): 752-755. https://doi.org/10.1038/nature11688

Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E. & Yates C.J., 2011, A statistical explanation of MaxEnt for ecologists. Diversity and Distribution 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Ezzahiri M. & Belghazi B., 2000, Synthèse de quelques résultats sur la régénération naturelle du cèdre de l’Atlas au Moyen Atlas (Maroc). Sécheresse 11 (2): 79–84.

Fois M., Cuena-Lombraña A., Fenu G., Cogoni D. & Bacchetta G., 2016, The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33: 1–9. https://doi.org/10.1016/j.jnc.2016.06.001

Garcia R.A., Burgess N.D., Cabeza M., Rahbek C. & Araújo M.B., 2012, Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biology 18(4): 1253–1269. https://doi.org/10.1111/j.1365-2486.2011.02605.x

Gonzalez P., Neilson R.P., Lenihan J.M. & Drapek R.J., 2010, Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography 19(6): 755–768. https://doi.org/10.1111/j.1466-8238.2010.00558.x

Graham J. & Kimble M., 2019, Visualizing uncertainty in habitat suitability models with the hyper-envelope modeling interface, version 2. Ecology and Evolution 9(1): 251–264. https://doi.org/10.1002/ece3.4720

Guisan A., Thuiller W. & Zimmermann N.E., 2017, Habitat Suitability and Distribution Models. With Applications in R. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781139028271

Guisan A. & Zimmermann N.E., 2000, Predictive habitat distribution models in ecology. Ecological Modelling 135(2-3): 147-186. doi: https://doi.org/10.1016/S0304-3800(00)00354-9

Hansen W.D., Braziunas K.H., Rammer W., Seidl R. & Turner M.G., 2018, It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology 99(4): 966–977. https://doi.org/10.1002/ecy.2181

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G. & Jarvis A., 2005, Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. doi: 10.1002/joc.1276

IPCC, 2014, Climate Change 2014: Synthesis Report, [in:] Core Writing Team, R.K. Pachauri and L.A. Meyer (eds), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp.

Khanfouci M.S., 2005, Contribution à l’étude de la fructification et de la régénération du cèdre de l’Atlas (Cedrus atlantica Manetti) dans le massif du Belezma. Dissertation, Univ. Batna, Algeria.

Knippertz P., Christoph M. & Speth P., 2003, Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorology and Atmospheric Physics 83(1–2): 67–88. https://doi.org/10.1007/s00703-002-0561-y

Legendre P. & Legendre L., 1998, Numerical ecology. Second English edition. Elsevier Science BV, Amsterdam, The Netherlands.

Legendre P. & Fortin M.J., 1989, Spatial pattern and ecological analysis. Vegetatio 80: 107–138. https://doi.org/10.1007/BF00048036

Linares J.C., Taïqui L. & Camarero J.J, 2011, Increasing drought sensitivity and decline of Atlas Cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2(3): 777–796. https://doi.org/10.3390/f2030777

Malcolm J.R., Liu C., Neilson R.P., Hansen L. & Hannah L.E.E., 2006, Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20(2): 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x

McDowell N.G. & Allen C.D., 2015, Darcy's law predicts widespread forest mortality under climate warming. Nature Climate Change 5(7) : 669-672. https://doi.org/10.1038/nclimate2641

Navarro-Cerrillo R.M., Sarmoum M., Gazol A., Abdoun F. & Camarero J.J., 2019, The decline of Algerian Cedrus atlantica forests is driven by a climate shift towards drier conditions. Dendrochronologia 55: 60–70. https://doi.org/10.1177/0959683617752842

Patil I. & Powell C., 2018, ggstatsplot: 'ggplot2' based plots with statistical details. https://doi.org/10.5281/zenodo.2074621, https://CRAN.R-project.org/package=ggstatsplot

Phillips S.J., Anderson R.P. & Schapire, R.E., 2006, Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Quézel P., 1976, Les forêts du pourtour méditerranéen, [in:] Forêts et maquis méditerranéens: Écologie, Conservation et Aménagement. Notes techniques du MAB. Presse de l'Unesco, Paris: 9–33.

Quézel P., 1998, Cèdres et cédraies du pourtour méditerranéen : signification bioclimatique et phytogéographique. Forêt méditerranéenne 19: 234–260.

Rhanem M., 2010, Esquisse d’une typologie géomorphologiques de quelques cédraies à Cedrus atlantica Man. dans le Haut Atlas oriental de Midelt (Maroc). Menaces et perspectives de conservation, de gestion et de restauration. Quad. Bot. Amb. Appl. 21: 141–159.

Safaei M., Tarkesh M., Bashari H. & Bassiri M., 2018, Modeling potential habitat of Astragalus verus Olivier for conservation decisions: a comparison of three correlative models. Flora 242: 61–69. https://doi.org/10.1016/j.flora.2018.03.001

Sequeira C.H. & Alley M.M., 2011, Soil organic matter fractions as indices of soil quality changes. Soil Science Society of America Journal 75(5): 1766–1773. doi:10.2136/sssaj2011.0067

Silvertown J., 2004, Plant coexistence and the niche. Trends Ecol. Evol. 19: 605–611. https://doi.org/10.1016/j.tree.2004.09.003

Slimani S., 2014, Reconstitutions dendrochronologiques du climat et de l'historique des incendies dans les régions des Aurès et de Kabylie, nord de l'Algérie. Doctoral thesis, Univ. Tizi-Ouzou, Algeria.

Tabet S., Arar A., Merdas S. & Chenchouni H., 2019, Soil available water capacity in Algeria: mapping and modeling current conditions and projected changes under future IPCC global climate change scenarios. (unpublished).

Tabet S., Belhemra M., Francois L. & Arar A., 2018, Evaluation by prediction of the natural range shrinkage of Quercus ilex L. in eastern Algeria. Forestist 68(1): 7–15. https://doi.org/10.5152/forestist.2018.002

Thomas P., 2013, Cedrus atlantica. The IUCN Red List of Threatened Species 2013: e.t42303a2970716. http://dx.doi.org/10.2305/iucn.uk.2013-1.rlts.t42303a2970716.en

Touchan R., Anchukaitis K.J., Meko D.M., Sabir M., Attalah S. & Aloui A., 2011, Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Climate Dynamics 37: 237–252. https://doi.org/10.1007/s00382-010-0804-4

Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J., Fromentin J.M., Hoegh-Guldberg O. & Bairlein F., 2002, Ecological responses to recent climate change. Nature 416(6879): 389-395. https://doi.org/10.1038/416389a

Wan J.Z., Yu J.H., Yin G.J., Song Z.M., Wei D.X. & Wang C.J., 2019, Effects of soil properties on the spatial distribution of forest vegetation across China. Global Ecology and Conservation 18: e00635. https://doi.org/10.1016/j.gecco.2019.e00635

Williams K.J., Belbin L., Austin M.P., Stein J.L. & Ferrier S., 2012, Which environmental variables should I use in my biodiversity model?. International Journal of Geographical Information Science 26(11): 2009-2047. doi: https://doi.org/10.1080/13658816.2012.698015

Zeroual A., Assani A.A., Meddi M. & Alkama R., 2019, Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics 52(1–2): 227–243. https://doi.org/10.1007/s00382-018-4128-0

Zhang Z., Xu, S., Capinha C., Weterings R. & Gao T., 2019, Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecol. Indic. 104: 333-340. https://doi.org/10.1016/j.ecolind.2019.05.023




Partnerzy platformy czasopism