Topological Methods in Nonlinear Analysis Volume 54, No. 2A, 2019, 641–648 DOI: 10.12775/TMNA.2019.057

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

THE WEAK FIXED POINT PROPERTY OF DIRECT SUMS OF SOME BANACH SPACES

MARIUSZ SZCZEPANIK

ABSTRACT. We prove that if a Banach space X has the weak fixed point property and Y satisfies the condition M(Y) > 1, then the direct sum $X \oplus Y$ with a uniformly convex norm has the weak fixed point property.

1. Introduction

A Banach space X has the fixed point property if for every nonempty closed convex and bounded set K every nonexpansive mapping $T: K \to K$, i.e. a mapping such that $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in K$, has a fixed point. Similarly, the space X has the weak fixed point property if for every nonempty weakly compact convex set K every nonexpansive mapping $T: K \to K$ has a fixed point. In 1965 Browder [4] proved that every uniformly convex Banach space has the fixed point property. Since then, many papers about geometric conditions of a space implying the fixed point property have been published. In 1996 Domínguez Benavides [8] introduced the coefficient M(X) of a Banach space X and proved that if M(X) > 1, then X has the weak fixed point property. Using this result García Falset, Llorens Fuster and Mazcuñan Navarro [9] solved a long-standing problem: every uniformly nonsquare space has the fixed point property.

One of research directions in the fixed point theory is to study conditions under which a direct sum of spaces has the fixed point property. The simplest case is when a geometric property, which implies the fixed point property, is

²⁰¹⁰ Mathematics Subject Classification. Primary: 47H10; Secondary: 47H09, 46B20. Key words and phrases. Banach space; direct sum; fixed point.