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Abstract. Interaction networks are a tool to visualize and to study the relationships between interacting species across and within 
trophic levels. Recent research uncovered many properties of such networks that remained undetected in previous food web stud-
ies. These patterns could be related to evolutionary and ecological processes. The study of interaction networks promises therefore 
progress in the study of constraints that act on the coevolution of interacting species and on food webs. However, there are still many 
pitfalls associated with the statistical analysis, the properties of the metrics involved and the appropriate null model choice. Here 
I review the mechanisms that shape interaction matrices, the possible internal structures and their ecological interpretation, and the 
analytical tools to identify matrix structure. Progress in the field needs critical meta-analytical and comparative studies that indentify 
the best suited null models (low type I and II error probabilities and high power to disentangle statistical from ecological processes) 
and clarify the interdependence of different concepts and metrics associated with network approaches. It is not improbable that many 
patterns recently associated with ecological and evolutionary processes might turn out to be simple side effects of the sampling from 
the underlying metacommunity distributions.
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1. Ecological networks

Within true ecological communities species interact in dif-
ferent ways. Vertical interactions (herbivory, predation, 
parasitism etc.) are traditionally described as a food chain 
with a food web approach. Food webs, however, have also 
a horizontal dimension: species of the same or adjacent 
trophic levels interact in various ways. These interactions 
are rarely random but constraint in various ways by the 
ecology and evolutionary history of the interacting spe-
cies (Bascompte et al. 2003; Bascompte & Jordano 2007; 
Ollerton et al. 2007). Interaction (often termed mutualistic) 
networks are a tool to visualize and to study the relation-
ships between interacting species across and within trophic 
levels (Bascompte et al. 2003). These are commonly given 
as ordered bipartite mxn matrices where the m rows and n 

columns denote species of two communities that potential-
ly interact (Fig. 1). Typical examples are plant-pollinator 
or plant seed-disperser networks (Bascompte et al. 2003; 
Dupont et al. 2003; Ollerton et al. 2003), host – client net-
works (Guimarã es Jr. et al. 2007), host-parasite networks 
(Valtonen et al. 2001), or plant-herbivore networks (Lewin-
sohn & Prado 2006). 

Typically, interaction matrices are nested (reviewed 
in Bascompte & Jordano 2007; Ulrich et al. 2009) that 
means the species that interact with specialist species form 
an ordered subset (a true sample) of the species that in-
teract with generalist species. Such a pattern implies that 
specialists from both sets of species interact preferentially 
with generalists of the other set (Bascompte & Jordano 
2007). Contrary generalists of both sets interact mainly 
with themselves (Fig. 1). Thus a typical interaction matrix 
is composed of two more or less distinct subwebs, one that 
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contains generalist species of both sets and one containing 
specialist species only (Bascompte et al. 2003).

An understanding of the structure of interaction net-
works needs knowledge about local and regional as well 
as ecological and evolutionary processes that constrain 
the numbers of interactions of each species in the network 
(Bascompte et al. 2006). The present paper is intended as 
a short review of the mechanisms that shape interaction 
matrices, of the possible internal structures and their eco-
logical interpretation, and the analytical tools to identify 
matrix structure. 

2. Quantifying  matrix properties
2.1. Basic concepts

The food web literature is full of metrics that have been 
applied to quantify web properties (review in Berlow et 
al. 2004). However, despite their common use many of 
them are still weakly defined and have unknown statisti-
cal properties. Examples are diversity and evenness met-
rics, distributions of marginal totals (abundance distribu-
tions), or interaction strength (Berlow et al. 2004). Even 
half a century after their introduction there is still no con-
sensus about their usage and statistical properties (Magur-
ran 2004; Olszewski 2004; McGill 2006; Jost 2008). In 
this respect, the matrix approach to interaction networks 
promises progress while many of the food web metrics 

can be translated into metrics on matrices that have been 
applied in other fields and of which the statistical prop-
erties are better understood. Table 1 gives an overview 
over different concepts and metrics and shows their re-
lationships. Simple matrix wide metrics of species inter-
actions within an interaction network are the matrix size 
(the product nm but not the sum n+m as sometimes used 
in food web analysis), matrix fill (connectivity), and mean 
marginal totals (linkage density). Note that diversity, even-
ness, connectivity, and degree distributions directly follow 
from matrix size and fill (Tab. 1). The interplay of size 
and fill is therefore a basic property of any network and 
needs explanation. The above derived properties are then 
logical consequences.

Other derived metrics are nestedness (Ulrich et al. 
2009), togetherness (overdispersion, species aggregation) 
(Stone & Roberts 1992) and turnover (underdispersion, 
segregation) (Stone & Roberts 1990). Niche overlap had 
been defined in various ways (Hurlbert 1978; Sohn 2001) 
but the matrix definition of average togetherness seems 
intuitively clear. 

In 2002 Leibold and Mikkelson identified three impor-
tant elements of biogeographic metacommunity structure: 
coherence, species turnover, and boundary clumping. Al-
though so far only applied to biogeographic matrices these 
concepts apply to interaction networks as well (Fig. 2). 
Further, many properties of food webs seem to be deter-
mined by these three concepts and can be understood as 

Species
Species 1 2 3 4 5 6 7 8 Row total
A 1 1 1 1 1 1 1 1 8
B 1 1 1 1 1 1 0 0 6
C 1 1 1 1 0 1 0 0 5
D 1 1 1 0 1 0 0 0 4
E 0 1 1 1 1 0 0 0 4
F 1 1 0 0 1 0 1 0 4
G 1 1 1 1 0 0 0 0 4
H 1 0 0 0 0 1 0 0 2
I 1 0 1 0 0 0 0 0 2
J 1 1 0 0 0 0 0 0 2
Column total 9 8 7 5 5 4 2 1 41

Figure 1. A typical bipartite interaction network can be represented by a matrix where interactions (incidences) are denoted with 
ones and absences with zeros. Typically we can identify a group of generalist species (species with numbers of interac-
tions) that interact with themselves and with specialist species (species with low numbers of interactions). The generalist 
species of both communities often form a submatrix of high matrix fill. A second submatrix of not realized interactions is 
frequently interpreted as to mark forbidden interactions (Bascompte et al. 2003; Bascompte & Jordan 2007; Ulrich et al. 
2009)
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Table 1. Important metrics to describe properties of interaction networks. N: Number of ones in the matrix; m, n: numbers of rows 
and columns, respectively; aij: number of interactions of species i and j; Ai: total number of interactions of species i. BR, 
T, and NODF are measures of nestedness (Almeida-Neto et al. 2008); NODFc and NODFr are the respective metrics for 
matrix wide column and row species aggregation (Almeida-Neto et al. 2008); max (1...1) denotes the maximum number 
of adjacent incidences per row or column
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inevitable consequences of their interplay. Hence, at least 
in part they appear to be derived features or even sample 
artefacts (Krishna et al. 2008).

A completely coherent range of species interactions is 
an array of columns or rows all of which contain the spe-
cies (Fig. 2A). Hence, the sequence of occurrences within 

the rows or columns of this array is not interrupted by 
absences (Leibold & Mikkelson 2002). Of course any row 
or column can be ordered in that way that the occurrences 
are completely coherent. However, it is unlikely that the 
whole matrix can be ordered in such a way. The degree to 
which this is possible is an important feature of any bio-
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geographic and interaction matrix. A simple measure of 
coherence is the maximum number of adjacent incidences 
(ones) summed over all rows and columns and normalized 
for matrix dimension (Tab. 2). However, this needs an ap-
propriate ordering of the matrix so that a maximum number 
of adjacent incidences can appear. This is not a trivial task. 
Leibold & Mikkelson (2002) proposed ordination, particu-
larly reciprocal averaging due to its ease in use. However, 
different ordination techniques give different orderings and 
probably no single solution exists as has been shown by 
Rodríguez-Gironés and Santamaría (2006) in the similar 
case of matrix disorder. 

Species turnover (species segregation or underdisper-
sion) refers to a pattern where two species replace each 
other within columns or rows (Fig. 2B). This so called 
checkerboard pattern has long been discussed within the 
framework of community assembly rules (Diamond 1975; 
Gotelli & Graves 1996; Ulrich 2004). Note that if two spe-
cies form a complete checkerboard one of them forms with 
any third species necessarily an aggregated pattern. Hence 
turnover is always associated with some degree of spe-
cies aggregation. Thus, turnover must be seen as a matrix 
wide pattern. Note also that turnover is connected to the 
degree of nestedness of a matrix (Leibold & Mikkelson 
2002; Ulrich et al. 2009). In a nested pattern, the species 
compositions of small assemblages are nested subsets 

(true samples) of the species compositions of large assem-
blages (Patterson & Atmar 1986). Ranges of species with 
lower numbers of occurrences are nested within the range 
of species with higher numbers of occurrences. Thus in 
a completely nested matrix species occurrences in rows 
and columns are maximally aggregated. Nestedness and 
turnover (disorder in the nestedness terminology) are there-
fore to a certain degree opposite patterns although matrices 
might be significantly nested and significantly segregated 
(Ulrich & Gotelli 2007a, b; Ulrich et al. 2009). Species 
disorder is easy to measure and metrics like the C-score 
(Stone & Roberts 1990) and the checkerboard score (Go-
telli 2000) are implemented in standard software (Gotelli & 
Entsminger 2004; Ulrich 2007). Respectively, nestedness 
is best measured by the NODF, the BR and the tempera-
ture metric (Ulrich et al. 2009). In both cases recent work 
clarified the statistical properties and type I and II error 
probabilities (Ulrich & Gotelli 2007a, b).

Boundary clumping is the degree to which the bounda-
ries of the ranges of different species within a matrix are 
clustered or compartmented (Leibold & Mikkelson 2002). 
This refers to two common views about ecological commu-
nities. Dating back to Clements (1916) communities were 
seen a distinct entities, that share few species (the tradi-
tional phytosociological approach). Within a food web this 
view refers to subwebs of interacting species with few or 

Table 2. Important metrics to describe interaction networks and associated ecological hypotheses. Note that such a table can only 
point to some important hypotheses that might emerge from a certain concept and the associated metric

Metric  High or significant Low or insignificant Source

Numbers of incidences equal relative abundances, phenotypic 
constraints

no constraints Stang et al. (2006)

Matrix fill generalist dominated specialist dominated Ulrich (unpubl.)

Mean marginal total – – –

Matrix shape bottom up control top down control Ulrich (unpubl.)

Boundary clumping evolution of generalist subcommunities no divergent evolution Guimarães et al. (2007)

Degree distribution scale invariance of matrix properties – Vázquez (2005)

Togetherness similar traits dominate over competition competitive driven community Stone & Roberts (1992)

Aggregation similar ecological constraints few constraints Ulrich (unpubl.)

Nestedness forbidden species interactions, gradient 
driven

competitive driven community Rezende et al. (2007a, b)

Turnover competitive driven community random associations Diamond (1975)

Interaction asymmetry gradient in abundance/specialization equal abundances/degree of 
specialization

Vázquez et al. (2007)

Mean togetherness – – –
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no connections with other subwebs. However, the individ-
ualistic view of Gleason (1926) might also result in com-
partments if species are distributed along an environmental 
gradient (Leibold & Mikkelson 2002). In interaction ma-
trices this would refer to a situation where the availability 
of potentially interacting species gradually decreases or in-
creases with phylogenetic and ecological distance. Hence 
the existence of distinct compartments does not necessarily 
need the existence of closed ecological communities that 
coevolved. 

Boundary clumping (numbers and sizes of compart-
ments) has traditionally been measured by the incidence 
based Morisita index (Morisita 1971; Leibold & Mikkel-
son 2002), although metrics based on fractal dimensional-

ity (Bloom 1981) seem better suited. Note that aggrega-
tion, compartmentization, and niche overlap are not clearly 
separated concepts within the food web approach, a fact 
that has lead to much confusion about their measurement 
(Plotkin & Muller-Landau 2002). In this respect the matrix 
approach performs better and provides associated metrics 
(Tab. 1). However, much work is still needed to clarify 
their interdependence.

2.2. Ecological significance

A critical point of all metrics is that they should estimate 
something meaningful. Many studies applied a certain 
metric simply to measure something. For instance, if we 

A Coherence
Species

Species 1 2 3 4 5 6 7 8 Row total
A 1 1 1 1 0 0 0 0 4
B 0 1 1 1 1 0 0 0 4
C 0 1 1 1 1 0 0 0 4
D 0 0 1 1 1 1 0 0 4
E 0 0 1 1 0 1 0 0 3
F 0 0 0 1 0 1 1 0 3
G 0 0 0 0 1 0 1 1 3
H 0 0 0 0 0 1 1 1 3
I 0 0 0 0 0 0 1 1 2
J 0 0 0 0 0 0 0 1 1
Column total 1 3 5 6 4 4 4 4 31

 

C Boundary clumping
Species

Species 1 2 3 4 5 6 7 8 Row total
A 1 1 1 1 0 0 0 0 4
B 1 1 1 1 0 0 0 0 4
C 1 0 1 1 0 0 0 0 3
D 0 1 1 1 0 0 0 0 3
E 0 0 0 1 1 1 0 0 3
F 0 0 0 1 1 1 0 0 3
G 0 0 0 1 0 1 0 0 2
H 0 0 0 1 1 1 0 0 3
I 0 0 0 0 0 0 1 1 2
J 0 0 0 0 0 0 1 1 2
Column total 3 3 4 8 3 4 2 2 29

B Turnover
Species

Species 1 3 8 4 5 6 7 2 Row total
A 1 1 1 0 1 0 1 0 5
B 1 0 1 1 0 1 0 1 5
C 0 1 1 0 1 0 1 1 5
D 0 1 0 1 0 1 1 1 5
E 1 1 1 0 1 0 0 0 4
F 1 1 0 1 0 1 0 0 4
G 0 1 0 0 1 0 1 1 4
H 1 0 1 1 0 1 0 0 4
I 1 0 1 0 1 0 1 0 4
J 1 0 0 1 0 1 0 0 3
Column total 7 6 6 5 5 5 5 4 43

Figure 2. Three basic patterns in interaction networks. A: A co-
herent pattern refers to columns or rows were a series 
of cells contain a certain species. In A species E, F, 
and G contain holes, they are not completely coherent. 
B: Turnover refers to matrix wide species segregation, 
hence a higher number of reciprocal species exclu-
sions that expected by chance. B: Boundary clumping 
refers to submatrices with a high matrix fill. In C three 
such submatrices can be identified although the first 
two are not completely filled. Holes within the three 
pattern are marked in bold type
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measure a high diversity or evenness what does this mean 
for the processes and pattern in a community? Diversity 
itself does not point to any mechanism that generates it. 
However, any metric to be meaningful should be associ-
ated with a precise hypothesis about pattern or processes 
in ecological communities. Table 2 provides for important 
metrics of bipartite networks associated hypotheses about 
underlying ecological processes. Of course, such a table 
cannot be exhaustive. It should be rather read as a starting 
point for further research. 

Clearly, the majority of derived concepts and the as-
sociated metrics tell something about the evolutionary 
history of a network. Particularly important are generalist 
– specialist gradients (Bascompte et al. 2003). Different 
gradients for the species in rows and columns determine 
to a large extent the shape and internal structure of the 
network. Hence a gradient analysis should be the first step 
in the analysis of interaction networks (Jordano & Bas-
compte 2006; Ulrich et al. 2009). Evolutionary and eco-
logical gradients determine the matrix size and number of 
realized links in the network. This gives immediately the 
matrix fill (connectivity). A high matrix fill is associated 
with a generalist dominated web while low fill points either 
to strong competition among potentially interacting species 
or to the evolution of many ecologically separated lineages 
(the ghost of competition past; Connell 1980). 

Matrix shape and asymmetry measure differences in 
row and column dimensions. For instance in host – parasite 
networks asymmetry tells whether a net is dominated by 
host or parasite species, hence whether interactions pre-
dominantly act from the higher to the lower trophic level 
(top down) or from the lower to the higher level (bottom 
up). Bascompte et al. (2006) studied 26 mutualist networks 
and found them to be highly asymmetric. By a comparison 
to randomly constructed symmetric networks they showed 
that the latter were temporarily less stable and species rich. 
Hence, asymmetry might have strong influence on the sta-
bility of a net and on the maintenance of biodiversity.

Macroecological research showed that the species rich-
ness of most local ecosystems is under top down control, 
hence regional species richness determines local richness 
(Srivastava 1999; Cornell et al. 2007). Recent theoretical 
work on interaction networks point to a similar situation in 
foods webs (Krishna et al. 2008). These convergent results 
again corroborate the view that space and time are ecologi-
cally equivalent (interchangeable) with respect to models 
of community structure (Preston 1960; Adler & Lauenroth 
2003; Ulrich 2006). 

A significant boundary clumping indicates the evolu-
tion of generalist subcommunities within the network. In 
turn, the regions outside these compartments evolve for-
bidden links, that means ecological, morphological, or be-
havioural mismatches that prevent interaction (Bascompte 
et al. 2003). 

Species turnover, togetherness, niche overlap, and nest-
edness have often been confused in the ecological literature 
(reviewed in Gotelli 2000; Jordano et al. 2006; Ulrich et 
al. 2009). All these concepts are related to the interplay of 
competition and joint habitat and resource requirements 
but focus on different aspects of this interplay. Turnover 
and nestedness mark the end of a gradient shaped by differ-
ential species specific traits (Leibold & Mikkelson 2002). 
These might be competition (Diamond 1975), evolution-
ary constraints (Rezende et al. 2007a), or ecological drift 
(Krishna et al. 2008). Strong competition should cause 
high species turnover, and low niche overlap (Weiher & 
Keddy 1999). A high degree of togetherness indicates com-
mon resource or habitat requirements (Stone & Roberts 
1992). Nestedness points to the simultaneous influence of 
two gradients acting on the ordering of incidences of rows 
and columns (Lomolino 1996; Ulrich et al. 2009), while 
aggregation refers to one gradient only that acts on either 
the rows or the columns. Particularly nestedness and aggre-
gation have often been confused (Ulrich et al. 2009). There 
is still no critical comparative study that reveals the in-
terdependence between aggregation, nestedness and niche 
overlap. Particularly, niche overlap and aggregation might 
turn out to refer to the same pattern. 

2.3. Statistical inference

The study of interaction networks requires the same infer-
ence techniques as had been applied to the analysis of spe-
cies co-occurrence, nestedness, or spatial pattern seeking 
(Gotelli 2000; Gotelli & McGill 2006; Ulrich & Gotelli 
2007a, b). Any statistical inference needs two contrasting 
hypothesis (Ulrich 2009). While our metrics provide H1, 
the hypothesis about a certain pattern within the matrix 
the question about H0, the null hypothesis, has been dis-
cussed highly controversial (Connor & Simberloff 1979; 
Diamond & Gilpin 1982; Gotelli & Graves 1996). How-
ever, it becomes more and more clear that standard statis-
tical tests that require equiprobable null distributions do 
not fit to an ecological definition of randomness (Gotelli 
& McGill 2006). We need ecologically realistic null mod-
els that are able to disentangle ecological and evolutionary 
mechanisms from pure statistical and sampling artefacts 
(Ulrich et al. 2008). A step into this direction is the recent 
work of Krishna et al. (2008). They showed that ecologi-
cal drift (Hubbell 2001) is able to generate bipartite net-
works that have similar degrees of nestedness, coherence, 
and forbidden interactions as observed in many real net-
works. Because their neutral approach used the abundance 
distributions of the associated metacommunity (Etienne 
& Olff 2004) their results explain basic observed network 
properties from differential dispersal abilities at the specie 
level. However, species interactions are the result of evolu-
tionary processes not covered by ecological drift. A proper 
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modelling would therefore require a joint model of genetic 
(Kimura 1983) and ecological drift (Hubbell 2001). Never-
theless, the work of Krishna et al. (2008) raises the ques-
tion whether observed network and therefore food web 
properties might be explained from marginal abundance 
distributions alone. 

Any statistical analysis in ecological matrices needs 
appropriate null models that retain basic biological con-
straints independent of the pattern under study. In this 
respect, null models can be ordered to the number and 
strength of the constraints they put upon the matrix (Go-
telli 2000; Ulrich & Gotelli 2007a, b). In biogeographic 
matrices null models that do not constrain marginal totals 
too often point to non-randomness due to the effect of pas-
sive sampling because occupancy probabilities (incidenc-
es) differ among species (Ulrich et al. 2009). Whether this 
result also holds for interaction matrices is questionable 
(Vázquez & Aizen 2006; Vázquez 2007; Stang et al. 2007). 
In biogeographic matrices the major players are individu-
als that disperse and die. In interaction matrices the basic 
unit are species of which all members interact in a similar 
way. Hence more liberal null models might be appropriate. 
If the incidence probabilities are equal among species (no 
evolutionary constraints) even an equiprobable null model 
might be appropriate. On the other hand, the unseen spe-
cies problem might be for interaction networks even more 
severe (McKenzie et al. 2004; Nielsen & Bascompte 2007, 
Ulrich unpubl.). Networks are generally based on samples 
from multispecies communities of which the total species 
richness is often unknown. To account for unseen species 
at least in larger networks a model that constraints total 
column and row richness to observed values seems best 
suited (Ulrich et al. 2009). 

4. Conclusion

The study of interaction networks promises progress in the 
study of constraints that act on the coevolution of inter-
acting species and on food webs (Bascompte et al. 2006; 
Bascompte & Jordano 2007; Rezende et al. 2007). How-
ever, there are still many pitfall associated with the statisti-
cal analysis, the properties of the metrics involved and the 
appropriate null model choice (Gotelli 2000; Ulrich et al. 
2009). Many studies used inappropriate null models that 
did not clearly control for undesired sampling effects (Ul-
rich & Gotelli 2007a, b; Ulrich et al. 2009). Progress in the 
field needs critical meta-analytical and comparative studies 
that indentify the best suited null models (low type I and II 
error probabilities and high power to disentangle statistical 
from ecological processes) and clarify the interdependence 
of different concepts and metrics associated with network 
approaches. It is not improbable that many patterns recent-
ly associated with ecological and evolutionary processes 

might turn out to be simple side effects of the sampling 
from the underlying metacommunity distributions.
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