Topological Methods in Nonlinear Analysis Volume 53, No. 2, 2019, 801–823 DOI: 10.12775/TMNA.2019.019

© 2019 Juliusz Schauder Centre for Nonlinear Studies

## FORMAL BARYCENTER SPACES WITH WEIGHTS: THE EULER CHARACTERISTIC

SADOK KALLEL

ABSTRACT. We compute the Euler characteristic with compact supports  $\chi_c$  of the formal barycenter spaces with weights of some locally compact spaces, connected or not. This reduces to the topological Euler characteristic  $\chi$  when the weights of the singular points are less than one. As foresighted by Andrea Malchiodi, our formula is related to the Leray–Schauder degree for mean field equations on a compact Riemann surface obtained by C.C. Chen and C.S. Lin.

## 1. Statement of the main result

Given a space X, we will write  $\mathcal{B}_k(X)$  for the space of formal barycenters of k points in X [11]. By construction there are inclusions  $\mathcal{B}_k(X) \hookrightarrow \mathcal{B}_{k+1}(X)$  for all k and we will write  $\mathcal{B}(X)$  the direct limit. This is known to be a contractible space if X is of the homotopy type of a CW.

Let  $Q_r := \{y_1, \dots, y_r\} \subset X$  be a fixed finite set of "singular points" in X. We assign to every  $x \in X$  a weight

$$w(x) = \begin{cases} 1 & \text{if } x \notin Q_r, \\ w_i & \text{if } x = y_i, \end{cases}$$

 $<sup>2010\</sup> Mathematics\ Subject\ Classification.\ 55M99,\ 57N80.$ 

Key words and phrases. Euler characteristic; compact supports; Leray–Schauder degree; stratification.