Use of membranes in the implementation of the "Power to gas" concept

Maciej Szwast



This paper presents the possibility of membrane use in the Power to Gas concept.

Power to Gas is a concept of electrical energy conversion into the gaseous methane by well known Sabatier reaction. This reaction needs pure reagents such as carbon dioxide and hydrogen. The polymeric dense membranes could be used to obtain pure carbon dioxide from the stream of biogas or flue gas. The products of this reaction are methane and water. For methane dewatering one could also use polymeric membranes.          

The paper presents literature data as well as the Author’s own research results.


Power to gas, Sabatier reaction, membrane processes, gas separation

Full Text:



. Stańczyk K., Czyste technologie użytkowania węgla. Główny Instytut Górnictwa, Katowice 2008, ISBN 978-83-61126-15-7, in Polish.

. Łucki Z., Misiak W., Energetyka a społeczeństwo. Aspekty socjologiczne. Wydawnictwo Naukowe PWN, Warszawa 2010, ISBN 978-83-01-16346-4, in Polish

. Specht M., Baumgart F., Feigl B., Frick V., Sturmer B, Zuberbuhler U., Sterner M., Waldstein G., Storing bioenergy and renewable electricity in the natural gas grid, FVEE, AEE Topics (2009).

. Yoshino M., Ito K., Kita H., Okamoto K.-I., Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)- segmented copolymers, J. Polym. Sci. Part B: Polym. Phys. 38 (2000) 1707-1715.

. Kazama S., Teramoto T., Haraya K., Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes, J. Membr. Sci. 207 (2002) 91-104.

. Aguilar-Vega M., Paul D.R., Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group, J. Polym. Sci. Part B: Polym. Phys. 31 (1993) 1599-1610.

. Stern S.A., Polymers for gas separations: the next decade, J. Membr. Sci. 94 (1994) 1-65.

. Chun B.-W., Ishizu C., Itatani H., Haraya K., Shindo Y., Characterization, Gas permeability of a three-component polyimide series, J. Polym. Sci. Part B: Polym. Phys. 32 (1994) 1009-1016.

. Xu Z.-K., Dannenberg C., Springer J., Banerjee S., Maier G., Novel poly(arylene ether) as membranes for gas separation, J. Membr. Sci. 205 (2002) 23-31.

. Vu D.Q., Koros W.J., Miller S.J., Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 211 (2003) 311–334.

. Wang R., Cao C., Chung T.S., A critical review on diffusivity and the characterization of diffusivity of 6FDA-6FpDA polyimide membranes for gas separation, J. Membr. Sci. 198 (2002) 259–271.

. Bae T.-H., Lee J.S., Qiu W., Koros W.J., Jones C.W., Nair S., A high-performance gas-separation membrane containing submicrometer-sized metal–organic Framework Crystals, Angewandte Chemie International Edition 49 (2010) 9863–9866.

. Liu Y., Chng M.L., Chung T.-S., Wang R., Effects of amidation on gas permeation properties of polyimide membranes, J. Membr. Sci. 214 (2003) 83–92.

. José N.M., Prado L.A.S.A., Yoshida I.V.P., Synthesis characterization, and permeability evaluation of hybrid organic–inorganic films. Journal of Polymer Science Part B: Polymer Physics 42 (2004) 4281–4292.

. Chiou J.S., Paul D.R., Gas permeation in a dry Nafion membrane, Ind. Eng. Chem. Res. 27 (1988) 2161–2164.

. Mulder M., Basic Principles of Membrane Technology, 2nd ed., Kluwea Academic Publishers, Dordrecht 1996. ISBN 978-94-009-1766-8.

. Potreck J., Nijmeijer K., Kosinski T., Wessling M., Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074, J. Membr. Sci. 338 (2009) 11–16.

. Szwast M., Makaruk A., Harasek M., Gas separation membranes made of PEBA block copolymer, ACEE 4 (2012) 107-111.

. Szwast M., Polak D., Zalewski M., Technologia wytwarzania membran wspomagających proces magazynowania energii elektrycznej w postaci substytutu gazu ziemnego, materiały 8. Kongresu Technologii Chemicznej, Rzeszów 2015, e-copy, in Polish

Partnerzy platformy czasopism