Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Computation of Nielsen and Reidemeister coincidence numbers for multiple maps
  • Home
  • /
  • Computation of Nielsen and Reidemeister coincidence numbers for multiple maps
  1. Home /
  2. Archives /
  3. Vol 56, No 2 (December 2020) /
  4. Articles

Computation of Nielsen and Reidemeister coincidence numbers for multiple maps

Authors

  • Thaís Fernanda Mendes Monis
  • Peter N. S. Wong

Keywords

Topological coincidence theory, Nielsen coincidence number, nilmanifolds

Abstract

Let $f_1,\ldots,f_k\colon M\to N$ be maps between closed manifolds, $N(f_1,\ldots,f_k)$ and $R(f_1,\ldots,f_k)$ be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate $R(f_1,\ldots,f_k)$ with $R(f_1,f_2),\ldots,R(f_1,f_k)$. When $N$ is a torus or a nilmanifold, we compute $R(f_1,\ldots,f_k)$ which, in these cases, is equal to $N(f_1,\ldots,f_k)$.

References

V. del Barco, Symplectic structures on nilmanifolds: an obstruction for their existence, J. Lie Theory 24 (2014), no. 3, 889–908.

C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513–518.

C. Biasi, A.K.M. Libardi and T.F.M. Monis, The Lefschetz coincidence class of p-maps, Forum Math. 27 (2015), no. 3, 1717–1728.

R. Brooks, On the sharpness of the ∆2 and ∆1 Nielsen numbers, J. Reine Angew. Math. 259 (1973), 101–108.

R. Brooks, Certain subgroups of the fundamental group and the number of roots of f (x) = a, Amer. J. Math. 95 (1973), no. 4, 720–728.

R. Brooks, On removing coincidences of two maps when only one, rather than both of them, may be deformed by a homotopy, Pacific J. Math. 40 (1972), 45–52.

D. Gonçalves and P. Wong, Coincidence Wecken property for nilmanifolds, Acta. Math. Sin. (English Ser.) 35 (2019), no. 2, 239–244.

D. Gonçalves and P. Wong, Obstruction theory and coincidences of maps between nilmanifolds, Archiv Math. 84 (2005), 568–576.

D. Gonçalves and P. Wong, Nilmanifolds are Jiang-type spaces for coincidences, Forum Math. 13 (2001), 133–141.

D. Gonçalves and P. Wong, Wecken property for roots, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2779–2782.

D. Gonçalves and P. Wong, Homogeneous spaces in coincidence theory II, Forum Math. 17 (2005), 297–313.

P. Heath, Groupoids and relations among Reidemeister and among Nielsen numbers, Topology Appl. 181 (2015), 3–33.

T.F.M. Monis and S. Spież, Lefschetz coincidence class for several maps, J. Fixed Point Theory Appl. 18 (2016), no. 1, 61–76.

T.F.M. Monis and P. Wong, Obstruction theory for coincidences of multiple maps, Topology Appl. 229 (2017), 213–225.

S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333.

P.C. Staecker, Nielsen equalizer theory, Topology Appl. 158 (2011), no. 13 , 1615–1625.

P. Wong, Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds, J. Reine Angew. Math. 524 (2000), 185–204.

P. Wong, Coincidence theory for spaces which fiber over a nilmanifold, Fixed Point Theory Appl. (2004), no. 2, 89–95.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-12-05

How to Cite

1.
MONIS, Thaís Fernanda Mendes and WONG, Peter N. S. Computation of Nielsen and Reidemeister coincidence numbers for multiple maps. Topological Methods in Nonlinear Analysis. Online. 5 December 2020. Vol. 56, no. 2, pp. 483 - 499. [Accessed 21 February 2024].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 56, No 2 (December 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop