Physiological responses of Betula pendula Roth growing in polluted areas

Monika Czaja, Anna Kołton, Agnieszka Baran, Ewa Muszyńska, Piotr Muras



Plant functioning is affected by drought, extreme temperatures, heavy metal pollution and other unfavorable environmental conditions. High intensity of stress factors can be lethal to sensitive organisms or significantly decrease their condition. Intensification of stress factors is observed especially in urban and industrial areas. During the vegetative season plants purify the air and soil, decrease air temperature, increase humidity and have others psychosociological advantages. It is especially important to monitor growth of plants in areas with high anthropopression. In presented study condition of silver birch (Betula pendula Roth) growing in different stressful environments was investigated. During the research soil parameters such as pH, EC and heavy metals content were observed. Chlorophyll a fluorescence, photosynthetic pigment content, phenolic compounds concentration, ability to scavenging DPPH free radical, activity of anti-oxidative enzymes (superoxide dismutase-SOD, peroxidase-POD, catalase-CAT) were examined in the leaves to study plant response to stress factors. Investigated trees showed two types of antioxidative defense systems: with high activity of low molecular weight antioxidants (phenolics) or with high enzymatic antioxidant activity. The most stressed trees showed highest concentration of low molecular weight antioxidants (phenolics).


heavy metal pollution; chlorophyll a fluorescence; Betula pendula; SOD; POD; CAT; DPPH

Full Text:



Appenroth K.J., 2010, What are “heavy metals” in Plant Sciences?, Acta Physiologiae Plantarum 32: 615-619.

Augustynowicz J., Tokarz K., Baran A. & Płachno B.J., 2014, Phytoremediation of Water Polluted by Thallium, Cadmium, Zinc, and Lead with the Use of Macrophyte Callitriche cophocarpa, Archives of Environmental Contamination and Toxicology 66(4): 572-81.

Babula P., Adam V., Opatrilova R., Zehnalek J., Havel L. & Kizek R., 2008, Uncommon heavy metals, metalloids and their plant toxicity: a review, Environmental Chemistry Letters 6(4): 189–213.

Baranowska-Morek A., 2003, Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich [Plant species mechanisms of tolerance to the toxic effects of heavy metals], Kosmos Problemy Nauk Biologicznych 52(2-3): 259-260.

Bartosz G., 2006, Druga twarz tlenu: Wolne rodniki w przyrodzie [The other aspect of oxygen: Free radicals in nature], Wydawnictwo Naukowe PWN, Warszawa.

Bhaduri A.M. & Fulekar M.H., 2012, Antioxidant enzyme responses of plants to heavy metal stress, Reviews in Environmental Science and Biotechnology 11: 55-69.

Carvalho R.F., Monteiro C.C., Caetano A.C., Dourado M.N. & Gratão P.L., 2012, Leaf senescence in tomato mutants as affected by irradiance and phytohormones, Biologia Plantarum 57(4): 749-757.

Chen Y., Zhang M., Chen T., Zhang Y. & An L., 2006, The relationship between seasonal changes in anti-oxidative system and freezing tolerance in the leaves of evergreen woody plants of Sabina, South African Journal of Botany 72(2): 272–279.

Cicco N., Lanorte M.T., Paraggio M., Viggiano M. & Lattanzio V., 2009, A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts, Microchemical Journal 91: 107–110.

Hanus-Fajerska E. & Ciarkowska K., 2010, Phytoextraction of zinc, lead and cadmium from post-flotation tailings using tree clones, Ecological Chemistry and Engineering A, 17(9): 1111-1116.

Hwang S-Y., Lin H-W., Chern R.-H., Feng Lo H. & Li L., 1999, Reduced susceptibility to waterlogging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato, Plant Growth Regulation 27: 167-172.

Hortensteiner S. & Feller U., 2002, Nitrogen metabolism and remobilization during senescence, Journal of Experimental Botany 53(370): 927–937.

Karuppanapandian T., Moon J.C., Kim C., Manoharan K. & Kim W., 2011, Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms, Australian Journal of Crop Science 5(6): 709-725.

Krzesłowska M., 2011, The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy, Acta Physiologiae Plantarum 33: 35-51.

Lück H., 1962, Peroxidase, [in:] H.U. Bergmeyer (ed.) Methoden der enzymatischen Analyse, Verlag Chemie, Weinheim: 895-897.

MacFarlane G.R. & Burchett M.D., 2001, Photosynthetic Pigments and Peroxidase Activity as Indicators of Heavy Metal Stress in the Grey Mangrove, Avicennia marina (Forsk.) Vierh., Marine Pollution Bulletin 42(3): 233–240.

Mallick N. & Mohn F.H., 2003, Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus, Ecotoxicology and Environmental Safety 55: 64–69.

Michalak A., 2006, Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress, Polish Journal of Environmental Studies 14(4): 523-530.

Mmolawa K.B., Likuku A.S. & Gaboutloeloe G.K., 2011, Assessment of heavy metal pollution in soils along major roadside areas in Botswana, African Journal of Environmental Science and Technology 5(3): 186-196.

Muszyńska E., Hanus-Fajerska E. & Koźmińska A., 2013, Rośliny drzewiaste wykorzystywane w rekultywacji terenów przemysłowych i poprzemysłowych [Woody plants used in restoration of industrial and post-industrial lands], Episteme 21/2013 (1): 397 – 403.

Nagajyoti P.C., Lee K.D. & Sreekanth T.V.M., 2010, Heavy metals, occurrence and toxicity for plants: a review, Environmental Chemistry Letters 8: 199-216.

Parmar N.G., Vithalani S.D. & Chanda S.V., 2002, Alteration in growth and peroxidase activity by heavy metals in Phaseolus seedlings, Acta Physiologiae Plantarum 24(1): 89-95.

Pekkarinen S.S., Stöckmann H., Schwarz K., Heinonen I.M. & Hopia A.I., 1999, Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate, Journal of Agricultural and Food Chemistry 47: 3036-3043.

Polish Ministry of the Environment, 2002, Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi. Na podstawie art. 105 ust. 1 ustawy z dnia 27 kwietnia 2001 r. — Prawo ochrony Środowiska (Dz. U. z 2001 r. Nr 62, poz. 627 i Nr 115, poz. 1229 oraz z 202 r. Nr 74, poz. 676, Nr 113, poz. 984 i Nr 153, poz. 1271) [Regulation of the Minister of the Environment of 9 September 2002 on the soil and land quality standards. Pursuant to clause 105, paragraph 1 of the act of 27 April 2001 – Environmental Protection Law (Dz.U. of 2001 No. 62, item 627 and No. 115, item 1229 and of 2002 No. 74, item 676, No. 113, item 984 and No. 153, item 1271)], Warszawa.

Syros T., Yupsanis T., Zafiriadis H. & Economou A., 2004, Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L, Journal of Plant Physiology 161: 69–77.

Wellburn A.R., 1994, The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, Journal of Plant Physiology 144: 307-313.

Zhang H. & Zhou C., 2013, Signal transduction in leaf senescence, Plant Molecular Biology 82(6): 539–45.

Žibret G., Van Tonder D. & Žibret L., 2013, Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic, Environmental Science and Pollution Research International 20(7): 4455–4468.

Zvereva E.L., Toivonen E., & Kozlov M.V., 2008, Changes in species richness of vascular plants under the impact of air pollution: a global perspective, Global Ecology and Biogeography 17(3): 305–319.

Partnerzy platformy czasopism