Topological Methods in Nonlinear Analysis Volume 56, No. 2, 2020, 579–588 DOI: 10.12775/TMNA.2020.034

© 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

FIXED POINTS AND THE INVERSE PROBLEM FOR CENTRAL CONFIGURATIONS

D.L. FERRARIO

ABSTRACT. Central configurations play an important role in the dynamics of the n-body problem: they occur as relative equilibria and as asymptotic configurations in colliding trajectories. We illustrate how they can be found as projective fixed points of self-maps defined on the shape space, and some results on the inverse problem in dimension 1, i.e. finding (positive or real) masses which make a given collinear configuration central. This survey article introduces readers to the recent results of the author, also unpublished, showing an application of the fixed point theory.

1. Introduction

Let $n \geq 3$ be and integer, and m_1, \ldots, m_n positive parameters, masses. Given a dimension $d \geq 2$, a configuration of n points in \mathbb{R}^d is a n-tuple $\boldsymbol{q} = (\boldsymbol{q}_1, \ldots, \boldsymbol{q}_n)$ with $\boldsymbol{q}_j \in \mathbb{R}^d$ for all j and $\boldsymbol{q}_i \neq \boldsymbol{q}_j$ whenever $i \neq j$. Spaces of configurations (configuration spaces) have been the object of much of study in recent decades (see Fadell–Husseini [6] for a topological point of view and some deep and interesting consequences). The set of all configurations is denoted $\mathbb{F}_n(\mathbb{R}^d)$, following Fadell–Husseini notation. Topological properties of configuration spaces have consequences in the study of dynamical systems of n point particles interacting with mutual forces (the n-body problem: see for example [22]). One of the most

²⁰²⁰ Mathematics Subject Classification. 55M20, 70G40.

 $Key\ words\ and\ phrases.\ n-body\ problem;\ multi-valued\ map;\ central\ configuration;\ inverse\ problem.$