Permafrost at the Ice Base of Recent Pleistocene Glaciations–Inferences from Borehole Temperature Profiles

Jacek Majorowicz



Paleo-temperature reconstruction from precise depth (>2.0 km) well temperature logs can offer information on whether the bed of an ice sheet was frozen. Inversion or upward extrapolation of the >2-km-deep geothermal profile is the only method by which temperature evolution at the base of long-disappeared ice sheets such as the Laurentide and Fennoscandian in the northern part of the Northern Hemisphere in North America and Europe can be inferred. It is obvious from the results from well temperature profiles that there were spatial variations in temperature at the base of the ice sheets during glaciations. This comes as no surprise, since modern-day measurements of temperature profiles through the ice of existing glaciers show a similarly large variability. Present bedrock temperatures measured beneath the central part of the Yukon Rusty glacier are near 0°C to -2°C while Greenland ice sheet base temperatures are -8 and -13°C. In case of very low paleo-temperatures derived from the interpretation of temperature profiles in the areas presently outside the current extent of glacial ice it can be shown that low temperature conditions under glacial ice could facilitate the existence of moderate (some 100-200 m) to thick (0.5 km-1 km) permafrost conditions. It is speculated here that, in many cases, paleo-glacial cold base ice could have existed right on top of paleo-permafrost in sediments just below. Such ice-bonded permafrost may have been frozen to glacial ice above, forming pillars which fixed glacial ice to permafrost below, thus limiting ice movement in such places and resulting in the -extended persistence of permafrost.


Paleoclimate at last glaciation; permafrost under glacial; paleopermafrost; temperature profiles

Full Text:



BARANOWSKI S., 1997, Subpolame lodowce Spitsbergenu na tle klimatu tego regionu, Universitas Wratislaviensis Serie, 170 pp.

BEARDSMORE G.R. and CULL J.P., 2001, Crustal Heat Flow, A Guide to Measurement and Modelling, Cambridge University Press, Cambridge, New York, Melbourne, 324 pp.

BLACKWELL D.D. and RICHARDS M., 2004, Geothermal Map of North America, American Association Petroleum Geologist (AAPG), 1 sheet, scale 1:6,500,000.

CARSLAW H.S. and JAEGER J.C., 1959, Conduction of Heat in Solids, Oxford University Press, New York, 510 pp.

ČERMAK V., 1971, Underground temperature and inferred climatic temperature of the past millennium, Paleogeogr. Paleoeclimatol. Paleoecol, 10, 1-19.

CHOUINARD C. and MARESCHAL J.-C., 2009, Ground surface temperature history in southern Canada: temperatures at the base of the Laurentide ice sheet and during the Holocene, Earth and Planetary Science Letters, 277, 280-289.

DAVIES J.H. and DAVIES D.R., 2010, Earth’s surface heat flux, Solid Earth, 1, 5-24.

DAHL-JENSEN D., MOSEGAARD K., GUNDESTRUP N., CLOW G. D., JOHNSEN S. J., HANSEN A. W. and BALLING N., 1998, Past temperature directly from the Greenland ice sheet, Science, 282, 268-271.

DEMEZHKO D. Y., RYVKIN D. G., OUTKIN V. I., DUCHKOV A. D. and BALOBAEV V T., 2007, Spatial distribution of Pleistocene/Holocene warming amplitudes in Northern Eurasia inferred from geothermal data, Clim. Past, 3, 559-568.

GOSNOLD W.D, MAJOROWICZ J., ŠAFANDA J. and SZEWCZYK J., 2005, Has northern hemisphere heat flow been underestimated?, American Geophysical Union, Spring Meeting 2005, May 23-27, New Orleans, LA, abstract #T43D-01.

GOSNOLD W., MAJOROWICZ J. A., KLENNER R. and HAUK S., 2011, Implications of Post-Glacial Warming for Northern Hemisphere Heat Flow, GRC Transactions, 35, 795-800.

HOTCHKISS W.O. and INGERSOLL L.R., 1934, Post-glacial time calculations from recent geothermal measurements in the Calumet copper mines, J. Geology, v. 42, 113-142.

IPCC, 2007, Summary for Policymakers, [in: ] Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt D.B., Tignor M., and Miller H. L. (eds.), Climate Change 2007: The Physical Science Basis, Cambridge Univ. Press, Cambridge, United Kingdom and NewYork, N.Y., USA, 18 pp.

JANIA J., 1993, Glacjologia, PWN Warszawa, 360 pp.

JAUPART C. and MARESCHAL J.-C., 2007, Heat flow and thermal structure of the lithosphere, Schubert G. (ed.), Treatise on Geophysics, Oxford, Elsevier Ltd., 6, 217-252.

JESSOP A., 1971, The distribution of glacial perturbation of heat flow in Canada, Canadian J. Earth Science, 8, 162-166.

KUKKONEN I.T., 1993, Heat flow map of northern and central parts of the Fennoscandian Shield based on geochemical surveys of heat producing elements, Tectonophysics, 225, 3-13.

KUKKONEN I. T. and SAFANDA J., 1996, Palaeoclimate and structure: the most important factors controlling subsurface temperatures in crystalline rocks. A case study from Outokumpu, eastern Finland, J. Geophys. Res., 126, 101-112.

KUKKONEN I. T. and JOELEHT A., 2003,Weichselian temperatures from geother­mal heat flow data, J. Geophys. Res., 108(B3), 2163,doi:10.1029/2001JB001579.

KUKKONEN I. T., GOSNOLD W. D. and SAFANDA J., 2003, Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible paleoclimate signature, Tectonophysics, 291, 235-249.

LACHENBRUCH A.H., 1994, Permafrost, the active layer and changing climate, US Geol. Surv. Open-File Report 94-694 Menlo Park CA.

LACHENBRUCH A.H. and MARSHALL B.V, 1986, Changing climate: Geothermal evidence from permafrost in Alaska, Science, 234, 689-696.

LACHENBRUCH A.H., CLADOUHOS T.T., SALTUS R.W., 1988, Permafrost temperature and the changing climate, 5th Int. Permafrost Conf. Proc. Permafrost 3, Tapir Publishers Trondheim, Norway.

LEVY F., JAUPART C., MARESCHAL J.-C., BIENFAIT G. and LIMARE A., 2010, Low heat flux and large variations of lithospheric thickness in the Canadian shield, J. Geophys. Res., B: Solid Earth, 115, 23 pp.

MAJOROWICZ J., 1976, Geothermal parameters of the Krzemianka and Udryn region against the backround of the earth’s heat flow in NE Poland, Przegl. Geolog. 10, 607-613.

MAJOROWICZ J., 1984, Problems of tectonic interpretation of geothermal field pattern in the platform areas of Poland, Polish Academy of Sciences, Publications Instit. Geophys. A-13, 149-166.

MAJOROWICZ J., 2010, The Climate of Europe in Recent Centuries in the Context of the Climate of Mid to High Latitude Northern Hemisphere from Borehole Temperature Logs, [in:] Przybylak R., Majorowicz J., Brázdil R., Kejna M. (eds.) The Polish Climate in the European Context: An Historical Overview, Springer, Dordrecht Heildelberg, London, New York, 103-128.

MAJOROWICZ J. and ŠAFANDA J., 2008, Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km-deep well Torun-1, Int. J. Earth Sci., 97, 307-315, doi:10.1007/s00531-007-0210-2.

MAJOROWICZ J. and WYBRANIEC S., 2011, New terrestrial heat flow map of Europe after regional paleoclimatic correction application, Inter. J. Earth Sci., 100, 881-887.

MAJOROWICZ J., GRAD M. and WYBRANIEC S., 2007, Heat flow variation with depth in Poland and Central Europe from deep equilibrium temperature logs and lithosphere thermal state, IUGG XXIV General Assembly.

MAJOROWICZ J. A., OSADETZ K. G., and SAFANDA J., 2008, Modeling temperature profiles considering the latent heat of physical-chemical reactions in permafrost and gas hydrates - the Mackenzie Delta terrestrial case, [in:] Kane D. L. and Hinkel K. M. (eds.), Proceedings of the Ninth International Conference on Permafrost, Institute of Northern Engineering, Univ. Alaska Fairbanks, 2, 1113-1118.

MAJOROWICZ J., SAFANDA J. and OSADETZ K., 2012, Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort­Mackenzie Basin, Arctic Canada, Clim. Past, 8, 667-682.

MAJOROWICZ J., GOSNOLD W., GRAY A., SAFANDA J., KLENNER R. and UNSWORTH M., 2012, Implications of Post-Glacial Warming for Northern Alberta Heat Flow - Correcting for the Underestimate of the geothermal potential, GRC Transactions, 36, 693-698.

MARESCHAL J.-C. and JAUPART C., 2004, Variations of surface heat flow and lithospheric thermal structure beneath the North American craton, Earth Planetary Sci. Let., 223, 65-77.

MARESCHAL J.-C., JAUPART C., GARIÉPY C., CHENG L. Z., GUILLOU- FROTTIER L., BIENFAIT G. and LAPOINTE R., 2000, Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield, Canadian J. Earth Sci., 37, 399-414.

MARESCHAL J.-C., ROLANDONE F. and BIENFAIT G., 1999, Heat flow variations in a deep borehole near Sept-Iles, Québec, Canada: Paleoclimatic interpretation and implications for regional heat flow estimates, Geophys. Res. Let., 26, 2049-2052.

MICHALSKI T., 1985, On the genesis of the groundwater chemical anomaly in the NE Poland. [in: ] Kleczkowski A. S. (ed.), Proceedings of the 3rd Polish Hydrogeological Symposium, AGH Kraków, 505-511.

MOTTAGHY D., MAJOROWICZ J. and RATH V., 2010, Ground surface temperature histories reconstructed from boreholes in Poland: implications for spatial variability, [in: ] Przybylak R., Majorowicz J., Brázdil R., Kejna M. (eds.), The Polish Climate in the European Context An Historical Overview, Springer, Dordrecht Heildelberg, London, New York, 375-389.

PELTIER W. R., 2002, Global glacial isostatic adjustment: Paleogeodetic and space geodetic tests of the ICE-4G(VM2) model, J. Quat. Sci., 17, 491-510, doi:10.1002/jqs. 713, 2002.

PERRY H.K.C., MARESCHAL J.-C. and JAUPART C., 2009, Enhanced crustal geo-neutrino production near the Sudbury neutrino observatory, Ontario, Canada, Earth Planet. Sci. Let., 288(1-2), 301-308.

PERRY H. K. C., JAUPART C., MARESCHAL J.-C. and BIENFAIT G., 2006, Crustal heat production in the Superior Province Canadian Shield, and in North America inferred from heat flow data: J. Geophys. Res. B: Solid Earth, 111, 20.

PERRY H. K. C., JAUPART C., MARESCHAL J.-C.,ROLANDONE F. and BIENFAIT G., 2004, Heat flow in the Nipigon arm of the Keweenawan rift, northwestern Ontario, Canada: Geophys. Res. Let., 31, doi:10.1029/2004GL020159.

PERRY H.K.C., ROSIEANU C., MARESCHAL J.C. and JAUPART C., 2010, Thermal regime of the lithosphere in Canada, Canad. J. Earth Sci., 47, 389-408.

RATH V., GONZÁLEZ ROUCO J. F. and GOOSSE H., 2012, Impact of postglacial warming on borehole reconstructions of last millennium temperatures, Clim. Past, 8, 1059-1066.

RITCHIE J.C., 1983, The paleoecology of the central and northern parts of the glacial Lake Agassiz basin, Geological Association of Canada, 26, 157-170.

ROLANDONE F., MARESCHAL J.C. and JAUPART C., 2003, Temperatures at the base of the Laurentide Ice Sheet inferred from borehole temperature data, Geophys. Res. Lett., 30 (18), 1944 doi:10.1029/2003GL018046.

ROLANDONE F., JAUPART C., MARESCHAL J.-C., GARIÉPY C., BIENFAIT G., CARBONNE C. and LAPOINTE R., 2002, Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield, J. Geophys. Res., 107, doi: 10.1029/2001JB000698.

ROLANDONE F., MARESCHAL J.C., JAUPART C., GOSSELIN C., BIENFAIT G. and LAPOINTE R., 2003, Heat flow in the western superior province of the Canadian shield, Geophys. Res. Let. 30(12), 1637, doi: 10.1029/2003GL017386.

ROMANOVSKY V E. , SMITH S. L., CHRISTIANSEN H. H. , SHIKLOMANOV N. I., DROZDOV D. S., OBERMAN N. G., KHOLODOV A. L. and MAR­CHENKO S. S., 2011, Permafrost, Arctic Report Card: Update for 2011, http:// reportcard/permafrost.html.

SAFANDA J. and RAJVER D., 2001, Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia, Global Planet. Change, 29(3-4), 241-258.

SAFANDA J., SZEWCZYK J. and MAJOROWICZ J., 2004, Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet, Geophys. Res. Lett., 31, L07211, doi:10.1029/2004GL019547.

SCHNEIDER VON DEIMLING T.S., HELD H., GANOPOLSKI A. and RAHMSTORF S., 2006, Climate sensitivity estimated from ensemble simulations of glacial climate, Clim. Dynam., 27, 149-163.

SZEWCZYK J. and NAWROCKI J., 2011, Deep-seated relict permafrost in northeastern Poland, Boreas, online, DOI 10.1111/j.1502-3885.2011.00218.x.

ISSN 2080-7686 (print)
ISSN 2300-8490 (online)



Partnerzy platformy czasopism