Topological Methods in Nonlinear Analysis Volume 56, No. 2, 2020, 401–417 DOI: 10.12775/TMNA.2019.113

© 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

CHEVALLEY GROUPS OF TYPES B_n , C_n , D_n OVER CERTAIN FIELDS DO NOT POSSESS THE R_∞ -PROPERTY

TIMUR NASYBULLOV

ABSTRACT. Let F be an algebraically closed field of zero characteristic. If the transcendence degree of F over \mathbb{Q} is finite, then all Chevalley groups over F are known to possess the R_{∞} -property. If the transcendence degree of Fover \mathbb{Q} is infinite, then Chevalley groups of type A_n over F do not possess the R_{∞} -property. In the present paper we consider Chevalley groups of classical series B_n , C_n , D_n over F in the case when the transcendence degree of F over \mathbb{Q} is infinite, and prove that such groups do not possess the R_{∞} -property.

1. Introduction

Let G be a group and φ be an automorphism of G. Elements x, y from G are said to be φ -conjugated if there exists an element $z \in G$ such that $x = zy\varphi(z)^{-1}$. The relation of φ -conjugation is an equivalence relation and it divides G into φ conjugacy classes. The number $R(\varphi)$ of these classes is called the Reidemeister number of φ .

Twisted conjugacy classes appear naturally in Nielsen–Reidemeister fixed point theory. Let X be a finite polyhedron and $f: X \to X$ be a homeomorphism of X. Two fixed points x, y of f are said to belong to the same fixed point

²⁰²⁰ Mathematics Subject Classification. Primary: 20G15; Secondary: 37C25.

Key words and phrases. Twisted conjugacy classes; Reidemeister number; Chevalley groups.

The author is supported by the Research Foundation – Flanders (FWO): postdoctoral grant 12G0317N and travel grant V425219N.