Topological Methods in Nonlinear Analysis Volume 55, No. 1, 2020, 317–341 DOI: 10.12775/TMNA.2019.096

O 2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

POSITIVE SOLUTIONS OF KIRCHHOFF–HÉNON TYPE ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV GROWTH

KAZUNE TAKAHASHI

ABSTRACT. We investigate the following Kirchhoff–Hénon type equation involving the critical Sobolev exponent with Dirichlet boundary condition:

$$-\left(a+b\left(\int_{\Omega}|Du|^{2}\,dx\right)^{(p-2)/2}\right)\Delta u = \Psi u^{q-1} + |x|^{\alpha}u^{2^{*}-1}$$

in Ω included in a unit ball under several conditions. Here, $a, b \geq 0$, a + b > 0, $2 and <math>\Psi \in L^{\infty}(\Omega) \setminus \{0\}$ is a given non-negative function with several conditions. We show that, if either N = 3 with $4 < q < 2^* = 6$ or $N \geq 4$, there exists a positive solution for small $\alpha \geq 0$. Our methods includes the mountain pass theorem and the Talenti function.

1. Introduction

We investigate the following equation.

(1.1)
$$\begin{cases} -\left(a+b\left(\int_{\Omega}|Du|^{2} dx\right)^{(p-2)/2}\right)\Delta u = \Psi u^{q-1} + |x|^{\alpha} u^{2^{*}-1} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

We use $2^* = 2N/(N-2)$ to denote the critical Sobolev exponent for $N \ge 3$. $\Omega \subset \mathbb{R}^N$ is a piecewise C^1 -class bounded domain with $\Omega \subset B(0,1)$. Here,

²⁰²⁰ Mathematics Subject Classification. 35J20, 35J60, 35J61, 35J91.

Key words and phrases. Critical Sobolev exponent; Kirchhoff equation; Hénon equation; mountain pass theorem, Talenti function.