Bayesian Analysis of the Box-Cox Transformation in Stochastic Volatility Models

Anna Pajor

DOI: http://dx.doi.org/10.12775/DEM.2009.008

Abstract


In the paper, we consider the Box-Cox transformation of financial time series in Stochastic Volatility models. Bayesian approach is applied to make inference about the Box-Cox transformation parameter (λ). Using daily data (quotations of stock indices), we show that in the Stochastic Volatility models with fat tails and correlated errors (FCSV), the posterior distribution of parameter λ strongly depends on the prior assumption about this parameter. In the majority of cases the values of λ close to 0 are more probable a posteriori than the ones close to 1.


Keywords


Box-Cox transformation, SV model, Bayesian inference

Full Text:

PDF

References


Bauwens, L., Lubrano, M. (2002), Bayesian Option Pricing Using Asymmetric GARCH Models, Journal of Empirical Finance, 9, 321–342.

Campbell, J.Y., Lo, A.W., MacKinlay, A.C. (1997), The Econometrics of Financial Markets, Princeton University Press, Chichester 1997.

Clark, P.K. (1973) A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica, 41, 135–155.

Duan, J.-C. (1999), Conditionally Fat-Tailed Distributions and the Volatility Smile in Options, Working Paper, http://www.bm.ust.hk/~jeduan.

Hafner, C.M., Harwartz, H. (1999), Option Pricing under Linear Autoregressive Dynamics, Heteroskedasticity, and Conditional Leptokurtosis, Journal of Empirical Finance, 8(1), 1–34.

Härdle, W., Hafner, C.M. (2000), Discrete Time Option Pricing with Flexible Volatility Estimation, Finance and Stochastics, 4(2), 189-207.

Jacquier, E., Polson, N., Rossi, P. (2004), Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Errors, Journal of Econometrics, 122, 185–212.

Newton, M.A., Raftery, A.E. (1994), Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), Journal of the Royal Statistical Society B 56, 3–48.

Pajor, A. (2003), Procesy zmienności stochastycznej SV w bayesowskiej analizie finansowych szeregów czasowych, czasowych (Stochastic Volatility Processes in Bayesian Analysis of Financial Time Series), doctoral dissertation published by Cracow University of Economics, Kraków.

Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics, J. Wiley, New York.






ISSN (print) 1234-3862
ISSN (online) 2450-7067

Partnerzy platformy czasopism