@article{Adnani_Alaoui_2010, title={Traveling front solutions in nonlinear diffusion degenerate Fisher-KPP and Nagumo equations via the Conley index}, volume={35}, url={https://apcz.umk.pl/TMNA/article/view/TMNA.2010.003}, abstractNote={Existence of one dimensional traveling wave solutions $u( x,t)$ $:=\phi ( x-ct) $ at the stationary equilibria, for the nonlinear
degenerate reaction-diffusion equation $u_{t}=[K( u)u_{x}]_{x}+F( u) $ is studied, where $K$ is the density
coefficient and $F$ is the reactive part. We use the Conley index theory to
show that there is a traveling front solutions connecting the critical
points of the reaction-diffusion equations. We consider the nonlinear
degenerate generalized Fisher-KPP and Nagumo equations.}, number={1}, journal={Topological Methods in Nonlinear Analysis}, author={Adnani, Fatiha El and Alaoui, Hamad Talibi}, year={2010}, month={Apr.}, pages={43–60} }