TY - JOUR
AU - Adnani, Fatiha El
AU - Alaoui, Hamad Talibi
PY - 2010/04/23
Y2 - 2023/03/25
TI - Traveling front solutions in nonlinear diffusion degenerate Fisher-KPP and Nagumo equations via the Conley index
JF - Topological Methods in Nonlinear Analysis
JA - TMNA
VL - 35
IS - 1
SE -
DO -
UR - https://apcz.umk.pl/TMNA/article/view/TMNA.2010.003
SP - 43 - 60
AB - Existence of one dimensional traveling wave solutions $u( x,t)$ $:=\phi ( x-ct) $ at the stationary equilibria, for the nonlineardegenerate reaction-diffusion equation $u_{t}=[K( u)u_{x}]_{x}+F( u) $ is studied, where $K$ is the densitycoefficient and $F$ is the reactive part. We use the Conley index theory toshow that there is a traveling front solutions connecting the criticalpoints of the reaction-diffusion equations. We consider the nonlineardegenerate generalized Fisher-KPP and Nagumo equations.
ER -