Topological Methods in Nonlinear Analysis Volume 54, No. 2A, 2019, 665–683 DOI: 10.12775/TMNA.2019.060

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

SEMICLASSICAL STATES FOR SINGULARLY PERTURBED SCHRÖDINGER–POISSON SYSTEMS WITH A GENERAL BERESTYCKI–LIONS OR CRITICAL NONLINEARITY

Sitong Chen — Xianhua Tang — Ning Zhang

ABSTRACT. This paper is concerned with two classes of singularly perturbed Schrödinger–Poisson systems of the form

$$\begin{cases} -\varepsilon^2 \Delta u + u + \phi u = f(u), & x \in \mathbb{R}^3, \\ -\Delta \phi = u^2, & x \in \mathbb{R}^3, \end{cases}$$

and

$$\begin{cases} -\varepsilon^2 \Delta u + V(x)u + \phi u = g(x, u) + K(x)u^5, & x \in \mathbb{R}^3, \\ -\Delta \phi = u^2, & x \in \mathbb{R}^3, \end{cases}$$

where $\varepsilon > 0$ is a small parameter. We prove that: (1) the first system admits a concentrating bounded state for small ε , where $f \in \mathcal{C}(\mathbb{R},\mathbb{R})$ satisfies Berestycki–Lions assumptions which are almost necessary; (2) there exists a constant $\varepsilon_0 > 0$ determined by V, K and g such that for any $\varepsilon \in (0, \varepsilon_0]$ the second system has a nontrivial solution, where $V, K \in \mathcal{C}(\mathbb{R}^3, \mathbb{R}), V(x) \ge 0$, $K(x) > 0, g \in \mathcal{C}(\mathbb{R}^3 \times \mathbb{R}, \mathbb{R})$ is an indefinite function. Our results improve and complement the previous ones in the literature.

²⁰¹⁰ Mathematics Subject Classification. 35J60, 35J20, 35Q40.

Key words and phrases. Semiclassical states; Schrödinger–Poisson system; Berestycki–Lions type assumptions; critical Sobolev exponent; variational method.

This work was partially supported by the National Natural Science Foundation of China (11571370, 11701487,11626202) and Hunan Provincial Natural Science Foundation of China (2016JJ6137).