
1. Introduction

The study of species – abundance distributions (SADs) 
has a long tradition in ecology (for reviews see Tokeshi 
1999; Magurran 2003, 2005), starting from early distribu-
tion orientated models of Motomura (1932) and Fisher et 
al. (1943) to recent neutral (Bell 2001; Hubbell 2001; Ul-
rich 2007; Ulrich & Zalewski 2007) and fractal (Mouillot 
2000) approaches. The study of SADs is closely related 
to the question about the causes of commonness and rar-
ity (Gaston 1994; Kunin & Gaston 1997; Magurran 2007; 
McGill et al. 2007).

Much attention gained SAD models that involve the 
concept of ecological niches. They assume a common lim-
iting resource that is divided among the species of a local 
community. Most prominent among these models are the 
broken stick model of MacArthur (1957), the sequential 
breakage models of Sugihara (1980), and the niche ap-

portionment models of Tokeshi (1990, 1996). According 
to these models a common limiting resource (or the total 
niche space) is divided among the species by a two step 
process (Tokeshi 1996, 1999). First the niche space is di-
vided into two parts. The second step implies the choice 
of one of these parts for further division. Different prob-
ability distributions for both steps generate now a whole 
series of models.

However, despite of the seeming simplicity of the algo-
rithms all these models rely on several hidden assumptions 
that make them difficult to apply and to test. First, the con-
cept of a common limiting resource that is divided among 
the species (MacArthur 1957; Tokeshi 1990) immediately 
implies severe interspecific competition. Further, niche di-
vision is assumed to be the dominating process in assigning 
abundances. Any abundance influencing mechanism other 
than resource division would bias the apportionment algo-
rithms and produce deviating SADs. Second, niche based 
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models do not consider fluctuations in abundance while 
either dealing only with point estimates of abundance (for 
instance the yearly abundance) or while averaging over 
longer times. Third, the models do not include temporal 
and spatial species turnover (Ulrich 2001, 2007). Hence 
these models either assume communities to be stable with 
respect to its species composition or silently assume that 
immigrating species occupy preexisting empty niches after 
local species extinction. Fourth, niche apportionment mod-
els necessarily apply only to the local, the ecosystem scale. 
At the regional scale common limiting resources for which 
all species compete are hard to envision. 

A second group of models assumes that SADs follow 
certain statistical distributions. Most prominent among 
these are the log-series (Fisher et al. 1943) expected from 
random samples from a spatially or temporally Poisson 
distributed community (Tokeshi 1999; Magurran & Hen-
derson 2003) and the lognormal (Preston 1962) frequently 
associated with the central limit theorem of statistics (May 
1975). While these models are less forced by the problems 
of the niche apportionment models they appear to be main-
ly statistical descriptors of SADs without deeper biological 
meaning (Tokeshi 1999). Their parameters are difficult to 
interpret within the framework of existing ecological mod-
els on abundance and diversity. Nevertheless they are used 
as null models (McGill 2003; McGill et al. 2007) assuming 
that any deviation for instance from the lognormal should 
be caused by species specific and environmental factors 
(Ugland & Gray 1982; Nummelin 1998; but see William-
son & Gaston 2005).

Recently, neutral model approaches (Solé & Alonso 
1998; Hubbell 2001; Bell 2001) proved to produce SADs 
similar to those found in nature (Chave 2004; Ulrich 2004; 
McGill et al. 2006). According to the most elaborate of 
these approaches, the ecological drift model (EDM) of 
Hubbell (2001), local communities are assembled (irre-
spective of species membership) by simple birth and death 
processes, by dispersion, and by speciation events. Never-
theless, to produce realistic results EDM has to assume that 
the total number of individuals (the carrying capacity) of 
the focal community is fixed and limited by the available 
amount of resources. Hence, EDM still relies on competi-
tion (between individuals) for a limited total niche space 
(Hubbell 2003; Hubbell & Lake 2003) as a main driver of 
community assembly. However, it switches the focus from 
species as the major players in the competition game to 
individuals abolishing thus the distinction between inter- 
and intraspecific competition. As the niche apportionment 
models it is a theory for ecologically equivalent species. 

None of the above models considers body size as a fac-
tor that affects abundances. The neutral and niche orien-
tated models rather explicitly (Hubbell 2001) or implicitly 
assume that all species are of similar size because different 
sized species would also be limited by different resources 

contrary to the basic assumptions of these models. How-
ever, even a short survey of the literature (Ulrich & Ollik 
2003) reveals many examples where niche models were 
applied to communities spanning over several magnitudes 
of body size. On the other hand, there is an extensive lit-
erature on the shapes of abundance – body weight distribu-
tions (AWDs; cf. Blackburn & Gaston 1997 and Gaston & 
Blackburn 2000 for reviews) and the recent development 
of the metabolic theory of ecology (Brown et al. 2004; 
Savage et al. 2004) highlights the need to incorporate body 
size into models of relative abundance. 

2. The model

The present model uses two basic ecological distributions. 
First, most communities have more medium sized species 
than very large or very small ones. This well know spe-
cies – body weight distribution (SWD) is for many verte-
brate communities right skewed lognormal (Kozłowski & 
Gawełczyk 2002; Smith et al. 2004), whereas for inver-
tebrate communities the available evidence rather points 
to approximately symmetrical lognormal distributions 
(Chislenko 1981; Novotny & Kindlmann 1996; Ulrich 
2006). The present model uses the well-known Weibull 
distribution to generate symmetric and skewed lognormal 
distributions of species numbers S along the body weight 
axis 
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where β and η are the shape parameters and w denote log-
transformed body weight classes. 

Second, according to the metabolic theory of ecology 
(Brown et al. 2004) long-term carrying capacities K of 
species (equilibrium abundances) scale allometrically to 
body weight W (the carrying capacity – body weight dis-
tribution KWD). Despite some discussion around the slope 
value (White & Seymour 2003; Kozłowski & Konarzewski 
2004; Brown et al. 2005; Ulrich et al. 2005; Farrell-Gray 
& Gotelli 2005; Reich et al. 2006) there is ample evidence 
that at least animal KWDs scatter around a slope of – 0.75 
(Brown et al. 2004, 2005; Savage et al. 2004). Hence 

K = K0W – 0.75     (2)

with K0 being a normalizing constant. The combination of 
the SWD (eq. 1) and the KWD (eq. 2) provides now the 
distribution of carrying capacities for a community of S 
species spanning over a range of body sizes W (Fig. 1). 
This distribution is predicted to be left skewed lognormal 
in the case of a right skewed SWD (Fig. 1B) and lognormal 
in the case of a symmetrical SWD (not shown).
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However, species abundances are not fixed at the car-
rying capacities. The present model further assumes that 
species abundances N fluctuate randomly in time around 
the respective carrying capacities K. Such temporal abun-
dance fluctuations can be modelled by a simple random 
walk around K (the drunkeners walk). 

Ni+1 = Nienorm(0,σ)+ φ(K,Ni)   (3)

In this model norm(0,σ) is a normally distributed ran-
dom variate with mean zero and standard deviation σ. The 
additive term φ(K,Ni) shifts the mean of norm to a positive 
value (higher probability of population increase) for abun-
dances below K and to a negative value (higher probabil-
ity of population decrease) for abundances above K. Most 
simply one can assume that the strength of the attractor K 
is similar for all species. To make the value of φ dependent 
on the distance of Ni from K we can define 

     (4)

Such a random walk has a fixed lower boundary (zero) 
where a species goes locally extinct. However, there is no 
sharp upper boundary. Species might achieve abundances 
well above K. This is not uncommon and for instance ar-
thropods frequently reach abundance peaks that are several 
hundred times higher than normally. Below I will show 
that this inherent asymmetry in abundance boundaries pre-
dicts not only observed SAD shapes but also a series of 
other patterns frequently observed in real communities. 

3. Methods

For the simulations below I used either the right skewed 
lognormal SWD model (β = 2.5; Fig. 1) or a symmetri-
cal lognormal SWD with 200 species and η = 0.5 (one 
log2 weight class; a community of similar sized species) 
and η = 5 (ten log2 weight classes; a community spanning 
over three orders of magnitude in body weight, shown in 
Fig. 1). K0 was arbitrarily set to 10,000. These parameter 
settings assign the least abundant species carrying capaci-
ties around 150, values well above the extinction threshold 
of one. 

For each random walk I used 10,000 steps. This number 
proved to be enough to get a stable pattern. If a species 
went extinct (Ni < 1) it was replaced by a new species 
of the same body weight, which started at low abundance 
(N1 = 2). I used the last 50 time steps to study extinction 
probabilities and temporal patterns of species occurrences. 
All computations were done using the program RAD (Ul-
rich 2002, available at http//www.uni.torun.pl/~ulrichw). 

I used the mean – variance ratio in form of the index 
of Lloyd (1967) (J = σ2 / μ2 – 1/μ + 1) to assess the degree 
of temporal variability. Regression slopes refer always to 
model I least square regressions. Basic statistics were done 
with Statistica 7.1 (StatSoft 2005). Errors refer always to 
standard errors. 
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Figure 1. A: KWD and the SWD (10 log2 weight classes) used for simulation. The original KWD slope was set to – 0.75, SWD 
parameters β = 2.5, η = 5. B: The combination of both distributions predicts an unsymmetrical S-shaped (Whittaker plot) 
SAD (left skewed in the Preston plot: γ = – 0.33 ± 0.17) with an excess of relatively rare species
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4. Model predictions

4.1. SAD shapes

In the case of low temporal variability (σ = 0.01) and 
a right skewed SWD (β = 2.5) the present models predicts 
asymmetrical sigmoid SADs (left skewed in Preston plots) 
irrespective of whether the community is made of simi-
lar sized species (Fig. 2A) or spans over a wide range of 
body sizes (Fig. 2B). Higher temporal variability (σ = 2), 
shifts the SADs towards shapes that lack their lower cur-
vature typical for the sigmoid class of models (Fig. 2C, 
D). The distributions become more and more right skewed 
(Fig. 2C, D). 

In the case of low temporal variability (σ = 0.01) asym-
metrical right skewed SWDs produce left skewed S-shaped 
SADs at wider ranges of body sizes. However, for com-
munities of similar sized species (one to two log2 body size 
classes) the model predicts symmetrical SADs (Fig. 3A). 
A symmetrical SWD produced symmetrical S-shaped SADs 
irrespective of the range of body sizes (Fig. 3B). A higher 
temporal variability (σ = 2) changes this picture. Irrespec-

tive of the SWD shape a trend towards right skewed SADs 
at higher ranges of body sizes is predicted (Fig. 3C, D). 
The SADs become less sigmoid shaped while progressive-
ly lacking their lower curvature (Fig. 2C, D). However, 
communities of similar sized species are again predicted to 
have symmetrical sigmoid shaped SADs (Fig. 3C, D). 

4.2. Temporal patterns

At low temporal variability (low values of the parame-
ter σ) species remain near their carrying capacities during 
the random walk and extinction events (Nt < 1) are rare. 
Temporal species turnover is predicted to increase with 
higher temporal variability (higher values of σ) due to the 
accumulation of rare species that enter the assemblage in-
frequently. The result is a significant bimodal distribution 
of persistence with a group of core species that persisted 
over time and a group of satellite species that occurred 
infrequently (Fig. 4). 

Intuitively, the model parameter σ that influences the 
degree of variability around the carrying capacity should 
directly influence the temporal variability of species. In-
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Figure 2. Predicted SAD shapes in dependence on the number of log2 body weight classes and the degree of temporal variability. 
A: one log2 weight class and low variability (parameter σ of eq. 4 = 0.01), Preston plot skewness γ = – 0.22 ± 0.16; B: ten 
log2 weight classes and low variability (σ = 0.01), γ = – 0.29 ± 0.16; C: one log2 weight classes and high variability (σ = 2.0), 
γ = 0.12 ± 0.17; D: ten log2 weight classes and high variability (σ = 2.0), γ = 4.33 ± 0.17 
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temporal variability parameter σ and the span of body 
weights, the present model predicts that temporal variabil-
ity is related to mean abundance according to a propor-
tional rescaling process in which the variance in abundance 
scales to the square of mean abundance (Fig. 5B). 

The model further relates extinction probabilities to the 
degree of temporal variability σ and to the carrying capac-
ity K. The higher σ and the lower K were the higher was 
the probability of extinction. Extinction probability is pre-
dicted to be inversely correlated to K (Fig. 6A) and to the 
mean abundance of a species (Fig. 6B). Mean abundance 
appeared to be a better predictor of extinction probability 
than K (Fig. 6). 

4.3. Biomasses

At high temporal variability (σ = 2), the present model 
generated typical AWDs that were in most model runs tri-
angular (Fig. 6A). Using arithmetic mean abundances per 
log2 weight class AWDs were only approximately allom-
etric and had always slops less then the value of – ¾ pre-
dicted for the KWD slope (Fig. 7A). Further, the resulting 
biomass – body weight distribution (BWD) is character-
ized by a high scatter of data points. Again, using mean 
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Figure 3. The dependence of the skewness of the SAD on the range of body sizes. A: symmetrical SWD, low variability (σ = 0.01); 
B: right skewed SWD, low variability (σ = 0.01); C; symmetrical SWD, high variability (σ = 2.00); D; right skewed SWD, 
high variability (σ = 0.01)

Figure 4. High temporal variability (same assemblage as in 
Fig. 2A) produces a growing number of infrequent 
species resulting in a core – satellite species distribu-
tion of temporal occurrence. Given is the frequency of 
species that occurred in the last 50 steps of the random 
walk 

deed, a higher model parameter σ resulted in a higher tem-
poral variability (estimated by the Lloyd index J) than at 
lower values of the parameter σ. In the latter case, J has 
a value around unity independent of the mean abundance. 
At higher temporal variability, J increases with mean abun-
dance (Fig. 5A). However, irrespectively of a low or high 
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abundances per weight class the model predicts an initial 
increase in biomass and a rather constant biomass at me-
dium to high weight classes (Fig. 7B). 

At low temporal variability (σ = 0.01) AWDs are pre-
dicted to follow power functions with slopes similar to 
the underlying KWD (Fig. 7C). Biomass increased with 
body weight (Fig. 7D) and the slopes of the BWD scat-
tered around 1/4 for an initial KWD slope of – 0.75 (not 
shown). 

5. Discussion

The present model is based on three major assumptions, an 
allometric KWD with a negative slope, a lognormal SWD, 
and a random walk of species abundances without sharp 

upper abundance boundary. In this way the model reduces 
the task to explain observed SADs to the explanation of 
two basic ecological distributions. The allometric KWD 
is well established (Cyr et al. 1997; Brown et al. 2004) 
and recent metabolic theory (Savage et al. 2005; Brown et 
al. 2005) seems to come close to a general derivation of 
this distribution from first principles. The lognormal SWD 
is also one of the best documented macroecological pat-
terns (Loder 1997; Gaston & Blackburn 2000; Kozłowski 
& Gawelczyk 2002; Ulrich 2006). However, there are still 
several different models that aim at explaining the pattern 
(McKinney 1990; Maurer et al. 1992; Brown et al. 1993; 
Kozłowski & Weiner 1997; Kindlmann et al. 1999; Ulrich 
2006). 

Random walks are a common tool for modelling tem-
poral variability of species abundances, dispersal, species 
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Figure 5. Temporal variability of species in dependence of their mean abundance (estimated from mean m and variance s2 of the last 
50 steps in the random walk). A: A high value of the variability parameter σ (σ = 2.0; open squares) results in a higher 
mean temporal variability (estimated by the index of Lloyd J) than a low value of σ (σ = 0.01, full dots). At higher val-
ues of σ temporal variability is predicted to increase with man abundance (slope of the logarithmic regression: z = 0.1 ± 
0.01; p(t) < 0.0001). B: Variability is predicted to scale to mean abundance according to a proportional rescaling process 
(σ2 ∝ µ2). Regression equation: y = 0.002x2.04 ± 0.02. Same assemblage as in Fig. 3A. Both figs. consider only model species 
that occurred at least five times during the last 50 steps of the random walk

Figure 6. Extinction probability (estimated from the frequency of abundances < 0 during the last 50 steps of the random walk) in de-
pendence on the carrying capacity (A) and the mean abundance. Spearman’s rank correlation in A: r = – 0.37 (p < 0.0001); 
in B: r = – 0.53 (p < 0.0001) 
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turnover, and extinction probabilities (Foley 1994; Byers 
2001). At first sight it seems therefore astonishing that 
there are no elaborated random walk models of relative 
abundance although there are some scattered attempts in 
the statistical literature (Engen & Lande 1996; Bramson 
et a.1999; Ulrich 2001). The dynamics model of Hughes 
(1984) can also be viewed as a random walk model al-
though it has never been tested seriously due to its com-
plicated structure. One reason for this lack of true random 
walk SAD models is surely that it is difficult to invoke 
upper and lower abundance boundaries that have reasona-
ble ecological interpretations (Pollard et al. 1987; Crowley 
1992). A simple random walk with reflecting boundaries 
(the Ornstein Uhlenbeck model) gives always symmetrical 
lognormal SADs. Further, fixed boundaries have an unde-
sired effect on evenness. Because at larger community size 
more species are placed within the abundances bounda-
ries evenness will be closely correlated to species richness. 
These are not realistic features as has been demonstrated 
by Williamson & Gaston (2005). In turn, random walks 
without boundaries result immediately in unrealistic high 
abundances of some species and the span of abundances is 
closely correlated to the number of model steps. 

The present model overcomes these problems by refer-
ring to species specific mean abundances (long-term car-
rying capacities) around which abundances fluctuate. This 
seems a realistic model feature. Many long-term studies 
of abundance fluctuations identified a pattern where trend 
corrected medium abundances were more frequent than 
very high or very low ones (Taylor et al. 1980). Further, 
in natural populations the variability – mean relationship 
is frequently of the allometric rescaling type (σ2 = µz) with 
z being around 2 (Taylor’s power law, Taylor 1961; Taylor 
et al. 1982). The present model predicts the same pattern 
(Fig. 5B). 

The present model is still species centred like the niche 
and the distribution oriented classes of models. However, 
it differs from the niche models in not referring to any 
common resources or niche space. It thus overcomes the 
problems these models are confronted with. The model can 
also be applied to different ecological scales from local to 
continental, while all niche orientated models strictly apply 
only to a local scale where it can reasonable be assumed 
that competitive effects influence community structure. 
Neutral models of relative abundance, on the other hand, 
are basically individual orientated and do not differentiate 
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between intra- and interspecific processes (Bell 2001; Hub-
bell 2001; Chave 2004; Ulrich 2004). They refer to eco-
logically equivalent individuals of the same trophic level 
and of similar body size. Hence, they apply to local and 
regional spatial scales and also predict patterns of temporal 
variability. Neutral models predict skewed sigmoid SAD 
shapes at the local and log-series SADs at the regional, the 
metacommunity scale (at least under point mutation spe-
ciation, Hubbell 2001). The latter prediction differs from 
that of the present model which predicts the same SAD 
shapes at different spatial scales. Regional or continental 
SAD shapes have been studied only for a small number 
of species rich taxa Ulrich and Ollik (2003), Nee et al. 
(1992), Cantos and Gomez-Mazaneque (1998), Blackburn 
and Gaston (1997) reported asymmetric sigmoid SADs and 
an excess of rare species for birds. A similar pattern was 
found in tropical trees (Hubbell 2001). The data of Purtauf 
et al. (2005) however imply a log-series SAD for the re-
gional abundance of ground-beetles. 

The distribution orientated models like the lognormal, 
the geometric, and the log-series were always seen as 
mere descriptors of community structure without deeper 
ecological interpretation of their parameters (May 1975). 
The same critiques holds for the niche orientated models. 
The niche division probabilities they use were never criti-
cally examined and interpreted. The three parameters of 
the present model, however, have clear ecological inter-
pretations. They refer to the KWD slope that follows from 
metabolic theory, the skewness of the SWD and the de-
gree of temporal variability σ. All three parameters can in 
principle be measured and be used to derive the associated 
SAD. Comparing this SAD with the observed one allows 
therefore for a straightforward testing of the model. This 
feature differs from the niche based and the neutral models 
which are notoriously hard to falsify. 

The present model makes a series of predictions about 
the shape of SADs that can be compared to those of the 
above two classes of models. First, it predicts that the ba-
sic SAD shape is sigmoid. This contrasts to all models 
that predict geometric SAD shapes like the Motomura 
model (Motomura 1932), the random assortment models 
of Tokeshi (1990) or power function shapes like the fractal 
model of Mouillot et al. (2000). However, a clear sigmoid 
shape should only appear at comparably low temporal vari-
ability. At higher variability and therefore a higher degree 
of species turnover (Fig. 4), the SAD is predicted to lack 
its lower curvature and to have in its lower part a shape 
similar to a log-series. Indeed, Fisher et al. (1943) derived 
the log-series under the assumption that species occurrence 
(for instance due to an extinction/immigration equilibri-
um) is a random Poisson process (Magurran & Henderson 
2003; Chave 2004). 

Second, the present model predicts that the skewness 
of the SAD depends on the range of body sizes within 

the community. A marked skewness is only predicted for 
communities of different sized species. Left skewed SADs 
that captured so much recent attention (Tokeshi 1999; Gas-
ton & Blackburn 2000) are only predicted for communties 
with also skewed underlying SWDs and comparably low 
degrees of temporal variability (Fig. 3). Indeed the best ex-
amples for left skewed SADs with an excess of rare species 
stem mainly from birds (Nee et al. 1991; Gaston & Black-
burn 2000) and trees (Hubbell 2001) that have comparably 
stable population sizes. Most reported invertebrate SADs, 
in turn, are right skewed (Hughes 1984; Morse et al. 1988; 
Novotny & Basset 2000; Ulrich 2005). Nevertheless, the 
relationship between SAD skew and body size has appar-
ently not been studied systematically.

Third, a series of recent papers (Magurran & Hend-
erson 2003; Ulrich & Ollik 2004; Connolly et al. 2005; 
Ulrich & Zalewski 2006, 2007) reported different SAD 
shapes of spatially or temporarily defined core and satel-
lite species. Core species were found to follow lognormal 
distributions. Satellite species, on the other hand, appeared 
to follow either a log-series (Magurran & Henderson 2003) 
or power functions (Ulrich & Ollik 2004; Ulrich & Zal-
ewski 2006) as expected if spatial or temporal occurrence 
patterns were self-similar. The present model predicts ex-
actly such a distinction (Fig. 8) with core species having 
a symmetrical sigmoid SAD and satellite species following 
a power function SAD. This result implies that it might 
not be necessary to invoke ecological differences between 
core and satellite species to explain observed SAD shapes 
(Magurran & Henderson 2003). It might most parsimoni-
ous be explained as being a side effect of the temporal 
processes that generate observed SADs. 

Fourth, the present model predicts shapes of body size 
dependent distributions. In particular it explains the often 
observed triangular shape of the ABW as a statistical arte-
fact due to uneven species numbers per size class (Fig. 7A, 
C). A similar explanation has already been favoured by 
Ulrich (1999) and Gaston & Blackburn (2000). Further, 
metabolic theory predicts the total biomass of a commu-
nity to rise allometrically to body weight with a slope of 
¼ (Brown et al. 2004). The present model predicts a very 
similar pattern (Fig. 7D). However, at higher temporal var-
iability the scatter of data points causes that community 
biomass rises significantly only at lower body weights. For 
higher body weights statistical averaging on a log scale 
causes biomasses per weight class to be rather constant 
(Fig. 7B). Very similar patterns have been reported for 
tropical arthropods (Stork & Blackburn 1993) and temper-
ate Hymenoptera (Ulrich 1999, 2005).

In summary, the present model predicts SAD shapes 
and associated ecological patterns like core – satellite dis-
tributions, extinction probabilities, and body weight de-
pendent distributions to be mainly dependent on the de-
gree of temporal variability. It is tempting to relate this 



27Body size and the relative abundance of species

prediction to the traditional differentiation between K- and 
r-selected species (Pianka 1970). r-selected species are 
particular common in arthropod communities where many 
species have pronounced abundance fluctuations. K-spe-
cies, on the other hand, are often vertebrates with compa-
rably moderate abundance fluctuations. Hence, the present 
model predicts vertebrates to have predominantly sigmoid 
SAD shapes, low local extinction probabilities, and body 
weight dependent distributions in accordance to metabolic 
theory. Arthropod communities should often have SAD 
shapes without lower curvature (right skewed in Preston 
plots), high extinction probabilities, and widely varying 
body weight dependent distributions that only moderately 
follow the predictions of metabolic theory. 

Acknowledgments

I thank Marcin Ollik and Simone Fattorini for critical and 
valuable suggestions on the manuscript. Miss Hazel Pear-
son kindly improved my English. This work was in part 
supported by a grant from the State Committee for Scien-
tiic Research No. 3 F04F 034 22. 

References

Bell G., 2001, Neutral macroecology, Science 293: 
2413 – 2418.

Blackburn T. M. & Gaston K. J., 1997, A critical assess-
ment of the form of the interspecific relationship be-
tween abundance and body size in animals, Journal of 
Animal Ecology 66: 233 – 249.

Bramson M., Cox J. T. & Durrett R., 1999, A spatial model 
for the abundance of species, Annals of Probability 26: 
658 – 709.

Brown J. H., Marquet P. A. & Taper M. L., 1993, Spatial 
scaling of species composition: body masses of North 
American land mammals, American Naturalist 142: 
573 – 584.

Brown J. H., Gillooly J. H., Allen A. P., Savage V. M. & 
West G. B., 2004, Towards a metabolic theory of ecol-
ogy, Ecology 85: 1771 – 1789.

Brown J. H., West G. B. & Enquist B. J., 2005, Yes, West, 
Brown and Enquist’s model of allometric scaling is 
both mathematically correct and biologically relevant, 
Functional Ecology 19: 735 – 738.

Byers J. A., 2001, Correlated random walk equations of 
animal dispersion resolved by simulation, Ecology 82: 
1680 – 1690.

Cantos F. J. & Gomez-Mazaneque A., 1998, Informe so-
bre la campana de la anillamiento de aves en Espana, 
Ecologia 12: 351 – 401.

Chave J., 2004, Neutral theory and community ecology, 
Ecology Letters 7: 241 – 253.

Chislenko L. L., 1981, Structure of fauna and flora as de-
pendent on organismal body size, Moscow Univ. Press, 
in Russian.

Connolly S. R., Hughes T. P., Bellwood D. R. & Karlson 
R. H., 2005, Community Structure of Corals and Reef 
Fishes at Multiple Scales, Science 309: 1363 – 1365.

Crowley P. H., 1992, Density dependence, boundedness, 
and attraction: detecting stability in stochastic systems, 
Oecologia 90: 246 – 254.

Cyr H., Peters R. H. & Downing J. A., 1997, Population 
density and community size structure: comparison of 
aquatic and terrestrial systems, Oikos 80: 139 – 149.

Engen S. & Lande R. 1996, Population dynamic models 
generating the lognormal species abundance distribu-
tion, Mathematical Bioscience 132: 169 – 183.

Farrell-Gray C. C. & Gotelli N. J., 2005, Allometric ex-
ponents support a 3/4-power scaling law, Ecology 86: 
2083 – 2087.

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50
Rank order

R
el

at
iv

e 
ab

un
da

nc
e A

0.001

0.01

0.1

1

1 10 100
Rank order

R
el

at
iv

e 
ab

un
da

nc
e B

Figure 8. SADs of core (A) and satellite (B) species of the species of the assemblages of Fig. 2A and Fig. 4 have different shapes. 
Core species have a symmetrical S-shaped SAD in accordance to a lognormal distribution (fitted by the norm algorithm de-
scribed in Ulrich and Ollik (2004); lognormal variance = 0.75). Satellite species have a power function SAD (Y= 0.32X – 1.34; 
R2 = 0.99)



28 Werner Ulrich

Fisher A. G., Corbet S. A. & Williams S. A., 1943, The 
relation between the number of species and the number 
of individuals in a random sample of an animal popula-
tion, Journal of Animal Ecology 12: 42 – 58.

Foley P., 1994, Predicting extinction times from environ-
mental stochasticity and carrying capacity, Conserva-
tion Biology 8: 124 – 137.

Gaston K., 1994, Rarity, Chapman & Hall, London.
Gaston K. J. & Blackburn T. M., 2000, Pattern and process 

in macroecology, Blackwell, Oxford.
Hubbell S. P., 2001, The unified theory of biogeography 

and biodiversity, University Press, Princeton.
Hubbell S. P., 2003, Modes of speciation and the lifespans 

of species under neutrality: a response to the comment 
of Robert E. Ricklefs, Oikos 100: 194 – 200.

Hubbell S. P. & Lake J., 2003, The neutral theory of biodi-
versity and biogeography, and beyond, [in:] T. M. Black-
burn & K. J. Gaston (eds.), Macroecology: patterns and 
process. Blackwell, Oxford: 45 – 63.

Hughes R. G., 1984, A model of the structure and dynam-
ics of benthic marine invertebrate communities, Marine 
Ecology Progress Series 15: 1 – 11.

Kindlmann P., Dixon A. F. G. & Dostalkova I., 1999, Does 
body size optimization result in skewed body size dis-
tributions on a logarithmic scale?, American Naturalist 
153: 445 – 447.

Kozłowski J. & Weiner J., 1997, Interspecific allometries 
are byproducts of body size optimization, American 
Naturalist 149: 352 – 380.

Kozłowski J. & Gawełczyk A. T., 2002, Why are species’ 
body size distributions usually skewed to the right?, 
Functional Ecology 16: 419 – 432.

Kozłowski J. & Konarzewski M., 2004, Is West, Brown 
and Enquist’s model of allometric scaling mathemati-
cally correct and biologically relevant?, Functional 
Ecology 18: 283 – 289.

Kunin W. E. & Gaston K. (eds.), 1997, The biology of rar-
ity, Chapman & Hall, London.

Lloyd M., 1967, Mean crowding, Journal of Animal Ecol-
ogy 36: 1 – 30.

Loder N., 1997, Insect species – body size distributions, 
Thesis Univ. Sheffield.

MacArthur R. H., 1957, On the relative abundance of bird 
species, Proceedings of the National Academy of Sci-
ence USA 43: 293 – 294.

Magurran A. E., 2003, Measuring biological diversity, 
Blackwell Publishers, Maldan, MA.

Magurran A. E., 2005, Species abundance distributions: 
pattern or process? Functional Ecology 19: 177 – 181.

Magurran A. E., 2007, Species abundance distributions 
overtime, Ecology Letters 10: 347 – 354.

Magurran A. E. & Henderson P. A., 2003, Explaining the 
excess of rare species in natural species abundance dis-
tributions, Nature 422: 714 – 716.

Maurer B. A., Brown J. H. & Rusler R. D., 1992, The 
micro and macro in body size evolution, Evolution 46: 
939 – 953.

May R. M., 1975, Patterns of species abundance and diver-
sity, [in:] M. L. Cody, J. M. Diamond (eds.), Ecology 
and evolution of communities, Belknap, Cambridge: 
81 – 120.

McGill B. J., 2003, Does Mother Nature really prefer rare 
species or are log-left-skewed SADs a sampling arte-
fact?, Ecology Letters 6: 766 – 773.

McGill B., Maurer B. A. & Weiser M. D., 2006, Em-
pirical evaluation of the neutral theory, Ecology 87: 
1411 – 1423. 

McGill B. et al., 2007, Species abundance distributions: 
moving beyond single prediction theories to integra-
tion within an ecological framework, Ecology Letters 
10: 995 – 1015.

McKinney M. L., 1990, Trends in body size evolution, [in:] 
K. C. McNamara (ed.), Evolutionary trends, Univ. Ari-
zona Press, Tucson: 75 – 118.

Morse D. R., Stork N. E. & Lawton J. H., 1988, Species 
number, species abundance and body length relation-
ships of arboreal beetles in Bornean lowland rain forest 
trees, Ecological Entomology 13: 25 – 37.

Motomura I., 1932, On the statistical treatment of commu-
nities, Zoological Magazine Tokyo 44: 379 – 383.

Moulliot D., Lepretre A., Andrei-Ruiz M.-C. & Viale D., 
2000, The fractal model: an new model to describe the 
species accumulation process and relative abundance 
distribution (RAD), Oikos 90: 333 – 342.

Nee S., Harvey P. H. & May R. M., 1991, Lifting the veil 
on abundance patterns, Proc. R. Soc. Lond. B 243: 
161 – 163.

Novotny V. & Basset Y., 2000, Rare species in communi-
ties of tropical insect herbivores: pondering the mystery 
of singletons, Oikos 89: 564 – 572.

Novotny V. & Kindlmann P., 1996, Distribution of body 
sizes in arthropod taxa and communities, Oikos 75: 
75 – 82.

Nummelin M., 1998, Log-normal distribution of species 
abundances is not a universal indicator of rain forest dis-
turbance, Journal of Applied Ecology 35: 454 – 457.

Pianka E. R., 1970, On r- and K-selection, American Natu-
ralist 104: 592 – 597.

Pollard E., Lakhani K. H. & Rothery P., 1987, The de-
tection of density-dependence from a series of annual 
censuses, Ecology 68: 2046 – 2055.

Preston F. W., 1962, The canonical distribution of com-
monness and rarity. Part I and II, Ecology 43: 185 – 215, 
410 – 432.

Purtauf T., Dauber J. & Wolters V., 2005, The response 
of carabids to landscape simplification differs between 
trophic groups, Oecologia 142: 458 – 464.



29Body size and the relative abundance of species

Reich P. B., Tjoelker M. G., Machado J.-L. & Oleksyn J., 
2006, Universal scaling of respiratory metabolism, size 
and nitrogen in plants, Nature 439: 457 – 461.

Savage V. M., Gillooly J. F., Woodruff W. H., West G. B., 
Allen A. P., Enquist B. J. & Brown J. H., 2004, The pre-
dominance of quarter-power scaling in biology, Funct. 
Ecol. 18: 257 – 282.

Smith F. A. et al., 2004, Similarity of Mammalian body 
size across the taxonomic hierarchy and across space 
and time, American Naturalist 163: 672 – 691.

Solé R. & Alonso D., 1998, Random walks, fractals and the 
origins of rainforest diversity, Advances in Complex 
Systems E 62: 8466 – 8484.

Sugihara G., 1980, Minimal community structure: an ex-
planation of species abundance patterns, American Nat-
uralist 116: 770 – 787.

StatSoft, 2005, Statistica (data analysis software system), 
version 7.1, www.statsoft.com. Retrieved 23.01.2006.

Stork N. E. & Blackburn T. M., 1993, Abundance, body 
size and biomass of arthropods in tropical forest, Oikos 
67: 483 – 489.

Taylor L. R., 1961, Aggregation, variance and the mean, 
Nature 332: 721 – 722.

Taylor L. R., Woiwod I. P. & Perry J. N., 1980, Variance 
and the large scale spatial stability of aphids, moths and 
birds, Journal of Animal Ecology 49: 831 – 854.

Taylor L. R. & Woiwod I. P., 1982, Comparing synop-
tic dynamics. I. Relationship between inter- and intra-
specific spatial and temporal variance/mean population 
parameters, Journal of Animal Ecology 51: 879 – 906.

Tokeshi M., 1990, Niche apportionment or random assort-
ment: species abundance patterns revisited, Journal of 
Animal Ecology 59: 1129 – 1146.

Tokeshi M., 1996, Power fraction: a new explanation of 
relative abundance patterns in species-rich assemblag-
es, Oikos 75: 543 – 550.

Tokeshi M., 1999, Species coexistence, Blackwell, Ox-
ford.

Ugland K. I. & Gray J. S., 1982, Lognormal distributions 
and the concept of community equilibrium, Oikos 39: 
171 – 178.

Ulrich W., 1999, The density – size and the biomass – 
weight distribution is generated by the species – size 

distribution together with density fluctuations: evidence 
from model species distributions in the Hymenoptera, 
Polish Journal of Ecology 47: 87 – 101.

Ulrich W., 2001, Relative abundance distributions of spe-
cies: The need to have a new look at them, Polish Jour-
nal of Ecology 49: 393 – 407.

Ulrich W., 2002, RAD – a FORTRAN program for the 
study of relative abundance distributions. www.uni.to-
run.pl/~ulrichw. Retrieved 23.01.2006.

Ulrich W., 2004, Neutral macroecology – ecology without 
biology?, Ecological Questions 4: 113 – 126.

Ulrich W., 2005, Die Hymenopteren einer Wiese auf Kalk-
gestein: Ökologische Muster einer lokalen Tiergemein-
schaft, Schriftenreihe des Forschzentrums Waldökosy-
steme A 195: 1 – 203.

Ulrich W., 2006, Body size distributions of European Hy-
menoptera, Oikos 114: 518 – 528. 

Ulrich W., 2007, Species abundance distributions in space 
and time, Ecological Questions 8: 15 – 20.

Ulrich W., Buszko J. & Czarnecki A., 2005, The local in-
terspecific abundance – body weight relationship of 
ground beetles: A counterexample to the common pat-
tern, Polish Journal of Ecology 53: 113 – 117.

Ulrich W. & Ollik M., 2003, The internet database of 
relative abundance distributions, www.uni.torun.
pl/~ulrichw. Retrieved 23.01.2006.

Ulrich W. & Ollik M., 2004, Frequent and occasional spe-
cies and the shape of relative abundance distributions, 
Diversity & Distributions 10: 263 – 269.

Ulrich W. & Zalewski M., 2006, Abundance and co-occur-
rence patterns of core and satellite species of ground 
beetles on small lake islands, Oikos 114: 338 – 348.

Ulrich W. & Zalewski M., 2007, Are ground beetles neu-
tral?, Basic and Applied Ecology 9: in press.

Williamson M. & Gaston K. J., 2005, The lognormal dis-
tribution is not an appropriate null hypothesis for the 
species – abundance distribution, Journal of Animal 
Ecology 74: 409 – 422.

White C. R. & Seymour R. S., 2003, Mammalian basal 
metabolic rate is proportional to body mass (2/3), Pro-
ceedings of the National Academy of Sciences USA 
100: 4046 – 4049.


