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Abstract. Inincomplete markets replication strategies may not exist and pricing of derivatives
is not an easy task. This paper presents an application of Bertsimas, Kogan and Lo’s algorithm of
determining an optimal-replication strategy. In the Merton model the likelihood function is
a product of a mixture of infinite number of components. In the paper this number is assumed to
be equal to a fixed value M+1. To determine the optimal strategy, we should estimate unknown
parameters. To this end we resort to Bayesian estimation techniques. The presented methodology
is exemplified by an empirical research.
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Introduction

The Black-Scholes model assumes a continuous path of underlying instru-
ment values. Pricing European options under the Black-Scholes model is an
easy task (Black, Scholes, 1973). Unfortunately, if we additionally include
a component responsible for jumps, we obtain a model of a risky instrument in
an incomplete market. Then, the pricing of options is more of a challenge.
In general, replication strategies do not exist (Lamberton, Lapeyre, 2000;
Shreve, 2004). Bertsimas, Kogan and Lo (2001) propose an algorithm of deter-
mining an optimal-replication strategy. The optimality is understood in a mean-
squared sense. Apart from the major drawbacks of the strategy — it is self-
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financing but it is not an admissible strategy, and its calculation may be time-
consuming — it plays a significant role in hedging and pricing derivatives.

To determine the optimal-replication strategy, the unknown parameters of
the model need to be estimated. In this paper we resort to the Bayesian estima-
tion techniques. Accounting for the parameter uncertainty inherent to the esti-
mated parameters, for which the Bayesian methodology is widely appreciated,
is relevant not only to the estimation itself, but extends also to the pricing of
optimal strategy, providing the researcher with a full (posterior) distribution of
the strategy cost (instead of a single value).

1. The Jump-Diffusion Model with M-jumps

Let (Q,S,P) denote a probability space. We consider a standard Wiener
process W = (W, )., , a Poisson process N =(N,)_, with intensity 2>0, and
a family of independent random variables Q = {QJ— D =1,2,...}. The variables

>0’

Q;’s have Gaussian distributions: Q; ~ N(yQ,aé,). It is also assumed that

o —algebras generated by W, N and Q are independent.
In the Merton model (Merton, 1976) the price of a risky instrument is gov-
erned by a jump-diffusion process P = (Pt)tZO which is the solution of the equa-

tion:

dR, = zP.dt + oP.dW, + e —1)PdN,.
The first two elements on the right-hand side define a pure diffusion process.
The last element corresponds to jumps. (Pt)tzo is an adapted and right-
continuous process. It can be shown that:

N,
P =P, exp{(y—%azjt + oW, + ZQJ}.

i1

The price between consecutive jumps is governed by a geometric Brownian
motion. The process P has a finite number of jumps on each interval [O,t].
The logarithm of the price is the solution of the equation:

dinP, :(y—%azjdt+odwt +QadN,.

Hence, for a given time step A > 0 we obtain:

NHA

In(PI+A)= In(Pt)"'(ﬂ_%o'z)A"'o'(th _Wt)+ z Qj'

j=N¢+1

It follows that the probability density function of logarithmic rates of return
is given by (Hanson, Westman, 2002):
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Pfrs)(X)= ki exp(~A8) A g{x; (1~ 62 )A + ok, 0* A+ 02K), (1)
R -0 :

where ¢(~;m,sz) denotes the density of a normal distribution with mean m and

variance s?. Therefore, the likelihood function is given by the product of an
infinite mixture of normal densities, which highly complicates the statistical
inference for the model.

In order to define a jump-diffusion model with M jumps, let us consider
a finite approximation of series (1):

0 k
kZf:‘)exp(— /M) (/m) ¢(X;(N_%O-2JA+'qu'O-2A+O-ékj’

k!

k
ziexp(—ﬂA)%gz{x;(ﬂ—%o—sz+,qu,0'2A+o*ékj, (2)
k=0 :

where M e {0, 1 2, } is a fixed constant. In the Black-Scholes framework, the

process of logarithmic returns of risky instrument is governed by an arithmetic
Brownian motion which is a pure diffusion process. Under M =0 the above
approximation collapses to the density of this arithmetic Brownian motion with
time step A (Kloeden, Platen, 1992). In the general case the integral of sum (2)
may not equal one. Therefore, to obtain a probability density function, let us
normalize the approximation given by (2):

p(Xi|9)=iww{xi:(u—%oszWQkﬁzAwékj : ®)

k=0

. (A v (1a)!
with w, = i ijoT
In the paper the logarithmic rates of return x = (xl, Xy, ) are assumed to follow

the distribution defined by (3), and the resulting model is termed the jump-
diffusion model with M jumps, or JD(M)J, in short. The construction of the
process restricts the number of jumps over any time interval A to M, with the

magnitude of each jump model with normal distribution N(,uQ,O'é). Finally, let

-1
} , k=0,...,M, being the normalizing Weightsl.

us note that the jump-diffusion specification under study is some approximation
to the Merton model. Therefore, and on a more statistical note, estimators of
JD(M)J model parameters could be treated as approximations of the Merton
model parameters.

! See Frithwirth-Schnatter (2006) for a thorough exposition on mixture modeling.
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2. Bayesian Inference for the JD(M)J Model

In the JD(M)J model there are five unknown parameters
(u, Gz,l,yQ,O'Qz)e@, where ®:R><(O,oo)><(0,oo)><R><(O,oo)c R%. The
likelihood function is given by:

p(X|9):ﬁZWk¢(Xi;[y—%0'2)A+,qu,0'2A+0'ékj. 4)

i=1 k=0

If we observe a path of some JD(M)J process we do not know whether the
observations or which of them have resulted from jumps. Moreover, we are not
able to (directly) identify an impact of the pure diffusion process and the jumps.
In other words, we do not know which component of sum (3) is “responsible”

for each observation. To solve this problem we introduce latent variables
z=(2,,..,Z,) such that Z,e{01..,M} and P(Zi = j|9)=wj, where

icfl,..,n}and je{0,1,.., M}. By means of Z,’s, we can assess the contribu-

tion made by the jumps (as compared with the pure diffusion compound) to
explain each of n observations. Increments of the Poisson process N are inde-
pendent, variables Z,,...,Z are also independent. Consequently,

o 2.0)= o xi{ - 2o 3+ ez, %8022

and

p(X|Z,¢9)= f[ (Xi ;(y —%GZJA + HoZ, ,OPA + O'éZiJ.

i=1

It is advisable to consider the following reparametrization of the model parame-
ters:

L :/IA, ho. :o__lzl hQ :él
under which vector of all the n+15 unknown quantities is given by:
(2,0)=(2,,...2,, s, Ly g g )

The Bayesian model is defined by the joint distribution of the observables x, the
hidden variables Z and the parameters & :

p(x.Z,0)= p(x2,0)p(2.0).

Under a common assumption of the mutual prior independence among the co-
variates of @, the joint prior density is formed:

p(2,6)= p(z]6)p(6)= p(k) p(h,) p(L) plugy ) plhg )Hl p(z:]6),
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where:

Pz =ilo)=w;, w, = (iﬁ)k {é(’lﬁ)j T fork=0,...,M,
p(u) = gl m, 52),

p(ha)ochv 2/2exp( Ah_/2),
p(L) oc L P2 exp(- L/ 2),
p(ﬂQ) (/UQ’mQ SQ)

p(h )ochvQ )2 exp(— BhQ/Z)

Such a choice of the prior structure (normal distributions for x and 4, the
gamma distributions Gamma(%’,?} and Gamma(7 Ej for h_ and h

respectively, and the » distribution for L) densities guarantees that the poste-
L

rior density is a bounded function even though the likelihood function is unbo-
unded (Lin, Huang, 2002). The prior structure is determined under A=B =1,

v, =10A, m, =001, s, =1, v, =5, my =0.01, s3 =1, v, =5.

Posterior characteristics of the unknown quantities are calculated via the
Markov Chain Monte Carlo (MCMC) methods (Gamerman, Lopes, 2006),
combining the Gibbs sampler, the independence and the sequential Metropolis-

Hastings algorithms, as well as the acceptance-rejection sampling. For more
details on the technicalities we refer to Kostrzewski (2011).

3. The Optimal-Replication Strategy

Pricing and hedging derivatives are among investors’ fundamental prob-
lems. Investors employ replication strategies to hedge derivatives. Unfortunate-
ly, in the case of incomplete markets such a strategy may not exist. Some idea is
to create a self-financing strategy, the value of which is “close” (at maturity) to
the one of the derivative’s payoff function. We apply the results of Bertsimas,
Kogan and Lo (2001) to define and calculate the optimal-replication strategy for
portfolios comprising a risky asset and riskless bonds. The approach involves
buying, selling, borrowing and lending the portfolio constituents. Let P, and B,
denote price of the risky instrument and value of the riskless investment at
0<t<T respectively. The payoff of an European option at maturity T is deno-
ted by F(P; ). Finally, let 6, be the amount of stocks in the portfolio at time t.

ThenV, = 6,P, + B, is the value of the portfolio at t. Bertsimas, Kogan and Lo
(2001) consider a mean-squared-error criterion to define the optimal-replication
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strategy 6, , under which Vt* is the value of the optimal portfolio. It follows that
V,"and 4, minimize:
JEWV: —F (PP Vo)

over {,,6, }. Moreover,

\/{\Enln}E(V ~F(P ]2[\/0)

constitutes the minimum replication error, that is an error of fitting the strategy
into the payoff F at T. If the replication strategy exists, then & =0 and
V; =F(P;). The error &* is construed as a relative measure of the market in-

completeness, with its relativity justified by &* corresponding only to a given
derivative and a given model. To evaluate the optimal-replication strategy Bert-
simas, Kogan and Lo (2001) make some additional assumptions:

1. There are no taxes and transaction costs.

2. Purchasing, selling, borrowing and shortsale are possible without any re-
strictions.

3. The borrowing and lending interest rate r is constant and equal zero.
4. P is a Markov process.
5. Trading takes place at known and fixed times t e {t,,...,ty}, where
O=t, <ty =T.
To simplify the notation let t; =i. The aim is to calculate strategy 6° (| V,,Pi)

the initial value V, of the optimal portfolio and the error &*. Let x; be a loga-

PP D =P exp(x; ) Bellman’s

rithmic rate of return such that P, =P, exp(ln(

principle of optimality (Bertsekas, 1995) yields the following theorem:

Theorem 1 (Bertsimas, Kogan, Lo, 2001)
It 3,4,R)= min )E(V ~F(Ry )PV, R), then:

i<k<N-1
In(Va Pu)= (Vi = F(Ay)),
J/(V P)_ min E(Jl+l ‘//+1"D/+1)|V PI)’

T iy, P

fori=0,..,N -1.
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Theorem 1 suggests that the strategy is set recursively. The problem of op-
timal replication is solved via stochastic dynamic programming. The main re-
sults are formulated in the theorem below.

Theorem 2 (Bertsimas, Kogan, Lo, 2001)

Under the above assumptions:
1. There are functions: a,(P,), b;(P,) and c(P,), such that:

3,(v..R)-a(P)V -b(R)f +c(R), i=0,..N.
2. 0(i,V,,P)=p,(P)-V,q;(P), where functions a;, b, ¢, p, and g, are
evaluated recursively. Starting with ay(Py)=1, by(Py)=F(Py).
cy (Py) =0, the calculations for i = N —1,...,0 proceed as follows:

_ Elaii (Pt )byt Py )} (Pra P IR, ]
pi (PI )_ El,ai+l(Pi+1)'(P|+1_P| )Z‘PiJ

_ E[am(Pm)‘(Pm*Pi )‘Pi]
qi (IDI )_ El_a|+1(P|+1 )'(P|+1_P| )Z‘Pi J ’

a(R)= E[a.+1( R.)-0-a(R)-(P..-R)FIRL,
b(R )=y El8ia(Rt)-(0ra(Rir)- pi(R)-(P. ~R))
(1~ q( )-(R.a-R)JR]
6i(R)=El@.4(Py)- (b.1(P) - pi(R)- (P~ R)F|RT+
+Elc.a(Po)P1-a(R)- (R
3. a(P)>0, ¢(P)>0 fori=N-1,..,0.
4. Under the optimal-replication strategy 6°(i,V;,P,) we obtain:
3oVo, Py) = a(P)Vy = by (By)F + co(Ry), Vg =by(Py) and &" =4[y (Ry).
Properties (Bertsimas, Kogan, Lo, 2001)
a) The error of replication ¢* = ,/c,(P,) is the same for put and call options.

b) If prices P, follow a geometric Brownian motion and N — oo, then the

cost V, of the optimal-replication strategy converges to the Black-Scholes
price.

c) by(P,) meets the put-call parity.

d) & (i,Vi , Pi) is the self-financing strategy which does not guarantee V;" > 0.

e) The value of the optimal-replication strategy could be lower or higher at
maturity T than the value of the payoff function.
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The optimal-replication strategy could be less or more attractive than other
strategies, e.g. the delta-hedging strategy. It is because the optimal-replication
strategy is optimal only in the mean-squared-error sense. In general, calculation
of expectations defined in Theorem 2 may not be straightforward. In the case of
the JD(M)J models numerical techniques should be employed to approximate
their values.

To calculate the cost of the optimal-replication strategy VO* and the relative

measure of market incompleteness ¢* the conditional expectations defined in
Theorem 2 need to be evaluated. Obviously, these are given by relevant inte-
grals, as for instance:

E[ai+l(Pi+1)' (Pi+l -B )|P|]=
= 1%, (P exp(x)- (P exp(x) - 7)- fXP) ax=

M
ﬂj“’o ai+l(Pi eXP(mk*'\/EUky)) R exp(mk+\/§0-ky)—F)i) dy
Jr - exp(y?) !

k=0

NE]
where w, = (AkA!)k [Z’}A:o (A?!)J} , My = (,u ~-1o? )A + pok and ol =0’A+ O'ék :

Analytical calculations of such formulae are difficult or positively impossible,
which is why numerical approximations, such as the piecewise cubic Hermite
interpolation and Gauss-Hermit quadrature, are utilized. All numerical calcula-
tions are carried out in R using the pracma and glmmML packages.

4. Empirical Studies

In this section we present the results of Bayesian estimation, model compar-
ison and pricing of the optimal-replication strategy. The calculations are per-
formed for two stock market indices WI1G20 and S&P100.

The WIG20 is a stock market index comprising 20 biggest and most liquid
companies on the Warsaw Stock Exchange (WSE)? The considered time series
X consists of 946 daily logarithmic rates of return on the WIG20 index closing
quotations from June 5, 2007 to March 11, 20113,

The S&P100 index includes 100 leading US stocks recorded by Standard &
Poor’s. The considered data x contains 1,077 daily log-returns on the index
over a period from April 2, 2007 to July 8, 2011".

Daily closing quotations of the W1G20 and S&P100 indices are presented in
Figure 1, whereas Figure 2 plots the logarithmic rates of return.

2 \www.gpw.pl.
® The data were downloaded from www.gpwinfostrefa.pl.
% The data were downloaded from http://finance.yahoo.com/.
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Figure 1. Daily closing quotations of the WIG20 and S&P100 indices

The horizontal lines present bands of plus/minus two or three standard devi-
ations (dashed and dotted lines, respectively).
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Figure 2. Daily logarithmic rates of return on the WIG20 and S&P100 closing quota-
tions

As evidenced in Figure 2 the outlying log-returns on the S&P100 index are
more prominent than the ones featured by the WI1G20 series, which may hint at
the jJump component playing a more crucial role in modeling the former.

4.1. WIG20

It is assumed that time interval between consecutive observations equals
A =1/252. For the WIG20 series we restrict the analysis to two model specifi-
cations: JD(0)J (i.e. a pure diffusion process) and JD(1)J (i.e. the one allowing
for a single jump over a given time interval A).
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4.1.1. General Results

Table 1 presents posterior means and standard deviations (in parentheses) of
the parameters. The results are based on 600,000 and 1,000,000 draws of poste-
rior distributions, preceded by 10,000 and 300,000 burn-in passes for M=0 and
M=1, respectively. The results of the MCMC sampler are robust to the choice
of the starting points. Convergence of the chains is confirmed by the CUMSUM
statistics (Yu, Mykland, 1998), as well as the ergodic means and standard devia-
tions plots.

Noteworthy, posterior characteristics of the pure diffusion parameters, i.e.
u and o2, are close to their JD(1)J counterparts, which may hint at there being

no need for jumps to be accounted for. The conclusion is also supported by the
close to zero posterior mean of the jump intensity A, accompanied with relative-
ly large posterior dispersion of the parameters

Table 1. Posterior means and standard deviations (in parentheses) of the parameters for
the WI1G20 index

Parameters JD(0)J JD(1)J
A - 0.0557 (0.3053)
m -0.0364 (0.1556) -0.0346  (0.1545)
Ho - 0.0085 (0.9770)
o 0.0917  (0.0042) 0.0919  (0.0044)
0% - 0.3520 (1.3100)

We now focus on the choice of the appropriate value of M. The model with
the highest posterior probability is referred to as the best one. The best model
points the value of M. We have to compare:

P(ID(0)3)P(x/ID(0)J)
P(JD(0)J)P(xJD(0)J )+ P(ID(1)J ) P(x]3D(1)J)

P(ID(0)3]x)=

and
P(ID@)I[x)=1-P(ID(0)J|x).

The Newton-Raftery estimators (Newton, Raftery, 1994; Raftery, Newton,
Satagopan, Krivitsky, 2007) are employed to assess the posterior probabilities

P(x[JD(0)3) and P(x|JD(1)3). These estimators are consistent, but their

asymptotic variances do not exist. In practice, the values of the estimator may
not stable. A longer Monte Carlo chain (of 1,000,000 draws) was generated to
increase the credibility of the estimator.
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Under equal prior probabilities of each model, i.e. P(JD(0)J )= P(ID(1)J),
we obtain P(JD(0)J |x)~P(JD()J |x). However, invoking Occam’s razor
that promotes parsimony (and thereby models with lower number of parame-
ters) we set P(JD(0)J)c2? and P(JD(1)J)ec27®, which results in
P(JD(0)J |x)~0.9. The JD(0)J model is more likely a posteriori than the

JD(1)J specification. In other words, jumps are non-essential in modeling dy-
namics of daily (closing) quotations of the W1G20 index®.

4.1.2. Calculating the Optimal-Replication Strategy Cost

Under market completeness of the Black-Scholes model replication strate-
gies do exist. Continuous trading opportunity is one of the model’s underlying
assumptions. However, in practice this assumption is quite unrealistic. If we
limit trading opportunities to discrete times we get an incomplete model (Bert-
simas, Kogan, Lo, 2001). In the JD(0)J framework and under the assumption of
the fixed time A between consecutive trading times, the replication strategy may
not exist. Further, we calculate the costs and errors of the optimal strategies for
some European options.

Let us consider two European call options. The date of pricing the optimal
strategy is March 14, 2011, and the maturity date T is March 18, 2011. Strike
prices are equal K =2700 and K =2800. The closing quotation value of the
WIG20 index on March 14, 2011 equals 2757.76. The first option is in the mo-
ney and the second one is out of the money. The riskless interest rate is arbitra-
rily set at r =0.0362 (r equals an arithmetic mean of WIBID ON and WIBOR
ON on March 14, 2011). The theory of optimal-replication strategy was origi-
nally presented under the restriction of r =0, but, fortunately, it could be gene-
ralized so as to incorporate any constant riskless rate r > 0. The pillar of the
extension is normalization of all prices with the price of a zero-coupon bond
(Bertsimas, Kogan, Lo, 2001).

Figures 3 and 4 display posterior distributions of the optimal-replication
strategy cost VO* and the relative measure of the market incompleteness &* for
each strike price. The histograms are calculated on the basis of 1,000 states of
Markov chains.

The maturity T is specified as 4/252, which may appear a short period of
time, but is long enough to judge the convergence of the optimal-replication
strategy to the replication strategy (the strategy exists in Black-Scholes frame-
work). For the time being let us assume that the unknown parameters equal the

assessed posterior means, i.e. u =-0.03644597 and o =0.09171522. Let |
denote the number of times the portfolio changes over the duration of the

® The Barndorff-Nielsen and Shephard’s nonparametric test also rejects jumps in the consid-
ered time series (Barndorff-Nielsen, Shephard, 2006).
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V," for K=2700 ¢ for K=2700

Figure 3. Histograms of the posterior distributions of VO* and &* for K =2700

V," for K=2800 ¢ for K=2800

00 01 02 03 04 05 06 07

Figure 4. Histograms of the posterior distributions of Vo* and &" for K =2800

options (a strategy is a sequence of portfolios). Tables 2 and 3 present the cost
of the optimal-replication strategy VO* and the relative measure of the market

incompleteness & for each strike price K. The prices of options calculated
under the Black-Scholes assumptions are presented in the last row of Table 2.
Recall that the market completeness of the Black-Scholes model warrants a zero

replication error, i.e. £ =0.

We note that as the number | of times the portfolio changes over the option
duration increases the optimal-replication strategy cost converges to the Black-
Scholes price. The relation is accompanied by a systematic decrease in the rep-
lication error (see Table 3), indicating that the market is “nearing” complete-
ness.

The prices of the options on March 14, 2011 equaled 52 and 5, for strike
prices K=2700 and K=2800, respectively. Posterior histograms and expected

values of VO* suggest that hedging of the options by the optimal-replication is
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Table 2. Values of V,, calculated under z=-0.03644597 and o =0.09171522 for
increasing values of |, along with the Black-Scholes (BS) prices

*

| Vo
K=2700 K=2800
1 77.7705 26.1447
4 77.7768 24.7248
10 17.7477 25.0945
30 77.7488 25.0621
BS 17.7427 25.0372

Table 3. Values of ¢* calculated under . =-0.03644597 and o =0.09171522 for
increasing values of |

| &
K=2700 K=2800

1 27.8907 28.6173

4 15.1117 16.6562
10 9.8949 10.5713
30 5.8611 6.2656
100 3.2616 3.4959
200 2.3230 2.4952
500 1.4778 1.5844
BS 0 0

strategy expensive in comparison with the prices of the options. Note that the
above results depend on estimation of the model’s parameters and the choice of
the observation set. If the estimation is based on a shorter series, avoiding the
period of time with more volatile changes of the index, the estimation and pri-
cing results are affected. We additionally consider a dataset from May 5, 2010
to March 11, 2011. Then the values of the relative measure of market incomple-

teness &* are smaller than in the case of the full sample, and so is the posterior
mean of the volatility parameter o, with its value declining from 0.03 in the
case of the full sample model to 0.02 for the trimmed series. Figure 5 presents

the costs of the optimal-replication strategy Vo* for a strike price K=2700 and
two sets of observations. However, the cost of the new strategy is still high

(or the price of the option is low).
4.2. S&P100

Let us consider the S&P100 index and three model specifications: JD(0)J,
JD(1)J and JD(10)J. It is assumed that the time interval between consecutive
observations equals A =1/252.
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Vo (05-Jun-2007 to 11-Mar-2011) V," (05-May-2010 to 11-Mar-2011)

02 03 04
03 04

02

01
01

Figure 5. Costs of the optimal-replication strategy VO* for the strike price K=2700 and

two sets of observations: 05-Jun-2007 to 11-Mar-2011 and 05-May-2010 to
11-Mar-2011

4.2.1. General Results

Table 4 contains results of Bayesian estimation - posterior means and stand-
ard deviations (in parentheses). The outcomes are based on 1,000,000 draws of
the Markov chain and 25,000 burn-in passes. The results of the MCMC sampler
are robust to the choice of the starting points. Convergence of the chains is con-
firmed by the CUMSUM statistics (Yu, Mykland, 1998), as well as the ergodic
means and standard deviations plots.

Posterior means of the pure diffusion parameters x and o° calculated in

the JD(1)J and JD(10)J models — though almost identical across the two specifi-
cations — differ quite substantially from their counterparts in the JD(0)J model
(i.e. the one that precludes any jumps). Particularly, note that
E(o?y, JD(0)J) = 0.0677 as opposed to E( o |y, ID(M)J) = 0.047 for M=1 and
M=10. The difference is justified by the jump component “absorbing” some of
the log-returns’ volatility, whereas exclusion of jumps in the JD(0)J specifica-
tion is compensated with a higher value of the volatility parameter’s posterior
mean.

Noteworthy, the posterior results for the JD(M)J specifications featuring
M>0 are very close, which may be indicative of there being no empirical need
for allowing for more than a single jump per A. Particularly, posterior means of
the jump intensity parameter A in both the JD(1)J and the JD(10)J model con-
sistently imply that on average there are 4 jumps per year.

2
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Table 4. Posterior means and standard deviations (in parentheses) of the JD(M)J
models’ parameters for the S&P100 index

Parameters JD(0)J JD(1)J JD(10)J
A - 4.4234  (1.3363) 43507 (1.3030)
U 0.0145 (0.1256) 0.0426  (0.1089) 0.0430 (0.1085)
Ho - -0.0090  (0.1850) -0.0087  (0.1845)
o2 0.0677  (0.0029) 0.0470  (0.0028) 0.0470  (0.0028)
o%g - 0.5440 (1.1183) 0.5451 (1.3625)

Turning to the formal pair-wise model comparison, we calculate decimal
logarithms of Bayes factors (Bernardo, Smith, 2002):

PUD)I|x)
P(JD(0)J ] x)

log,, (81,10 ) =log, [%J ~1.7.

~
~
l

l0g,(By) = |0910(

It appears that the JD(1)J specification beats the competition, being as much as
ca. 17 orders of magnitude more likely a posteriori than the simplest model
structure (JD(0)J)°. Although only marginally, the former is also favored against
the other jump-diffusion specification, i.e. JD(10)J, which seems to be penali-
zed for its excessively large number M=10 of jumps allowed per A. Admittedly,
the result fits in well with the overall pursuit for parsimony.

4.2.2. Calculating the Optimal-replication Strategy Cost

We confine our further considerations to the JD(1)J model. It is known that
markets are incomplete when sources of randomness outnumber the underlying
traded risky instruments (Bjork, 2004). In the JD(1)J specification there are
three sources of randomness — the Wiener process W, the Poisson process N,
and random variables Q. In our setting we consider a market with only one

risky underlying instrument (a stock market index) accompanied by as much as
three sources of randomness, so the market is incomplete. Therefore, we resort
to the optimal-replication strategies for selected options.

Let us consider two European call options. A date of pricing of the optimal
strategy is July 11, 2011, and the maturity date T of the options is July 15, 2011.
Strike prices equal K =590 and K =610. The closing quotation of the

® The Barndorff-Nielsen and Shephard’s nonparametric test reject the pure diffusion at signif-
icance level 0.05 (p-value equals 0.011).
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S&P100 index on July 11, 2011 equals 588.15. Both of the options are out of
the money. The riskless interest rate is set at r=0.0075 and it equals the Fed
Funds Discount Rate at the considered option duration.

Table 5 presents posterior means and standard deviations (in parentheses) of

the optimal-replication strategy (initial) cost VO* and the relative measure of the
market incompleteness ¢* for each strike price. On the day of the pricing, ac-

cording to our knowledge, there were no transactions of selling the considered
options.

Table 5. Posterior means (and standard deviations) of VO* and &" calculated for the
S&P100 index as an underlying instrument

Quantity K=590 K=610
VO* 12.12 (2.8927) 6.619 (3.0739)
& 35.68 (11.6726) 35.47 (12.8357)

Table 6 contains quantiles of the posterior distributions of VO* and £". In

general, the call option with a lower strike price is more expensive than the
option with a higher strike price. Note that the cost of the optimal-replication

strategy VO* is higher for the more attractive option.

Table 6. Quantiles of the posterior distributions of V, and &* calculated for the
S&P100 index as an underlying instrument

K=590 K=610
Orders of the * * * *
quantiles Vo € Vo ¢
5% 8.4071 20.2538 2.2598 16.2821
25% 9.9695 27.0364 46371 26.7550
50% 11.4782 32.7958 6.2447 33.4317
75% 13.5252 42.2325 8.1295 43.2222
95% 17.8427 57.2116 12.6826 58.7495

Figures 6 and 7 display histograms of the posterior distributions of the op-
timal-replication strategy cost Vo* and the relative measure of the market in-
completeness ¢*. These histograms are based on (only) 150 (randomly chosen)
states of the Markov chains. The reason behind such a small sample is time-
consuming calculations of the optimal-replication strategy for each parameter

vector. These calculations took about twenty hours on a standard PC. The appli-
cation of parallel calculations reduced that time to seven hours.

A fairly large dispersion of the posterior distributions of VO* and ¢° may

stem from a relatively large parameter uncertainty (as evidenced by the posteri-
or standard deviations).
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Figure 6. Histograms of the posterior distributions of VO* and &" for K =590
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Figure 7. Histograms of the posterior distributions of VO* and &" for K =610

5. Conclusions

This paper concerns the issue of option hedging in incomplete market mod-
els using stochastic dynamic programming and Bayesian statistics.

Familiar models of option pricing are complete. Unfortunately, the assump-
tions these structures usually rest upon are quite unrealistic. For instance, the
Black-Scholes model is hinged upon continuous trading and continuous paths of
a risky underlying instrument. Relaxing these assumptions leads to incomplete
market models, such as the JD(M)J structures considered in the present study.

It is shown that incorporation of jumps in modeling financial time series
may improve the model fit (as compared with a pure diffusion process). Unfor-
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tunately, the market incompleteness in the models featuring jumps (JD(M)J
with M>0) renders the task of pricing and hedging derivatives more demanding.
In general, as the replication strategy does not exist, the investor needs to resort
to some optimal strategy. In the study we succeeded in employing the optimal-
replication strategy algorithm, derived by Bertsimas, Kogan and Lo (2001), in
the JD(M)J framework.

Contrary to what seems a common practice in the financial mathematics
works, where the model’s parameters are set arbitrarily, we estimate the param-
eters using Bayesian methodology, taking advantage of its accounting for the
parameters uncertainty. Moreover, the results are further employed to infer up-
on the degree of market incompleteness as well as to price the optimal-
replication strategy. Specifically, posterior densities (rather than point values
solely) of both the optimal strategy costs along and its relative error are calcu-
lated (using the MCMC techniques), providing us with some insight into their
uncertainty.
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Bayesowska wycena kosztu optymalnej strategii replikujgcej europejska
opcje w modelu JD(M)J

Zarys tre$ci. Wycena opcji w modelu niezupetnym jest nietrywialnym zagadnieniem. Przy-
ktadem modelu niezupelnego jest wprowadzony przez Mertona model dyfuzji ze skokami. Ge-
sto$¢ logarytmu procesu dyfuzji ze skokami jest nieskonczong mieszankg rozktadow normalnych.
W badaniu przyjeto, ze liczba mieszanek jest skoficzona. Otrzymany w ten sposéb model nazwa-
no modelem JD(M)J. W praktyce parametry modelu s3a nieznane i wymagaja estymacji. W bada-
niu zastosowano wnioskowanie bayesowskie. JD(M)J jest modelem niezupelnym dla ktérego, w
ogdlnym przypadku, nie mozna wskaza¢ strategii replikujacych instrumenty pochodne. W bada-
niu zaprezentowano algorytm wyznaczajacy optymalng w sensie $redniokwadratowym strategie
replikujaca europejski instrument pochodny. Do zilustrowania omoéwionej teorii wykorzystano
indeksy WIG20 i S&P100. Przedstawiona metodologia jest uzyteczna dla inwestorow, ktorzy
chcg uwzglednié w wycenie instrumentéw pochodnych oraz analizach szacowania ryzyka
,,niepewnos$¢” estymacji parametréw modelu.

Stowa kluczowe: rynki niezupelne, wnioskowanie bayesowskie, procesy dyfuzji
ze skokami, wycena instrumentéw pochodnych.
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