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Abstract. In the paper, we consider the Box-Cox transformation of financial time series in
Stochastic Volatility models. Bayesian approach is applied to make inference about the Box-Cox
transformation parameter (1). Using daily data (quotations of stock indices), we show that in the
Stochastic Volatility models with fat tails and correlated errors (FCSV), the posterior distribution
of parameter A strongly depends on the prior assumption about this parameter. In the majority of
cases the values of A close to 0 are more probable a posteriori than the ones close to 1.
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1. Introduction

The continuously compounded rates of return (or logarithmic returns) as
well as the simple rates of return are commonly used in econometric analyses of
financial data. These two types of data transformation are applied arbitrarily. In
the derivatives pricing literature there is the tradition of using logarithmic re-
turns, but when the logarithmic return is modelled as a conditionally Student-t
distributed random variable, the conditional expected simple rate of return is
infinite. It violates the finite second moment condition for the asset payoff in
call option pricing (see Duan, 1999). Duan (1999) uses the generalized error
distribution (GED) for the logarithmic returns that also exhibits fat tails and
includes the normal distribution as a special case. Other researchers build model
with sample returns instead of log-returns and with the Student-t distribution
(see e.g. Hafner, Harwartz, 1999; Hérdle, Hafner, 2000; Bauwens, Lubrano,
2002). However, both the logarithmic return and simple one are variants of the
well-known Box-Cox transformation of the X¢/X.; ratio (where X; denotes the
asset price at time t) with parameter 0 and 1, respectively. In the paper, we con-
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sider the Box-Cox transformation of financial time series in Stochastic Volatili-
ty (SV) models. Bayesian approach is applied to make inference about the Box-
Cox transformation parameter (A). As parameter A is estimated along with other
unknown parameters, information in the data is used to determine which trans-
formation is appropriate for the data.

The structure of the article is as follows: section 2 consists of a short presenta-
tion of the Bayesian SV model with fat-tails correlated errors for the trans-
formed data, section 3 focuses on the empirical results, and finally, section 4
incorporates the conclusions.

2. Bayesian AR(1)-FCSV Model for the Transformed Data

Let x; denote the price of an asset at time t, t=0, 1, ..., T. The Box-Cox
transformation of the XX ratio is defined as:
(% /% )" =1
B(X; /X, A) = )
In(X, / X;_;) A=0

A0y T

For B(X,/X,_,,A) We use an autoregressive structure':
B(X, /X1, A4) =0, = p[B(X /X5, A) = ]+¢&, t=1,..T, (1)

where {&} is the stochastic volatility process with fat-tails and correlated errors
(FCSV), introduced by Jacquier et. al., (2004). The discrete-time FCSV process
can be written as:

& =U, h /o, )

Inh, =y +¢lnh_, +oy7,, 3)

a)t~)(2(v)/v, oL (u, ), t,he{l,.. T}

1
(ut,m)'~|N(o{ pD, t=1,...T.
p 1

where the abbreviation "IN” denotes that the random vectors concerned are
independent and normally distributed, L denotes stochastic independence.

In the FCSV process, when p is equal to zero, h; is the inverse precision in the
conditional distribution, p(g&lhy), that is, (v/v-2)h; (for v > 2) is the conditional
variance. Thus, the FCSV model specifies a log-normal autoregressive process
for the conditional variance factor (h;) with correlated innovations in the condi-
tional mean and conditional variance equations, i.e. in (2) and (3), respectively.

' We use the autoregressive structure, because financial time series such as stock market in-
dices often present positive autocorrelation of order one of the returns (see Campbell et al., 1997).
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One interpretation for the latent variable h; is that it represents the random, un-
even and autocorrelated flow of new information into financial markets (see
Clark, 1973). The parameter ¢ is related to the volatility persistence, and o, is
the volatility of the log-volatility. The above model captures the leverage effect
when the correlation p is negative. In fact, if p is negative, then a negative inno-
vation U is associated with higher contemporaneous and subsequent volatilities.
On the other hand, a positive innovation U; is connected with a decrease in vola-
tility (see Jacquier et al., 2004).

The Bayesian model is characterized by the joint probability density function of
the untransformed Xi/X.1 ratios (i.e. y = (Y1, ..., ¥1)', where Yy; = XdX.1), the latent
variables (i.e. h=(hy, ..., hy)’, ® = (@, ..., wr)"), and of the parameter vector 0:

p(y,h,®,0| Y(O)) = p(y,h,0| an(O)) p(o), 4)

where

1 R
pP(y,h,®[0,y )= p(o| v)exp{—atr(z 1Z:rtrt 'j}| J(4,y)]|x

t=1

T
% | Z* |—045T (27[)—1— HwtO.Sht—l.S,

t=1

(v b w\1ov v
p((l) | V) = :lt:l[(zj F[Ej w2 : exp(_za)t j I (0,+00) (a)t )’

s

_ 1 po-h _ ' _ 2 1]
X = 2 ’rt_(u’[’ahﬂt)’ 9—(519P1a7a¢,0'h5,0,‘/,ﬂv),
PO Oh

T
Y(0) denotes initial values. The Jacobian J(4, y) is J(4,y) = H yf’l.

t=1

Our model specification gets completed by assuming the following prior struc-
ture:

P(S1. o1, 754,00, PV, ) = P(3)P(£y) P(¥) P(#) Py, ) P(V) P(A),
where we use proper prior densities of the following distributions:
6 ~N(O, 1), pr ~ U(-1,1) y~N(0, 100), ¢~N(0, 100) I..1(¢), v ~ Exp(0.1),
r~1G(1, 0.005), Y]t~ N(0, 7/2), w =, p, =0, (1-p°).

The prior distribution for J; is standardized normal, U(-1,1) denotes the uniform
distribution over (-1,1). The prior distribution for ¢ is normal, truncated by the
restriction that the absolute value of ¢ 1is less than one (I;, 1y(.) denotes the indi-
cator function of the interval (-1, 1), which is the region of stationarity of Inhy).
The symbol 1G(vy, Sp) denotes the inverse Gamma distribution with mean
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So/(Vo-1) and variance s; /[(V, —1)*(V, —2)](thus, when p = 0, the prior mean for

O'ﬁ does not exist, but the precision, of , has a Gamma prior with mean 200
and standard deviation 200). The symbol Exp(a) denotes the exponential distri-
bution with mean 1/a (thus the prior mean for v is equal to 10 with the standard
deviation equals 10). The prior distribution for (y, 7) induces a prior distribu-
tion for (p,o}) , which has the following form:

So _(po—y, )* Po
2\ 2 2y 2
n( 2, ):sg°F(v0)‘1p @ )—05( —2)v0+1e T(1-p?)o? (1- 2)—v0—1.5e 2(1-p?)a? ’

w=1,5,=0.005, yp, =0, po =2 (similar to Jacquier et al., 2004).
As far as the prior distribution for A, we assume that our prior information re-
garding this parameter can be represented by the following:

a) a non-standard distribution on the interval [0, 1]: p(A4) c e ™1™ where

L= 30. This prior distribution is symmetrical and U-shaped, as shown in
Figure 1.

b) the beta distribution with parameters 0.5 and 0.5;
c¢) the uniform distribution on the interval [0, 1];
d) the exponential distribution with mean 1;

a-non-standard —e— b - beta c-uniform - - - .d-exponential

TTTT TI T T T T I T I I rrrrrrr eIt T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T ITrrrTl
B - L Nl Y LY B OB N QB OB -
© o &= o NN o ® o ¥ o @ o Q9 o o ® o 9
o o o o o o o o o o

Figure 1. Prior distributions for the Box-Cox transformation parameter (A)
As regards the initial condition for hy, i.e. ho, we assume that it is equal to 1.
The joint posterior distribution is then
p(h,®,0]y,y ) pB)p(e|V)x

1 %=1 T ' * T _
xexp{—;tr[z Zrtrt ]} 1Ay |2 [T l_Ia)tO'Sht b3,
t=I

t=1
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The posterior probability density function is used to make inference about the
parameters and latent variables.

3. Empirical Results

We consider ten international stock market indices, namely the S&P 500,

NASDAQ 100, DJIA (for the US), NIKKEI (for Japan), the CAC 40
(for France), the DAX (for Germany), the FTSE 100 (for the UK), WIG 20
(for Poland), HANG SENG (for China), SPTSE 60 (for Canada).
The data set consists of the daily closing quotations of the stock market indices
from January 2001 (or 2002) until February (or March) 2009 (see Table 1).
Basic descriptive characteristics of the daily price ratios are presented in Table
1. All series of X¢/X¢; ratio exhibit strong kurtosis, and they have highly non-
normal (truncated by zero) empirical distributions.

Table 1. Sample characteristics for the data sets used

(X}/')r:? rsa?ircl)ecs)f:) average std. dev. kurtosis frcF)JrEr)]r:K-)(tjo: #obs. T
WIG 20 1.0000 0.0162 4.9800 02.01.2001 - 13.02.2009 2035
S&P 500 0.9998 0.0139 13.3286 03.01.2002 - 06.03.2009 1805
NIKKEI 225 0.9999 0.0163 11.3553 07.01.2002 - 06.03.2009 1760
FTSE 100 0.9999 0.0137 10.9021 03.01.2002 - 06.03.2009 1813
DAX 1.0000 0.0169 8.6642 03.01.2002 - 06.03.2009 1825
NASDAQ 100 1.0000 0.0178 7.8639 03.01.2002 - 06.03.2009 1808
CAC 40 0.9998 0.0159 9.7031 03.01.2002 - 06.03.2009 1838
SPTSE 60 1.0001 0.0132 14.2830 03.01.2002 - 06.03.2009 1798
HANG SENG 1.0002 0.0164 15.0382 03.01.2002 - 06.03.2009 1789
DJIA 0.9999 0.0130 12.5726 02.01.2001 - 13.02.2009 2039

Note: The data were downloaded from the website http://finance.yahoo.com.

In Table 2 we present the posterior means and standard deviations (in paren-
thesis) of the parameters, in the case of the AR(1)-FCSV model with the uni-
form prior for 4 on [0, 1]. Our posterior results are obtained in Gauss 9.0 using
MCMC methods: Metropolis-Hastings within the Gibbs sampler (see, e.g. Pajor
2003 and Jacquier et al., 2004 for detail).” First, for more series the autoregres-
sive parameters seem to be insignificantly different from zero. The posterior
distributions of dand p; are located close to zero. Second, all indices have per-
sistent volatility as shown by ¢ - the lowest posterior mean is 0.927 (for the
WIG20 index), the highest one is 0.97 (for NASDAQ). It means that the half-
life of shock to volatility, HL = In(0.5)/In(¢), is equal to about 9 days for the
WIG20 index and 20 days for the NASDAQ index. We observed that the
NASDAQ index exhibits a lower variability of volatility as shown by the preci-
sion, o,”. As regards the leverage effect parameter, p, the posterior means of p
are negative, from -0.15 for the WIG20 index to -0.62 for the CAC40 index.

2 The results are obtained using 100 000 burnt-in and 1000 000 final Gibbs passes.
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The parameter p is estimated precisely with a standard deviation around 0.068.
Almost all the posterior mass of p is in the negative region. Thus, the leverage
effect is strong for all indices excluding the WIG20 index, for which it is signif-
icantly lower. The posterior means of the degrees of freedom are between 16
(for the HANG SENG index) and 39 (for the FTSE 100 index). The HANG
SENG index has the lowest posterior mean of degrees of freedom of the Stu-
dent-t distribution. For the remaining indices the posterior mean of v is above
23, indicating that the normal conditional distribution would not be strongly
rejected by the data.

Table 2. Posterior means and standard deviations (in parenthesis) of the parameters of
the AR(1)-FCSV model, in the case of 4~ UJO0, 1]

parameter| WIG | S&P |NIKKEI| FTSE | DAX | NASDAQ | CAC |SPTSE 60| HANG | DJIA
20 | 500 | 225 | 100 100 40 SENG
5%10° | 474 | 474 | 652 | 543 | 970 | 577 | 659 | 868 | 720 | 414
(3.15) | (1.65) | (2.56) | (1.63) | (2.15) | (263) | (1.99) | (1.78) | (2.37) | (1.60)
o | 0.027 | 0.095 | -0.034 | -0.092 [ -0.059 | -0.070 |-0.080 | -0.060 | 0.005 |-0.074
(0.023) | (0.023) | (0.024) | (0.024) | (0.023) | (0.024) |(0.023)| (0.024) |(0.023) |(0.022)
7 |-0622[-0332]-0429 [-0357 | -0.328 | -0.297 |-0.335| -0.493 |-0.408 |-0.348
(0.119) | (0.048) | (0.068) | (0.052) | (0.049) | (0.048) |(0.047)| (0.074) |(0.069)|(0.051)
4 | 0928 [ 0.965 | 0.951 | 0.962 | 0.963 | 0966 | 0.963 | 0.948 | 0.955 | 0.963
(0.014) | (0.005) | (0.008) | (0.006) | (0.006) | (0.006) |(0.005)| (0.008) |(0.008)](0.005)
on? | 22.233[16.972 [ 17.711 | 13.728 | 15277 | 25.790 |15.973| 13.672 |15.958 | 17.871
(5.675) | (2.809) | (3.395) | (2.123) | (2.592) | (5.279) |(2.491)| (2.447) |(3.156) | (2.996)
> | -0.153|-0.607 | -0.55 | -0578 | 0.612| -0492 | -0.62 | -0484 |-0372| -0.55
(0.081) | (0.063) | (0.065) | (0.061) | (0.059) | (0.081) |(0.063)| (0.067) |(0.075)|(0.064)
v | 2304 [ 2720 | 3847 | 39.75 | 31.77 | 3034 | 31.33 | 37.85 | 16.04 | 26.99
(9.96) | (11.45) | (14.52) | (14.61) [ (12.76) | (12.08) |(12.55)| (14.55) | (7.22) | (11.17)
2 | 0397 [ 0472 | 0504 | 0.448 | 0.405 | 0.387 | 0.399 | 0497 | 0401 | 0.433
(0.255) | (0.265) | (0.266) | (0.263) | (0.256) | (0.253) |(0.255)| (0.266) |(0.256)](0.262)

Table 3. Posterior means and standard deviations (in parenthesis) of A, in the case of the
exponential prior distribution for A (d)

parameter| WIG | S&P |NIKKEI| FTSE | DAX |NAS-DAQ| CAC |SPTSE 60| HANG | DJIA
20 | 500 | 225 | 100 100 40 SENG
4 | 0431 [ 0666 | 0.801 | 0579 | 045 | 0412 | 044 | 0.798 | 0.437 | 0531
(0.371) | (0.556) | (0.624) | (0.497) | (0.382) | (0.35) |(0.377)| (0.652) |(0.376)|(0.453)

Finally, we consider the posterior evidence regarding the Box-Cox transforma-
tion parameter. Figure 2 shows the prior and posterior distributions for A in the
case of the WIG20 index. We see from the graphs that the prior distribution for
A strongly affects the posterior distribution for this parameter, e.g., a U-shaped
prior distribution implies the U-shaped posterior distribution. In the case of the
uniform prior for A on the interval [0; 1], for most stock indices (considered
here) the posterior mean is smaller than the prior mean, but the dispersion of
posterior distribution is close to that of the prior distribution (in the case of c,
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the prior mean is equal to 0.5, the prior standard deviation is equal to 0.288).
Even though the prior distribution is symmetrical, in the majority of cases the
posterior distributions are asymmetrical. The values of A from the interval
[0, 0.5] are more probable a posterior than those from [0.5, 1] (see the quantiles

of the posterior distributions of the Box-Cox transformation parameter
in Table 4).

a - non-standard b - beta distribution

4 4 4
3.5 4 35+
3 3
25 254
2 24
1.5 1.5
14 14
0.5 4 0.5

°© 82 KR 82838 8K 538 °©8 2K 8% 38K 5 3 8
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¢ - uniform distribution on the interval [0, 1] d - exponential sistribution

4 4
3.5 354
34 3
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1 14
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Figure 2. Prior (solid line) and posterior (bars) distributions for A (the WIG20 index)

In the case of the non-standard prior distribution for A considered in (a),
except for the NIKKEI and SPTSE 60 indices, the posterior medians are below
0.1, but the probability that A is less than 0.9 is not zero. In Table 5 we present
the posterior probabilities that A is in the interval [0, 0.01] and in the interval
[0.99, 1]. Except for the NIKKEI index, the values of A from the interval
[0, 0.01] are more probable a posterior than those from the interval [0.99, 1].
Thus the data transformations which are close to the log-return are more proba-
ble a posterior than those which lead to the simple return.
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Table 4. Posterior quantiles for A

WIG | S&P | NIKKEI | FTSE | DAX [ NASDAQ | CAC [ SPTSE | HANG | DJIA
quantile of order | 20 | 500 | 225 | 100 100 40 60 | SENG

0.05 0.003 {0.004 | 0.005 |0.004 [0.003] 0.003 |0.003 [ 0.005 | 0.003 |0.004

0.25 0.016 {0.023 | 0.033 | 0.021[0.016| 0.015 |0.016( 0.031 | 0.016 | 0.019

a 0.5 0.0420.082 [ 0.824 | 0.062|0.044| 0.039 ]0.042| 0.665 | 0.042 [0.055
0.75 0.135)0.957 [ 0972 10.93710.161| 0111 ]0.144| 0.97 | 0.133 [0.914

0.95 0.9880.995[ 0.996 | 0.9930.989| 0.985 ]0.988| 0.996 | 0.988 [ 0.992

0.05 0.005) 0.011 | 0.016 | 0.008 | 0.005| 0.005 ]0.004| 0.013 | 0.004 |0.007

0.25 0.088)0.163 [ 0.217 | 0.131]0.095| 0.081 |0.088| 0.194 | 0.087 [ 0.116

b 0.5 0.27710.433| 0516 [0.375)0.294 | 0.26 0.28 | 0.489 | 0.278 | 0.343
0.75 0.573)0.746 [ 0.806 | 0.693]0.597 | 0.545 ]0.575| 0.787 | 0.576 | 0.658

0.95 0.939)0.981 [ 0987 |1 0.97310.945| 0.926 ]0.939| 0.985 | 0.938 [ 0.963

0.05 0.0420.063 [ 0.076 | 0.055]0.044| 0.04 ]0.042| 0.072 | 0.043 [0.051

0.25 0.185)0.252 | 0.286 | 0.22910.192| 0.178 |0.186| 0.278 | 0.188 [ 0.215

c 0.5 0.362 ) 0.462 | 0.506 | 0.42910.374| 0.35 ]0.366| 0.496 | 0.369 [0.409
0.75 0.585) 0.686 [ 0.723 | 0.656 | 0.597 | 0.571 ]0.589| 0.716 | 0.591 [ 0.636

0.95 0.864 [0.914 | 0.929 |0.901 [0.871| 0.855 |0.865| 0.926 | 0.867 | 0.891

0.05 0.034 [ 0.058 | 0.077 | 0.047 [0.036| 0.032 |0.035[ 0.071 | 0.034 | 0.044

0.25 0.1580.252 | 0.322 |1 0.2130.167| 0.153 ]0.161) 0.307 | 0.16 [0.196

d 0.5 0.332)] 052 [ 0.652 | 0.445]0.351| 032 ]0.341)| 0.63 | 0.337 [0.411
0.75 0.5980.932 1.13 |0.805]|0.629| 0.574 |0.615| 1.122 | 0.61 [ 0.74

0.95 1472 [1.771] 2.037 | 1577 [1.208] 111 [1.186] 2.095 [ 1.186 | 1.435

Note: Prior distributions for
¢ — uniform distribution on [0

Table 5. Posterior results for A

A: a—non-standard, U-shaped on the interval [0, 1], b — beta distribution,

, 1], d — exponential distribution.

u=Pr(2<0.01ly) [ 0.1730.127 | 0.102 | 0.1420.172( 0.178 |0.172( 0.105 | 0.174 | 0.149
a | v=Pr(2>0.99]y) | 0.041 | 0.083 | 0.109 | 0.068 | 0.044  0.038 |0.042 | 0.100 | 0.040 | 0.060
uv 42381531 0934 |2.088 (3942 | 4.693 |[4.111| 1.052 | 4.370 |2.492
u=Pr(2<0.01ly) [ 0.077 | 0.050 | 0.040 | 0.060)0.073 | 0.081 |0.079( 0.045 | 0.081 | 0.064
b | v=Pr(»>0.99]y) | 0.018 | 0.035 | 0.044 |0.030]0.019| 0.016 [0.018| 0.039 | 0.017 | 0.024
ulv 42941418 0.913 [1.999 |3.829 | 4.924 (4.402( 1.137 | 4.769 | 2.656
u=Pr(1<0.01]y) | 0.011 { 0.007 | 0.006 [ 0.008 [0.011| 0.012 |0.011 | 0.006 | 0.011 {0.009
¢ [ v=Pr(»>0.99]y) | 0.003 [ 0.005| 0.006 |0.004|0.003| 0.002 |{0.003| 0.006 | 0.003 | 0.004
ulv 4485 (1546 0.933 [2.084)3.733| 5.293 (4222 1.027 | 4.184 | 2.604

Note: Prior distributions for A: a—non-standard, U-shaped on the interval [0, 1], b — beta distribution,
¢ —uniform distribution on [0, 1].

It is important to stress that even though the prior distribution of A has a strong
effect on the posterior distribution of A, it does not affect the posterior distribu-
tion of the remaining parameters. Thus in Table 3 we present the posterior cha-
racteristics only of A, obtained in the AR(1)-FCSV model with the exponential




Bayesian Analysis of the Box-Cox Transformation in Stochastic Volatility Models 89

distribution for the Box-Cox transformation parameter. Although the prior mean
is equal to 1, for all series the posterior mean is less than 1.

Finally, in Table 6 we present the results of the formal Bayesian model compar-
ison. We consider three AR(1)-FCSV models: with, respectively, L = 0 (M,),
A=1(Mp),and A ~U(0, 1) (M3). If A = 1, the relation (1) is linear in the simple
returns. If A = 0, it is linear in the logarithmic returns. To obtain the marginal
data densities we use the Newton and Raftery method (see Newton and Raftery
1994). The Newton and Raftery estimator is quite stable for all our models. The
drawback of this method in the FCSV models is that the models differ from one
another by quite a few orders of magnitude.

For all series, assuming equal prior model probabilities, the AR(1)-FCSV model
with A = 0 (log-returns) is more probable a posterior than with A = 1 (simple
returns). Only for the DJIA index, the AR(1)-FCSV model with the uniform
prior distribution of A is quite a few orders of magnitude better than that
with A = 0.

Table 6. Posterior probabilities (under equal prior model probabilities) and marginal
data densities of the observation vector y in M; model (based on the Newton —

Raftery method)

Mi:A=0 | M2z A=1 M3 0<A<1* p(y|M1) p(y|M2) p(y|Ma)*

Index
WIG 20 0.9754 0.0000 0.0246 2410170 | 181076 | 6.0-10172
S&P 500 0.9995 0.0000 0.0005 281016 | 2.0-10186 | 1.4.10-17°
NIKKEI 225 0.9997 0.0000 0.0003 1.5-10188 | 7.5.101% | 4.2.10-192
FTST 100 0.9931 0.0069 0.0000 4.1-10'6" | 2.8.10163 | 4.3.10177
DAX 1.0000 0.0000 0.0000 3410722 | 2410 | 13102
NASDAQ 100 1.0000 0.0000 0.0000 9.3-1010 | 1.6-10'08 | 1.7.10-"13
CAC 40 1.0000 0.0000 0.0000 5510192 | 24.1002 | 3.3.101%7
SPTSE 60 1.0000 0.0000 0.0000 3.3-104 25105 | 1.1.10%
HANG SENG 1.0000 0.0000 0.0000 3.3-10%0 52105 | 2.9-10%
DJIA 0.0000 0.0000 1.0000 231022 | 7810204 | 261019

Note: *The results are obtained in the AR(1)-FCSV model with the uniform prior for A on the interval (0, 1).

4. Conclusions

The paper presents the stochastic volatility models with the Box-Cox trans-
formation of financial time series. The widely used logarithmic and simple re-
turns are nested into the Box-Cox transformation by setting A = 0 and A = 1,
respectively. Using daily data, we show that in the stochastic volatility model
with fat tails and correlated errors, the posterior distribution of the Box-Cox
transformation parameter strongly depends on the prior assumption about this
parameter. Our empirical results show that in the majority of cases the values of
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A close to 0 are more probable a posteriori than the ones close to 1. The formal
Bayesian model comparison indicates that the Box-Cox transformation with
A =0 (log-return) is preferred by the data in the FCSV model. However, the
posterior distributions of A show that the simple returns are not completely in-
appropriate.
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Bayesowska analiza transformacji Boxa i Coxa dla w modelach
0 zmienno$ci stochastyczne;j

Zarys tres$ci. Celem artykutu jest statystyczna analiza transformacji Boxa i Coxa ilorazu cen
instrumentéw finansowych w modelach FCSV. Stosowane jest podejscie bayesowskie, ktore
pozwala zbadaé, w jakim stopniu dane modyfikuja wstgpne przekonanie o parametrze transfor-
macji. Wyniki empiryczne pokazuja, ze zatozenia o rozktadzie a priori parametru transformacji
ma istotny wptyw na ksztalt brzegowego rozktadu a posteriori tego parametru. Jednak w wigkszo-
$ci rozwazanych przypadkow rozklady te, w poréwnaniu z rozktadami a priori, sa przesunigte w
kierunku zera. Zatem transformacje ilorazu cen dajace wartosci bliskie logarytmicznej stopie
zwrotu sg bardziej prawdopodobne a posteriori niz transformacje prowadzace do prostej stopy
zZwrotu.

Stowa kluczowe: transformacja Boxa i Coxa, model SV, wnioskowanie bayesowskie.



