TY - JOUR
AU - Gonçalves, Daciberg Lima
AU - dos Santos, Anderson Paião
AU - Silva, Weslem Liberato
PY - 2021/12/02
Y2 - 2024/09/16
TI - The Borsuk-Ulam property for maps from the product of two surfaces into a surface
JF - Topological Methods in Nonlinear Analysis
JA - TMNA
VL - 58
IS - 2
SE -
DO - 10.12775/TMNA.2021.020
UR - https://apcz.umk.pl/TMNA/article/view/36353
SP - 367 - 388
AB - Let $X$, $Y$, $S$ be closed connected surfaces and $\tau \times \beta$ a diagonal involution on $X \times Y$ where $\tau$ and $\beta$ are free involutions on $X$and $Y$, respectively. In this work we study when the triple$(X \times Y, \tau \times \beta, S)$ satisfies the {\it Borsuk-Ulam property}.The problem is formulated in terms of an algebraic diagram, involving the 2-string braid group $B_{2}(S)$.
ER -