Synoptic climatology of fog in selected locations of southern Poland (1966–2015)

Ewa Łupikasza, Tadeusz Niedźwiedź



Abstract. This paper investigates fog frequency in southern Poland in relation to various relief (concave and convex) and atmospheric circulation types. It also discusses long-term variability in the annual and seasonal number of days with fog. Daily information on fog occurrence was taken from three high quality synoptic stations representing various landforms: Kraków-Balice (bottom of the hollow), Katowice-Muchowiec (Silesian Upland) and Bielsko-Aleksandrowice (summit of Carpathian Foothill). In the central part of southern Poland during the last 50 years (1966-2015) fog occurred on average during 53-67 days a year. The annual number of foggy days in Kraków (67 days) located in a structural basin was by 14-15 days higher than in Bielsko (53 days) situated in the Silesian Foothill.

In annual course high fog occurrence (above 6 days per month) was observed from September to January with maximum in Kraków (10 days in October). The monthly minimum of fog occurrence in all stations fell on July (2 days). In summer and spring the highest probability of fog occurrence was found at days with anticyclonic types and air advection from the northeastern (Na, NEa) and eastern (Ea, SEa) sectors. In autumn the high probability was also found for the anticyclonic types with advection of air mass from the eastern and southern sectors. In the Carpathian Foothill (Bielsko) the probability of fog occurrence in summer and winter was significantly enhanced only for the cyclonic types with air advection from the eastern sector (NEc, Ec, SEc) and nonadvective types Cc (cyclone center) and Bc (cyclonic trough). Fluctuations dominated in the long-term course of fog frequency. The only significant trend was found in Kraków on annual scale and in summer when fog frequency was little.


fog frequency; fog days trends; circulation types; Southern Poland

Full Text:



AVOTNIECE Z., KLAVINS M., LIZUMA L., 2015, Fog climatology in Latvia. Theoretical and Applied Climatology, 122(1):97-109.

BŁAŚ M., SOBIK M., 2004, The distribution of fog frequency in the Carpathians. Geographia Polonica, 77(1):19-34.

DAY J.A., 2008, Fog and mist. [In:] Oliver J.E. (ed.), Encyclopedia of World Climatology, Springer, Dordrecht: 379-380.

FU G.Q., XU W.Y., YANG R.F., LI J.B., ZHAO C.S., 2014, The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmospheric Chemistry and Physics, 14: 11949-11958.

GLICKMAN T.S. (ed.), 2000, Glossary of Meteorology. American Meteorological Society, Boston, Massachusetts, U.S.A: 855 pp.

GOLDING B.W., 1993, A study of the influence of terrain on fog development. Monthly Weather Review, 121:2529-2541.

GOMEZ B., SMITH C.G., 1984, Atmospheric pollution and fog frequency in Oxford, 1926–1980. Weather, 39(12): 379-384.

IMGW PIB, 2012, Wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo (Influence of climate changes on the environment, management and society). Instytut Meteorologii i Gospodarki Wodnej, Państwowy Instytut Badawczy (IMGW PIB), Warszawa: 240 pp. (in Polish).

KLEMM O., LIN N.H., 2016, What causes observed fog trends: air quality or climate change?, Aerosol and Air Quality Research, 16:1131-1142.

KOKKOLA H., ROMAKKANIEMI S., LAAKSONEN A., 2003, On the formation of radiations fogs under heavily polluted conditions. Atmospheric chemistry and Physics, 3:581-589.

LAMB H.H., 1972, British Isles weather types and a register of daily sequence of circulation patterns, 1861-1971. HMSO, London, Geophysical Memoir, 116:1-85.

LORENC H. (ed.), 2005, Atlas klimatu Polski (Climate atlas of Poland). Instytut Meteorologii i Gospodarki Wodnej, Warszawa (in Polish).

MORAWSKA M., 1966, Mgły w Krakowie (1861-1960) (Fogs in Cracow ). Przegląd Geofizyczny, 11(19)3: 171-181 (in Polish, summary in English).

NIEDŹWIEDŹ T., 1981, Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły (Synoptic situations and its influence on the spatial differentiation of selected climatic elements in the Upper Vistula Basin). Rozprawy Habilitacyjne UJ 58, Kraków:165 pp. (in Polish).

NIEDŹWIEDŹ T., 2000, Variability of the atmospheric circulation above the Central Europe in the light of selected indices. [in:] Obrębska-Starkel B. (ed.) (2000) Reconstructions of Climate and its Modelling. Institute of Geography of the Jagiellonian University, Cracow, Prace Geograficzne 107:379-389.

NIEDŹWIEDŹ T., 2016, Catalogue of synoptic situations in the upper Vistula river basin (1873.09-2015.12). Computer file available at: Department of Climatology, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland;; available also on line in

NIEDŹWIEDŹ T., ŁUPIKASZA E., 2016, Change in atmospheric circulation patterns. [In:] Kundzewicz Z.W., Stoffel M., Niedźwiedź T., Wyżga B. (eds)Flood Risk in the Upper Vistula Basin. GeoPlanet: Earth and Planetary Sciences, Springer International Publishing Switzerland:189-208.

PIWKOWSKI H., 1976, Rozkład mgieł w Polsce i ich długotrwałość (Distribution and duration of fog in Poland). Przegląd Geofizyczny, 21(29)1: 41-49 (in Polish, summary in English).

SACHWEH M., KOEPKE P., 1995, Radiation fog and urban climate. Geophysical Research Letters, 22(9): 1073-1076.

SACHWEH M., KOEPKE P., 1997, Fog dynamics in an urbanized area. Theoretical and Applied Climatology, 58(1): 87-93.

SHI C., ROTH M., ZHANG H., LI Z., 2008, Impact of urbanization on long-term fog variation in Anhui Province, China. Atmospheric Environment, 42:8484-8492.

SINGH A., DEY S., 2012, Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62: 367-373.

SRIVASTAVA S.K., SHARMA A.R., SACHDEVA K., 2016, A ground observation based climatology of winter fog: study over the Indo-Gangetic Plains, India. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10(7): 705-716.

SUGIMOTO S., SATO T., NAKAMURA K., 2013, Effects of synoptic-scale control on long-term declining trends of summer fog frequency over the Pacific side of the Hokkaido Island. Journal of Applied Meteorology and Climatology, 52: 2226-2242.

SYED F.S., KÖRNICH H., TJERNSTRÖM M., 2012, On the fog variability over south Asia. Climate Dynamics, 39(12): 2993-3005. DOI 10.2007/s00382-012-1414-0.

USTRNUL Z., CZEKIERDA D. 2009, Atlas of extreme meteorological phenomena and synoptic situations in Poland. Instytut Meteorologii i Gospodarki Wodnej, Warszawa: 182 pp.

USTRNUL Z., WYPYCH A., HENEK E., CZEKIERDA D., WALAWENDER J., KUBACKA D., PYRC R., CZERNECKI B., 2014, Meteorological hazard atlas of Poland. Attyka, Kraków: 162 pp.

VALOR G.B., LÓPEZ J.M.G., 2016, OGIMET – Professional information about meteorological conditions in the world (SYNOP messages available on-line on the web site: Last access 17 September 2016.

van OLDENBORGH G.J., YIOU P., VAUTARD R., 2010, On the roles of circulation and aerosols in the decline of mist and dense fog in Europe over the last 30 years. Atmos. Chem. Phys., 10(10), 4597-4609, doi:10.5194/acp-10-4597-2010.

VAUTARD R., YIOU P., van OLDENBORGH G.J., 2009, The decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2:115-119, 10.1038/NGEO414.

WITIW M.R., LaDOCHY S., 2008, Trends in fog frequencies in the Los Angeles Basin. Atmospheric Research, 87:293-300.

WOŚ A., 2010, Klimat Polski w drugiej połowie XX wieku (Climate of Poland in the second half of the 20th century). Wydawnictwo Naukowe UAM, Poznań: 489 pp (in Polish, summary in English).

WYPYCH A., 2003, Air humidity and fogs in Cracow in the period 1961-2000 in relation to synoptic situations. Prace Geograficzne IGiGP UJ, 112:105-114.

ISSN 2080-7686 (print)
ISSN 2300-8490 (online)



Partnerzy platformy czasopism