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Abstract. MicroRNAs are a class of small, evolutionarily conserved, endogenous RNAs, 
capable of controlling gene expression. MicroRNAs are transcribed by RNA polymerases 
II and III, generating precursors that undergo a series of cleavage events to form mature 
microRNA. They play an important regulatory role in animals at the posttranscriptional 
levels by targeting mRNAs for direct cleavage of mRNAs or repression of mRNA transla-
tion. The main biological function of miRNA is the post-translation regulation of cells, 
like: proliferation and differentiation, cell death, fat metabolism, neuronal patterning and 
angiogenesis.  These molecules are the main regulators of biological features of economic 
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interest, including body growth, muscle development, signaling transduction, fat deposi-
tion, and immunology. In this review, we summarize the existing knowledge about miR-
NAs synthesis, mechanisms for regulation of the genome their functions in animals physi-
ology and the implications associated with dysfunction and dysregulation.

Keywords: miRNA; biomarkers; small RNAs; miRNA based gene regulations.

Introduction

MicroRNA belongs to the family of  small, single-stranded, endogenous 
regulatory molecules with the length of 18–25 nucleotides. Evolutionarily 
conserved molecules occur among various species of plants and animals, 
including humans [1–3]. Precursors of mature microRNA molecules are 
short hairpin RNA sequences (shRNA). The main function of miRNA is 
the post-translational regulation of gene expression as well as the regula-
tion of cell proliferation and differentiation, apoptosis, angiogenesis and 
oncogenesis [2, 4]. One microRNA molecule can regulate the expression 
of  thousands of  genes. It  is estimated that these non-coding molecules 
account for only 1–5% of the human genome and code least 30% of pro-
tein coding genes [5]. The recent development of  high-throughput se-
quencing technologies, computational techniques and bioinformatics 
algorithms has greatly enhanced research on miRNAs, including identifi-
cation of regulatory targets and prediction of possible functions [6]. The 
miRBase database from June 2013 contains 24,521 microRNA loci from 
206 species [7].

Biogenesis of microRNA molecules

The miR genes are accumulated on chromosomes in  aggregates, which 
are subject to the translation process as polycistonal transcriptional sub-
units[8]. Genes encoding microRNAs usually contain several 10s or even 
100s of nucleotides and can be located between sequences that code the 
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protein and function as independent units as well as in coding sequences. 
MiR genes are also located in introns, exons and non-translated regions 
[9, 10] (Figure 1). Thanks to this arrangement, transcripts of miRNA as 
well as mRNA can be created simultaneously [11].

 

Figure 1. Schematic illustration of the genomic organization and structure of miRNA genes 

 

The conventional biogenesis pathway consists of two cleavage events (one nuclear and one 

cytoplasmic), and several enzymes play critical roles in the process (Figure 2). The characteristic 

location of the miRNA genes in the genome enables the action of the RNA polymerase II and III 

transcribing small RNA [12]. Polymerase II is responsible for the transcription of miRNA genes in 

the nucleus and the formation of large, primary miRNA transcripts (pri-miRNA), which, similarly 

to the mRNA are capped by a 7-methyl guanosine at the 5 'end and separated by a polyadenyl tail at 

the 3 'end [13]. They form specific hairpin-shaped stem-loop secondary structure. Pri-miRNAs 

reach the length of several base pairs. The double-strand structures of the primary transcript are 

recognized by the nuclear protein DGCR8/Pasha (a protein contains two double-stranded associated 

RNA binding domains) with Drosha ribonuclease (RNase III) [14, 15]. The resulting complex 

Figure 1. Schematic illustration of  the genomic organization and structure  
of miRNA genes

The conventional biogenesis pathway consists of  two cleav-
age events (one nuclear and one cytoplasmic), and several en-
zymes play critical roles in  the process (Figure 2). The charac-
teristic location of  the miRNA genes in  the genome enables the 
action of  the RNA polymerase II and III transcribing small RNA 
[12]. Polymerase II is responsible for the transcription of  miRNA 
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genes in  the nucleus and the formation of  large, primary miRNA 
transcripts (pri-miRNA), which, similarly to the mRNA are capped by 
a 7-methyl guanosine at the 5 ‚end and separated by a polyadenyl tail 
at the 3 ‚end [13]. They form specific hairpin-shaped stem-loop sec-
ondary structure. Pri-miRNAs reach the length of  several base pairs. 
The double-strand structures of the primary transcript are recognized 
by the nuclear protein DGCR8/Pasha (a protein contains two double-
stranded associated RNA binding domains) with Drosha ribonuclease 
(RNase III) [14, 15]. The resulting complex participates in the nucleus 
of  the primary miRNA transcript in  the nucleus, resulting in a 70 nt 
pre-miRNA [16].

Pre-miRNA molecules are transported via the exportin 5 (a member 
of  the Ran transport receptor family) interacting with the GTP-depen-
dent Ras protein to the cytoplasm [17, 18]. There, the pre-miRNA pro-
cessing by the Dicer enzyme, belonging, (like exportin), to RNase III, 
leads to the formation of  about 20–22 nucleotide length double strand 
miRNA:miRNA duplex with 5’ phosphate and a 3’ 2 nt overhang from the 
end of  the hairpin structure stem [19, 20]. Duplex is unwound by heli-
case into two single strands (inactive miRNA is degraded by an unknown 
enzyme nuclease). Active miRNA mature strand is incorporated into the 
RISC complex (microRNA induced silencing complex), made up of many 
proteins, of  which Ago proteins play the most important role [21, 22]. 
The created complex allows for the identification of the passenger thread 
and the degradation of the second thread. A mature microRNA is created 
and it contains a conserved sequence of 7 nt at the 5’end significant when 
binding the target mRNA.
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Figure 2. Biogenesis of animal miRNA 

 

 

Mechanism of action of microRNA 

 

All miRNAs regulate gene expression at the posttranscriptional level. Three base mechanisms have 

been described for miRNA-mediated gene regulation: mRNA degradation, translational repression, 

and miRNA-mediated mRNA decay (Figure 3). One of the ways was defined as the post 

transcriptional gene silencing (PTGS). It occurs in the case of complete complementarity between 

miRNA and mRNA, and consists in the hydrolysis of the target mRNA by the enzyme Dicer, and 

consequently the decrease in the level of a given transcript and the protein encoded by it [23]. The 

second method is not dependent on complete complementarity and is manifested by a complete 

Figure 2. Biogenesis of animal miRNA

Mechanism of action of microRNA

All miRNAs regulate gene expression at the posttranscriptional level. 
Three base mechanisms have been described for miRNA-mediated gene 
regulation: mRNA degradation, translational repression, and miRNA-
mediated mRNA decay (Figure 3). One of  the ways was defined as the 
post transcriptional gene silencing (PTGS). It occurs in the case of com-
plete complementarity between miRNA and mRNA, and consists in the 
hydrolysis of  the target mRNA by the enzyme Dicer, and consequently 
the decrease in the level of a given transcript and the protein encoded by 
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it  [23]. The second method is not dependent on complete complemen-
tarity and is manifested by a complete inhibition of the translation pro-
cess, by linking the miRNA molecule to the mRNA usually located in the 
3’UTR region (some miRNAs can also bind to the 5’UTR and/or the ORF)
[23–25]. Transcripts are stored or degraded in P bodies found in the cy-
toplasm, and their level does not change. The mechanism of muting gene 
expression by inhibiting translation is the mechanism most commonly 
used in mammalian organisms. A majority of miRNAs downregulate gene 
expression by translational repression.

inhibition of the translation process, by linking the miRNA molecule to the mRNA usually located 

in the 3'UTR region (some miRNAs can also bind to the 5’UTR and/or the ORF)[23–25]. 

Transcripts are stored or degraded in P bodies found in the cytoplasm, and their level does not 

change. The mechanism of muting gene expression by inhibiting translation is the mechanism most 

commonly used in mammalian organisms. A majority of miRNAs downregulate gene expression by 

translational repression. 

 

Figure 3. Possible mechanisms for miRNA gene regulation 

 

MicroRNA as a biomarker 

The action of microRNA is based mainly on the regulation of gene expression by complementary 

linking of base pairs with the target messenger RNA molecule. There is no need for 100% 

complementarity to the proper functioning of the regulatory mechanism. In the biological processes 

microRNA plays a huge role in controlling the change of cell proliferation, their differentiation, 

growth and programmed death – apoptosis. Some microRNA molecules are capable of modifying 

histones and methylation of DNA, i.e. changes at the epigenetic level [26–29], which can eventually 

lead to the formation of pathology process. MicroRNA also affects many physiological and 

pathological processes in mammalian organisms. Among them, the differentiation of hematopoietic 

Figure 3. Possible mechanisms for miRNA gene regulation

MicroRNA as a biomarker

The action of microRNA is based mainly on the regulation of gene expres-
sion by complementary linking of base pairs with the target messenger 
RNA molecule. There is no need for 100% complementarity to the proper 
functioning of the regulatory mechanism. In the biological processes mi-
croRNA plays a huge role in controlling the change of cell proliferation, 
their differentiation, growth and programmed death – apoptosis. Some 
microRNA molecules are capable of modifying histones and methylation 
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of DNA, i.e. changes at the epigenetic level [26–29], which can eventu-
ally lead to the formation of  pathology process. MicroRNA also affects 
many physiological and pathological processes in mammalian organisms. 
Among them, the differentiation of  hematopoietic stem cells, skeletal 
muscle cells, embryogenesis, neurogenesis, angiogenesis or exocytosis is 
distinguished. They affect the regulation of insulin secretion, pancreatic 
development, the formation of adipocytes and cells of  the immune sys-
tem. The altered expression of microRNAs is observed in inflammatory 
conditions, cardiovascular diseases and in  viral and bacterial infection. 
The change in the level of expression of a specific microRNA is associated 
with the line and the developmental stage of the cell [30–34]. In addition, 
in pathological conditions, small RNA is released into the blood circu-
lation, becoming a circulating miRNA. Various types of  microvesicles, 
exosomes or apoptotic bodies are found in  the circulating microRNA 
molecules, where they are protected from the degrading effect of RNases 
[35, 36]. This allows for the use of small, circulating RNAs as stable bio-
markers. Circulating microRNAs are also resistant to freezing and thaw-
ing processes, thanks to which it  is possible to store serum samples at 
a temperature of –20°C to –80°C without the risk of particle degradation. 
The fact that microRNAs are good biomarkers is supported by the fact 
that they are detected in readily available biological fluids, such as saliva, 
amniotic fluids, urine, and milk [37, 38]. Importantly, they can be identi-
fied by specific and sensitive quantitative real time PCR, and most mi-
croRNA molecules have been evolutionarily preserved, which facilitates 
the interpretation of  results obtained from animal models in  vivo. The 
expression profiles of  circulating microRNAs of  healthy individuals are 
fairly uniform and constant, whereas concentration measurement is pos-
sible both in serum and in blood plasma [36, 39].

Functions of microRNAs in animals

Hundreds of miRNA genes have been found in diverse animals, and many 
of these are phylogenetically conserved. The biological function of animal 
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miRNAs has been studied by several approaches [40](Table 1). miRNA 
molecules are an important regulator of the proper development of many 
tissues and organs, after each stage of normal growth and development 
[41], for example: miR-196 in  limb [42],  miR-133 in  heart [43], miR-
134 in dendritic spines [44], miR-430 family in brain [45], let -7 in em-
bryo [46, 47] miR-181 in skeletal-muscle differentiation [48] or miR-155 
in stem cell mainstance [49]. 

Table 1. Animal miRNAs and their biological functions (base on [50–52]).

miRNA Target(s) Function(s) References

Ceanorhabditis elegans

lin-4 lin-14, lin-28 Physiological condition and developmen-
tal timing (larval stage L1 and L2) [53–55]

let-7
lin-41, HBL-
1, DAF-12, 

PHA-4, RAS

Regulation of  late developmental timing 
(developmental transition from the L2 to 
the L3 larval stage)

[3, 56–60]

lsy-6 COG-1 Neuronal cell fate (left/right neuronal 
asymmetry) [61]

miR-273 DIE-1 Neuronal cell fate and developmental ti-
ming  (left/right neuronal asymmetry) [62]

Drosophila melanogaster

bantam HID Cell death and proliferation [63]

miR-14 Drice or 
caspase

Programmed cell death, proliferation and 
fat metabolism [64]

miR-7 Notch targets Notch signaling [65, 66]

miR-7 YAN Photoreceptor differentiation [67]

Danio rerio

miR-430 Brain morphogenesis [45]

Mus musculus

miR-196

HOXA7, 
HOXB8, 
HOXC8, 
HOXD8

Developmental patterning [68]
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miRNA Target(s) Function(s) References

miR-181 Hematopoietic lineage differentiation [69]

miR-1 HAND2 Cardiomyocyte differentiation and proli-
feration [62]

miR-375 MTPN Insulin secretion [70]

Rat

miR-134 LIMK1 Regulation of the size of dendritic spines [44]

Zebrafish

miR-430 
family Brain morphogenesis [45]

let-7 GFP Developing embryo [46, 71, 72]

mir-126 c-MYB Hemapoetic cell fate [73]

First of all miRNAs can regulate developmental timing. Lee et al. [53] 
demonstrated  that lin-4 and let-7, regulate developmental timing in C. 
elegans. Loss-of-function of this miRNAs result in retarded worm devel-
opment (lin-4 at the first larval stage, lin-7 at a late stage). miRNA can be 
involved in  regulation of  several signaling pathways. Boehm and Slack 
emphasized a dual function for lin-4, which also play role in regulating life 
span, possibly through the insulin/insulin-like growth factor-1 pathway 
[74]. In turn, Li and Carthew demonstrated that the expression of miR-7 
is initially triggered by EGF signaling, which results in phosphorylation 
and inactivation of  YAN protein. This changes promote photoreceptor 
differentiation in D. melanogaster eyes. In literature it is widely described 
that a miRNA are involved in the regulation of metabolism. Xu et. al sug-
gested that deletion of  miR-14 results in  animals with increased levels 
of  triacylglycerol and diacylglycerol, whereas increases in  miR-14 copy 
number have the converse effect [75]. In vertebrates, miR-375 is expressed 
in the pancreatic island and suppresses glucose-induced insulin secretion, 
what was showed in  Poy et al. research [70]. MicroRNA molecules are 
extremely important regulators of many developmental processes in ani-

Table 1. Animal miRNAs (continued)
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mals. Progress in the research methodology allows for the identification 
of new markers and the attribution of biological role to them.

MicroRNAs as potential biomarkers  
for veterinary research

Physiological and pathological roles of  miRNA in  animal diseases has 
been the subject of intensive research for only a few years. MicroRNAs are 
involved in a broad spectrum animal disease, among which the following 
ones should be mentioned above all: cancer, metabolic and infection dis-
eases and immune defense [76, 77] (Table 2). 

Table 2. Selected miRNAs and their function in different domestic animal species.

miRNA(s) Significance References

Felis domesticus

miR-122, miR-193b Diabetes. miRs expression was higher in newly diagno-
sed diabetic cats compared to healthy lean cats and cats 
in diabetic remission.

[78]

miR-381-3p,  
miR-486-3p,  
miR-4751, miR-
476c-3p, miR-5700, 
miR-513a-3p,  
miR-320e

Hypertrophic cardiomyopathy. Distinct miRNAs and 49 
mRNA targets are involved in feline cardiac hypertrophy.  

[79]

Canis domesticus

miR-15a, miR-16, 
miR-29b, miR-21, 
let-7f, miR-181b

Cancer. miR-15a and miR-16 show a significant downre-
gulation in canine ductal carcinomas while miRsR-181b, 
-21, -29b, and let-7f show a significant upregulation in ca-
nine tubular papillary carcinomas.

[80]

mir-29b, miR-101, 
mir-125a, miR-143, 
miR-145

Cancer. Metastatic cells differed in their expression of this 
set of  miRNAs from primary tumors, the comparison 
of miRNA expression in primary tumors of different ma-
lignancy failed to reveal significant differences except for 
a significant downregulation of  mir-125a in  metastasi-
zing carcinomas when compared to adenomas.

[81]
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miRNA(s) Significance References

miR-30b,  
miR-133b

ACVIM. miR-30b could be a potential biomarker 
of ACVIM stage B heart failure in Dachshunds with en-
docardiosis and miR-133b could be a potential biomarker 
of ACVIM stage C. 

[82]

Gallus gallus

miR-122 Liver metabolism. miR-122 regulates expression of  123 
genes in cultured chicken hepatocytes, of which. 21 ge-
nes is involved in liver metabolism, so that miR plays role 
in this process in directly or indirectly.

[83]

Set of miRs  
(esp. miR-2131-5p, 
miR-221-5p,  
miR-126-3p, 
miR-146b-5p, 
miR-10a-5p, let-7b, 
miR-125b-5p, and 
miR-146c-5p,  
miR-206)

Muscle growth. Most of them are involved in calcium si-
gnaling, axonal guidance signaling, and NRF2-mediated 
oxidative stress response pathways suggesting their invo-
lvement in breast muscle growth in chickens.

[84]

Sus scrofa domesticus

Set od miRs Obesity. miRs were associated mainly with muscle con-
traction, WNT, mTOR, and MAPK signaling pathways. 

[85]

miR-203a FMDV. miR-203a impaired FMDV infection across mul-
tiple FMDV serotypes and represent attractive potential 
of naturally occurring bio-therapeutics against FMDV.

[86]

Bos taurus

miR-125b, miR-141, 
miRNA-148a,   
miR-181a, miR-199b, 
miR-484, miR-500, 

Lactogenesis. Systematic predictions differences in types 
and expression levels of miRNAs  providing insight into 
their possible mechanisms in regulating lactation.

[87–89]

Set of miRs Mastitis. 173 unique miRNAs were identified that had 
significant differential expression between healthy and 
mastitis Holstein cattle. Most of  them belonged to the 
chemokine signaling pathway involved in  the immune 
responses.

[88]

miR-21, miR-146a, 
miR-155, miR-222, 
miR-383

Mastitis. Inflammation-related miRNA overexpression 
in the bovine milk was affected by mastitis, and miRNA 
in  milk have potential for use as biomarkers of  bovine 
mastitis.

[90]

Table 2. Selected miRNAs (continued)
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miRNA(s) Significance References

miR-205, miR-432 Mycobacterium avium subspecies paratuberculosis. In-
creased miR-205 and decreased miR-432 expression sug-
gests changes in circulating miRNA profiles due to ageing 
or development.

[91]

Equus caballus

miR-146a Hendra virus infection. miR-146a promotes replication 
of Hendra virus.

[92, 93]

miR-140 Chondrogenesis. miR-140 is an important regulator 
of cartilage development and homeostasis  (through the 
regulation of CXCL12 and ADAMTS-5)

[94]

As in humans, the microRNA patterns of different cancers in domes-
tic animals have identified signatures associated with their diagnosis, stag-
ing, progression, prognosis, and response to treatment [95]. Boggs et al. 
[80] determined that miR-29b and miR-21 have a statistically  significant  
up-regulation  in  canine cancerous samples. In addition, it was observed 
that miR-15a and miR-16 were  down regulated in  ductal carcinomas,  
miR-181b, miR-21, miR-29b, and let-7f were significantly overexpressed 
in tubular papillary carcinomas diagnosed in dogs. Uhl et al. [96] identi-
fied several miRs (including miR19a + b, miR17-5p, miR-203, miR-218 
and miR-181a) characteristic for canine lymphoma. Some of them have 
a predictive, diagnostic, and prognostic potential. In another study, re-
garding canine osteosarcoma, Leonardo et al. [97] determined a poten-
tial role of miR-1 and miR-133b as biomarkers for canine OS treatment. 
It is worth noting that in many studies in microRNA expression profiling, 
high molecular homology with human is confirmed.

MicroRNAs play an important role in  chondrogenic differentia-
tion. Buechli et al. [94] found that the expression patterns of miR-140 is 
corelated with cartilage development in horses. In study Peffers et. al [98] 
increased miR-21 was found in aged horses’ articular cartilage. Sumiyoshi 
et al. [99] shown that overexpression of miR-181a in chicken chondro-
cytes, directly targets and suppresses the pro-chondrogenic gene (Ccn1) 

Table 2. Selected miRNAs (continued)
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and aggrecan. In previously study in chicken cells, Kim et al. [100] found, 
that miR-221 expression increases upon inhibition of chondrocyte differ-
entiation. There are several other miRNAs whose expression is regulated 
upon chondrocyte differentiation of other species [101–103].

Post-transcriptional gene regulation plays an important role also 
in infectious diseases [32]. Steward et al. [92] have shown that infection 
of human cells with HeV changes the expression levels of miR-146a. Up-
regulation of  this molecule was shown in  equine blood experimentally 
infected with HeV16. They suppose, that miRNA profiling could be used 
to aid early HeV disease diagnosis, but it’s worth remembering that differ-
ential expression of miR-146a is induced by several pathogens, including 
bacteria and other viruses [92, 93, 104–106].  Tian et al. [107] found that 
miR-15b is a significant marker of Marek’s disease virus (MDV) infection 
in chickens. This miR was reduced in infected susceptible chickens and 
splenic tumors, controlled by the expression of ATF2. In the another study 
changes in expression pattern of miR-664-5p, miR-451 and miR-15a were 
correlated with Actinobacillus pleuropneumoniea [108] and pseudorabies 
[109] in pigs. That miRs are strongly related to the immune and inflam-
matory response to both pathogens. 

Changes in the microRNA expression level correlate with the mani-
festation of the functional characteristics of domestic animals. An exam-
ple of this is the milk yield of cows for which the largest number of tests 
was carried out. “Milk” miRNAs are transported by exosomes and milk fat 
globules from mammary gland epithelial cells. The most abundant miR-
NA found in milk is miRNA-148a. This molecule decreases the expres-
sion of gene involved in epigenetic regulation – DNA methyltransferase 
1. Another important miRNA of milk is miRNA-125b (targets p53) [89]. 
Li et. al. [87] in their integrative analysis highlight the complexity of gene 
expression networks regulated by miRNAs in the bovine mammary gland 
during lactation. They found a set of genes correlated with lactogenesis, 
of  which miR-125b, miR-141, miR-181a, miR-199b, miR-484 and miR-
500 reveal possible biological significance.



26

Joanna Szczepanek, Chandra S. Pareek, Andrzej Tretyn

Translational Research  
in Veterinary Science

Vol 1, No 1, 2018

Conclusion

The recent scientific findings in miRNA studies have revealed, that miR-
NAs are related to cardiac, skeletal muscle and cartilage physiology and 
pathology. A detailed discussion on all issues exceeds the scope of  this 
study. This review on animal miRNAs shows that these small molecules 
are great targets for understanding biology, physiology and pathology 
in veterinary science.  In the near future, these molecules may become 
very attractive features for their immediate implementation as biomark-
ers for many diseases and may contribute to enhancing global agricultural 
production as well.
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