Topological Methods in Nonlinear Analysis Volume 54, No. 1, 2019, 219–232 DOI: 10.12775/TMNA.2019.038

© 2019 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

INFINITELY MANY SOLUTIONS FOR A CLASS OF CRITICAL CHOQUARD EQUATION WITH ZERO MASS

Fashun Gao — Minbo Yang Carlos Alberto Santos — Jiazheng Zhou

 $\ensuremath{\mathsf{ABSTRACT}}.$ In this paper we investigate the following nonlinear Choquard equation

$$-\Delta u = \bigg(\int_{\mathbb{R}^N} \frac{G(y,u)}{|x-y|^{\mu}} \, dy\bigg) g(x,u) \quad \text{in } \mathbb{R}^N,$$
 where $0 < \mu < N, \; N \geq 3, \; g(x,u)$ is of critical growth in the sense of

where $0 < \mu < N$, $N \ge 3$, g(x,u) is of critical growth in the sense of the Hardy–Littlewood–Sobolev inequality and $G(x,u) = \int_0^u g(x,s) ds$. By applying minimax procedure and perturbation technique, we obtain the existence of infinitely many solutions.

1. Introduction and main results

The aim of the present paper is to consider the following nonlinear critical Choquard equation with a subcritical nonlocal term

(1.1)
$$\begin{cases} -\Delta u = \left(\int_{\mathbb{R}^N} \frac{\delta |u(y)|^{2^*_{\mu}} + \lambda K(y) |u(y)|^p}{|x - y|^{\mu}} \, dy \right) \\ \left(\delta |u|^{2^*_{\mu} - 2} u + \frac{p}{2^*_{\mu}} \lambda K(x) |u|^{p - 2} u \right) & \text{in } \mathbb{R}^N, \\ u \in D^{1,2}(\mathbb{R}^N), \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification. 35J20, 35J60, 35A15.

 $Key\ words\ and\ phrases.$ Critical Choquard equation; Hardy–Littlewood–Sobolev inequality; infinitely many solutions.

Minbo Yang is the corresponding author who was partially supported by NSFC (11571317).