Topological Methods in Nonlinear Analysis Volume 52, No. 2, 2018, 739–747 DOI: 10.12775/TMNA.2018.033

O 2018 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

STRICT C¹-TRIANGULATIONS IN O-MINIMAL STRUCTURES

Małgorzata Czapla — Wiesław Pawłucki

ABSTRACT. Inspired by the recent articles of T. Ohmoto and M. Shiota [9], [10] on C^1 -triangulations of semialgebraic sets, we prove here by using different methods the following theorem: Let R be a real closed field and let an expansion of R to an o-minimal structure be given. Then for any closed bounded definable subset A of R^n and a finite family B_1, \ldots, B_r of definable subsets of A there exists a definable triangulation $h: |\mathcal{K}| \to A$ of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in R^n , h is a C^1 -embedding of each (open) simplex $\Delta \in \mathcal{K}$ and h extends to a definable C^1 -mapping defined on a definable open neighborhood of $|\mathcal{K}|$ in R^n . This improves Ohmoto–Shiota's theorem in three ways; firstly, h is a C^1 -embedding on each simplex; secondly, the simplicial complex \mathcal{K} is in the same space as A and thirdly, our proof is performed for any o-minimal structure. The possibility to have h with the first of these properties was stated by Ohmoto and Shiota as an open problem (see [9]).

1. Introduction

Our present article is inspired by the recent results of T. Ohmoto and M. Shiota [9], [10] on C^1 -triangulations of semialgebraic sets. We propose here a different proof giving a stronger theorem.

Assume that R is any real closed field and an expansion of R to some o-minimal structure is given. Throughout the paper we will be talking about definable

²⁰¹⁰ Mathematics Subject Classification. Primary: 32B25; Secondary: 14P10, 03C64, 32B20.

Key words and phrases. Triangulation; C^1 -mapping; o-minimal structure.

sets and mappings referring to this o-minimal structure; for fundamental definitions and results on o-minimal structures the reader is referred to [12] or [1]. We adopt the following definitions of a simplex and a simplicial complex. Let $k, n \in \mathbb{N}$ and $k \leq n$. A simplex of dimension k in \mathbb{R}^n is the open convex hull

$$\Delta = (a_0, \dots, a_k) = \left\{ \sum_{i=0}^k \alpha_i a_i : \alpha_i > 0 \ (i = 0, \dots, k), \ \sum_{i=0}^k \alpha_i = 1 \right\}$$

of k+1 affinely independent points a_i of \mathbb{R}^n which are called the *vertices* of Δ . An *l*-dimensional face of Δ is any of the following simplexes $\Delta' = (a_{\nu_o}, \ldots, a_{\nu_l})$, where $0 \leq \nu_o < \ldots < \nu_l \leq k$.

A simplicial complex in \mathbb{R}^n is a finite family \mathcal{K} of simplexes in \mathbb{R}^n which satisfies the following conditions:

- (1) If $\Delta_1, \Delta_2 \in \mathcal{K}$ and $\Delta_1 \neq \Delta_2$, then $\Delta_1 \cap \Delta_2 = \emptyset$.
- (2) If $\Delta \in \mathcal{K}$ and Δ' is a face of Δ , then $\Delta' \in \mathcal{K}$.

The closed bounded definable subset $|\mathcal{K}| = \bigcup \mathcal{K}$ of \mathbb{R}^n is called the *polyhedron* of the symplicial complex \mathcal{K} .

Let A be a closed bounded subset of \mathbb{R}^n . A definable C^1 -triangulation of A is a pair (\mathcal{K}, h) , where \mathcal{K} is a simplicial complex in some space \mathbb{R}^m , $h: |\mathcal{K}| \to A$ is a definable homeomorphism such that for each $\Delta \in \mathcal{K}$, $h(\Delta)$ is a definable C^1 -submanifold of \mathbb{R}^n and $h|\Delta: \Delta \to h(\Delta)$ is a C^1 -diffeomorphism. When B_1, \ldots, B_r are definable subsets of A, we say that a triangulation (\mathcal{K}, h) is compatible with the sets B_1, \ldots, B_r if each of the sets $h^{-1}(B_j)$ is a union of some simplexes of \mathcal{K} . A definable strict C^1 -triangulation is such a definable C^1 triangulation (\mathcal{K}, h) that $h: |\mathcal{K}| \to \mathbb{R}^n$ is of class C^1 ; i.e. it has an extension to a C^1 -mapping defined on an open definable neighborhood of $|\mathcal{K}|$ in \mathbb{R}^m .

THEOREM 1.1 (Main Theorem). Let A be a closed bounded definable subset of \mathbb{R}^n and let B_1, \ldots, B_r be a finite family of definable subsets of A. Then there exists a definable strict \mathbb{C}^1 -triangulation (\mathcal{K}, h) of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in \mathbb{R}^n .

This result improves a theorem of Ohmoto–Shiota [9], [10] in three ways: firstly, h is a \mathcal{C}^1 -embedding on every simplex; secondly, the simplicial complex \mathcal{K} is in the same space as A and thirdly, it concerns any o-minimal structure. The possibility to have h with the first of these properties was stated by Ohmoto and Shiota as an open problem in [9]. Our proof of Main Theorem below is divided into two parts; in the first one we prove that there exists a definable \mathcal{C}^1 triangulation (\mathcal{K}, h) of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in $\mathbb{R}^n, h: |\mathcal{K}| \to \mathbb{R}^n$ is Lipschitz and $\{h|\Delta: \Delta \in \mathcal{K}\}$ is a \mathcal{C}^1 -stratification of h with the Whitney (A) condition and in the second part this triangulation will be improved to a strict \mathcal{C}^1 -triangulation. In the article we adopt the convention to identify mappings with their graphs by denoting a mapping and its graph by the same letter. If $\varphi, \psi: A \to R$ are two functions such that $\varphi(a) < \psi(a)$ for each $a \in A$, then (φ, ψ) is defined as $\{(a,t) \in A \times R : \varphi(a) < t < \psi(a)\}.$

2. Proof of Main Theorem

Part I. First we will prove that there exists a definable \mathcal{C}^1 -triangulation (\mathcal{K}, h) of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in \mathbb{R}^n , $h: |\mathcal{K}| \to \mathbb{R}^n$ is Lipschitz and $\{h|\Delta: \Delta \in \mathcal{K}\}$ is a \mathcal{C}^1 -stratification of h with the Whitney (A) condition.

The proof is by induction on n. Without loss of generality we assume that A is the closure of its interior $A = \overline{\text{int}A}$. By Theorem 3.12 from [3] there exists a definable C^1 -triangulation (\mathcal{K}, f) of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in \mathbb{R}^n and $f: |\mathcal{K}| \to A$ is a Lipschitz mapping. By the assumption about A, $|\mathcal{K}| = \bigcup \{\overline{\Delta} : \Delta \in \mathcal{K}, \dim \Delta = n\}$. After a linear change of coordinates in \mathbb{R}^n , we can assume that there exists a finite number of affine functions $\varphi_j: \mathbb{R}^{n-1} \to \mathbb{R}$ $(j = 1, \ldots, s)$, such that

$$\bigcup \{\partial \varDelta: \dim \varDelta = n\} \subset \bigcup_{j=1}^s \varphi_j,$$

where φ_j stands for the graph of $\varphi_j = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_n = \varphi_j(x_1, \ldots, x_{n-1})\}$. Then $\{f | \Delta : \Delta \in \mathcal{K}\}$ is a finite definable C^1 -stratification of (the graph of) f. By [6] (see also [5] or [8], or [7]) it admits a finite definable C^1 -refinement \mathcal{S} with Whitney (A) condition such that strata from \mathcal{S} of dimension n are exactly $\{f | \Delta : \Delta \in \mathcal{K}, \dim \Delta = n\}$. There exists a corresponding \mathcal{C}^1 -stratification \mathcal{T} of $|\mathcal{K}|$ which is a refinement of \mathcal{K} such that $\mathcal{S} = \{f | \Lambda : \Lambda \in \mathcal{T}\}$ and \mathcal{T} contains all open simplexes of \mathcal{K} . Then for any pair $M, N \in \mathcal{T}$, such that $M \subset \overline{N}$ and for any $x_o \in M$ and any definable arc $\alpha : (0, \varepsilon) \to N$ ($\varepsilon > 0$) such that $\lim_{t \to 0} \alpha(t) = x_o$, we have

(2.1)
$$\lim_{t \to 0} d_{\alpha(t)}(f|N) \supset d_{x_o}(f|M).$$

Here we use the fact that the limit $\lim_{t\to 0} d_{\alpha(t)}(f|N)$ always exists due to the ominimality condition and the uniform boundedness of the differentials $d_{\alpha(t)}(f|N)$ following from the lipschitzianity condition.

Let $\pi: \mathbb{R}^n \ni (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ denote the natural projection. $\pi(|\mathcal{K}|)$ is a definable closed and bounded subset of \mathbb{R}^{n-1} . Take $\rho > 0$ such that $|\varphi_j(y)| < \rho$, for each $y \in \pi(|\mathcal{K}|)$ and $j \in \{1, \ldots, s\}$. By the induction hypothesis there exists a strict C^1 -triangulation (\mathcal{L}, g) of $\pi(|\mathcal{K}|)$ compatible with all the subsets $\pi(N)$, where $N \in \mathcal{T}$, and at the same time with all the subsets $\{y \in \mathbb{R}^{n-1}: \varphi_{j_1}(y) = \varphi_{j_2}(y)\}$ and $\{y \in \mathbb{R}^{n-1}: \varphi_{j_1}(y) < \varphi_{j_2}(y)\}$, where $j_1 \neq j_2$. Replacing \mathcal{L} by its barycentric subdivision if necessary, we can assume that

(2.2)
$$\Lambda \in \mathcal{L}, \ \varphi_{j_1} \circ g < \varphi_{j_2} \circ g \text{ on } \Lambda$$

 $\Rightarrow (\varphi_{j_1} \circ g)(c) < (\varphi_{j_2} \circ g)(c), \text{ for some vertex } c \text{ of } \Lambda.$

Put $\varphi_o \equiv -\rho$ and $\varphi_{s+1} \equiv \rho$.

Similarly as in the classical proofs of triangulation (compare [12, Chapter 8]), we built a polyhedral complex \mathcal{P} in \mathbb{R}^n the polyhedron of which is $|\mathcal{L}| \times [-\rho, \rho]$ and such that its projection under π is $|\mathcal{L}|$. To this end fix any simplex $\Lambda \in \mathcal{L}$. Put

$$\{\psi_o^{\Lambda},\ldots,\psi_{r+1}^{\Lambda}\}=\{\varphi_j\circ g|\Lambda:j=0,\ldots,s+1\},\$$

where $\psi_o^A < \ldots < \psi_{r+1}^A$, $r = r_A$ depending on Λ . Let c_o, \ldots, c_k be all vertices of Λ . For each $i \in \{0, \ldots, r+1\}$, define also $\Psi_i^A \colon \Lambda \to R$ by the the formula

$$\Psi_i^A\bigg(\sum_{\nu=0}^k \alpha_\nu c_\nu\bigg) := \sum_{\nu=0}^k \alpha_\nu \psi_i^A(c_\nu),$$

where $\alpha_{\nu} > 0$, for each $\nu \in \{0, \ldots, k\}$, and $\sum_{\nu=0}^{k} \alpha_{\nu} = 1$. Now we define the polyhedral complex

$$\mathcal{P} := \left\{ \Psi_i^A : \Lambda \in \mathcal{L}, \ i = 0, \dots, r_A + 1 \right\} \cup \left\{ (\Psi_i^A, \ \Psi_{i+1}^A) : \Lambda \in \mathcal{L}, \ i = 0, \dots, r_A \right\}.$$

The complex is well defined because ψ_i^{Λ} have continuous extensions to $\overline{\Lambda}$ and because of (2.2) (for more detailed explanation, see Lemma 2.1 below). There exists a unique definable homeomorphism $H: |\mathcal{L}| \times [-\rho, \rho] \to |\mathcal{L}| \times [-\rho, \rho]$, such that for each $\Lambda \in \mathcal{L}$ and $i \in \{0, \ldots, r_{\Lambda} + 1\}, H(u, \Psi_i^{\Lambda}(u)) = (u, \psi_i^{\Lambda}(u)),$ for each $u \in \Lambda$, and for each $i \in \{0, \ldots, r_{\Lambda}\}$ and $u \in \Lambda$, H is an affine isomorphism of the line segment $[(u, \Psi_i^{\Lambda}(u)), (u, \Psi_{i+1}^{\Lambda}(u))]$ onto the line segment $[(u, \psi_i^{\Lambda}(u)), (u, \psi_{i+1}^{\Lambda}(u))]$ (see Lemma 2.1). Since each of the functions ψ_i^{Λ} has a \mathcal{C}^1 -extension to \overline{A} , according to Lemma 2.1, H is Lipschitz, \mathcal{C}^1 on every polyhedron $\Theta \in \mathcal{P}$ and $\{H | \Theta : \Theta \in \mathcal{P}\}$ is a \mathcal{C}^1 -stratification of H with the Whitney (A) condition. By Lemma 2.2 below, all the above properties of H hold when we replace \mathcal{P} by a simplicial complex \mathcal{P}^* which is a barycentric subdivision of \mathcal{P} , and since $g: |\mathcal{L}| \to \pi(|\mathcal{K}|)$ is \mathcal{C}^1 , the same properties are inherited by the mapping $\widetilde{H} := (g \times \mathrm{id}_R) \circ H : |\mathcal{L}| \times [-\rho, \rho] \to \pi(|\mathcal{K}|) \times [-\rho, \rho]$. It is clear from the definitions that there exists a subcomplex \mathcal{R} of \mathcal{P} such that $\{H(\Theta) : \Theta \in \mathcal{R}\}$ is a \mathcal{C}^1 -stratification of $|\mathcal{K}|$ which is a refinement of \mathcal{K} such that H is Lipschitz and $\{H|\Theta: \Theta \in \mathcal{R}\}$ is a \mathcal{C}^1 -stratification of H with the Whitney (A) condition. Now the mapping $G := f \circ \tilde{H}$ is the desired Lipschitz triangulation such that $\{G|\Theta: \Theta \in \mathcal{R}\}$ is a \mathcal{C}^1 -stratification of G with Whitney (A) condition (see Lemma 2.2).

742

LEMMA 2.1 (cf. [3, Lemma 3.10]). Let $\Lambda = (c_o, \ldots, c_k)$ be a simplex in \mathbb{R}^n of dimension k. Let \mathcal{L}_Λ be the simplicial complex of all faces of Λ ; so $|\mathcal{L}_\Lambda| = \overline{\Lambda}$. Let $\psi_i \colon \overline{\Lambda} \to \mathbb{R}$ (i = 1, 2) be definable C^1 -functions such that $\psi_1 \leq \psi_2$ and

(2.3) $\Delta \in \mathcal{L}_{\Lambda}, \ \psi_1 | \Delta \not\equiv \psi_2 | \Delta$

 \Rightarrow there is a vertex c_{ν} of Δ such that $\psi_1(c_{\nu}) < \psi_2(c_{\nu})$.

Let $\Psi_i \colon |\overline{\Lambda}| \to R \ (i = 1, 2)$ be defined by the formula

$$\Psi_i\left(\sum_{\nu=0}^k \alpha_\nu c_\nu\right) = \sum_{\nu=0}^k \alpha_\nu \psi_i(c_\nu),$$

where $\sum_{\nu=0}^{k} \alpha_{\nu} = 1, \ \alpha_{\nu} \ge 0.$ Consider the following polyhedral complex $\mathcal{P} = \{\Psi_i | \Delta : \Delta \in \mathcal{L}_A, \ i = 1, 2\} \cup \{(\Psi_1 | \Delta, \Psi_2 | \Delta) : \Delta \in \mathcal{L}_A, \ \Psi_1 | \Delta < \Psi_2 | \Delta\}.$

Then there exists a unique definable homeomorphism

 $H\colon |\mathcal{P}| \to \{(y,z) \in \overline{A} \times R : \psi_1(y) \le z \le \psi_2(y)\}$

such that, for each $y \in \overline{A}$ and i = 1, 2, $H(y, \Psi_i(y)) = (y, \psi_i(y))$ and H is an affine isomorphism of the line segment $[(y, \Psi_1(y)), (y, \Psi_2(y))]$ onto the line segment $[(y, \psi_1(y)), (y, \psi_2(y))]$. Moreover, we have that

- (a) H is Lipschitz,
- (b) H is C^1 -mapping on each $\Theta \in \mathcal{P}$ and
- (c) $\{H|\Theta: \Theta \in \mathcal{P}\}$ is a \mathcal{C}^1 -stratification of H with the Whitney (A) condition.

PROOF. It is clear that, for each $\Delta \in \mathcal{L}_{\Lambda}$,

1

$$H(y,w) = \begin{cases} (y,\psi_1(y)) & \text{if } (y,w) \in \Psi_1 | \Delta \\ \left(y, \frac{w - \Psi_1(y)}{\Psi_2(y) - \Psi_1(y)} \psi_2(y) + \frac{\Psi_2(y) - w}{\Psi_2(y) - \Psi_1(y)} \psi_1(y) \right) \\ & \text{if } (y,w) \in (\Psi_1 | \Delta, \Psi_2 | \Delta) \\ (y,\psi_2(y)) & \text{if } (y,w) \in \Psi_2 | \Delta. \end{cases}$$

Notice that H is a well-defined bijection due to (2.3), which implies that $\psi_1 < \psi_2$ on Δ if and only if $\Psi_1 < \Psi_2$ on Δ , otherwise $\psi_1 \equiv \psi_2$ on Δ and $\Psi_1 \equiv \Psi_2$ on Δ . To prove (a), (b) and (c), first observe that using the following C^1 -diffeomorphism

$$\overline{\Lambda} \times R \ni (y, w) \mapsto (y, w - \psi_1(y)) \in \overline{\Lambda} \times R$$

we can assume without any loss of generality that $\psi_1 \equiv \Psi_1 \equiv 0$. Of course, we can assume that $\psi := \psi_2 > 0$ and $\Psi := \Psi_2 > 0$ on Λ . The condition (b) is clearly fulfilled. Put $\Pi = (0|\Lambda, \Psi|\Lambda)$ and $H(y, w) = (y, H^*(y, w))$. In order to prove (a)

M. CZAPLA — W. PAWŁUCKI

it suffices to show that all first-order partial derivatives of H^* are bounded on $\varPi.$ Since

(2.4)
$$\frac{\partial H^*}{\partial y_j}(y,w) = \frac{w}{\Psi(y)} \cdot \frac{\partial \psi}{\partial y_j}(y) - \frac{w}{\Psi(y)} \cdot \frac{\psi(y)}{\Psi(y)} \cdot \frac{\partial \Psi}{\partial y_j}(y),$$
$$\frac{\partial H^*}{\partial w}(y,w) = \frac{\psi(y)}{\Psi(y)},$$

it is enough to show that ψ/Ψ is bounded on Λ . This is clear if $\psi(c_{\nu}) = \Psi(c_{\nu}) > 0$, for all ν , so assume that $\{c_o, \ldots, c_l\} = \{c_{\nu} : \psi(c_{\nu}) = 0\}$, where $0 \leq l < k$. By an affine change of coordinates one can assume that $c_o = 0$ and c_{ν} ($\nu = 1, \ldots, k$) are vectors of the canonical basis. Let $y = (y_1, \ldots, y_k) \in \Pi$. Put $u = (y_1, \ldots, y_l, 0, \ldots, 0)$. We have

$$\left|\frac{\psi(y)}{\Psi(y)}\right| = \left|\frac{\psi(y) - \psi(u)}{\Psi(y)}\right| \le \frac{M \sum_{\nu=l+1}^{k} y_{\nu}}{\sum_{\nu=l+1}^{k} y_{\nu}\psi(c_{\nu})} \le \frac{M}{\min\{\psi(c_{\nu}) : \nu = l+1, \dots, k\}},$$

where M is the upper bound for the absolute value of the first-order partial derivatives of ψ . In order to check (c), first observe that H is a \mathcal{C}^1 -diffeomorphism of $\{(y,w) \in |\mathcal{P}| : \Psi(y) > 0\}$ onto $\{(y,z) \in \overline{\Lambda} \times R : 0 \leq z \leq \psi(y), \psi(y) > 0\}$. Therefore, without any loss of generality, it suffices to check the Whitney (A) condition for Π and

$$\Theta \subset \{(y,w) \in \overline{\Lambda} \times R : \Psi(y) = 0 = w\} = \{(y,w) \in \overline{\Lambda} \times R : \psi(y) = 0 = w\}$$
$$= \operatorname{conv}\{c_o, \dots, c_l\} \times \{0\}.$$

Hence, without any loss of generality, one can assume that $\Theta = (c_o, \ldots, c_p) \times \{0\}$, where $p \leq l$. Fix any $(a, 0) \in \Theta$. By (2.4), since ψ and Ψ are \mathcal{C}^1 , we have

$$\frac{\partial H^*}{\partial y_j}(y,w) \to 0$$
, for $j = 1, \dots, p$, when $\Pi \ni (y,w) \to (a,0)$.

This ends the proof of (c) and of Lemma 2.1.

The next lemma is a particular case of the general fact that the Whitney (A) condition is preserved in a transversal intersection (see [2]).

LEMMA 2.2. Let $H: A \to \mathbb{R}^m$ be a definable Lipschitz mapping defined on a closed subset $A \in \mathbb{R}^n$. Let S be a definable finite C^1 -stratification of A such that H|M is C^1 for each $M \in S$ and $\{H|M : M \in S\}$ is a C^1 -stratification of H with the Whitney (A) condition. Let \mathcal{T} be a definable finite C^1 -stratification of A with the Whitney (A) condition which is a refinement of S. Then $\{H|N : N \in \mathcal{T}\}$ is a C^1 -stratification of H with the Whitney (A) condition.

PROOF. It follows from the Lipschitz condition that the differentials of H|M are uniformly bounded. Hence the proof is immediate.

Part II. Let (\mathcal{K}, f) be a definable \mathcal{C}^1 -triangulation of A compatible with B_1, \ldots, B_r such that \mathcal{K} is a simplicial complex in \mathbb{R}^n ,

(2.5)
$$f: |\mathcal{K}| \to \mathbb{R}^n$$
 is Lipschitz

and

(2.6) $\{f | \Delta : \Delta \in \mathcal{K}\}$ is a \mathcal{C}^1 -stratification with the Whitney (A) condition.

Now we will improve f to get a strict C^1 -triangulation of A. To this end we will modify f in some tubular neighborhoods of simplexes.

Fix any simplex $\Gamma \in \mathcal{K}$ of dimension p < n. Without loss of generality we can assume that $0 \in \Gamma$ and $\Gamma \subset R^p = \{(x_1, \ldots, x_n) \in R^n : x_{p+1} = \ldots = x_n = 0\}$. Let $R^{n-p} = \{(x_1, \ldots, x_n) \in R^n : x_1 = \ldots = x_p = 0\}$. There are affine functionals $\rho_j : R^p \to R \ (j = 0, \ldots, p)$ such that $\Gamma = \{u \in R^p : \rho_j(u) > 0, j = 0, \ldots, p\}$.

Consider the star $\operatorname{St}(\Gamma, \mathcal{K})$ of Γ in \mathcal{K} ; i.e. $\operatorname{St}(\Gamma, \mathcal{K}) = \{\Lambda \in \mathcal{K} : \Gamma \text{ is a face of } \Lambda\}$. Then $\Omega := \bigcup \{\Lambda \in \operatorname{St}(\Gamma, \mathcal{K})\}$ is an open neighborhood of Γ in $|\mathcal{K}|$. There exists $\alpha > 0$ such that, for each $u \in \Gamma$,

$$\operatorname{dist}(u,\partial\Omega) > \alpha \min \rho_j(u).$$

Put $\omega(u) := \rho_o^2(u) \cdot \ldots \cdot \rho_p^2(u)$, for each $u \in \Gamma$. There exists $\varepsilon > 0$ such that, for each $u \in \Gamma$,

(2.7)
$$2\varepsilon\omega(u) \le \alpha \min_{i} \rho_j(u) < \operatorname{dist}(u, \partial \Omega).$$

Then $G := \{(u, v) \in |\mathcal{K}| : u \in \Gamma, v \in \mathbb{R}^{n-p}, |v| \leq \varepsilon \omega(u)\}$ is a neighborhood of Γ in $|\mathcal{K}|$ contained in Ω due to (2.7).

Let $\varphi : [0, +\infty) \to [0, +\infty)$ be a definable \mathcal{C}^1 -function such that $\varphi(0) = \varphi'(0) = 0$, $\varphi(t) = 1$, for $t \ge 1$, and $\varphi'(t) > 0$, for $t \in (0, 1)$. Now we define $g \colon \Gamma \times \mathbb{R}^{n-p} \to \Gamma \times \mathbb{R}^{n-p}$ by the formula

$$g(u,v) := \left(u, \varphi\left(\frac{|v|}{\varepsilon \omega(u)}\right)v\right)$$

Then g(G) = G and g is the identity outside G. Besides, g is a \mathcal{C}^1 -diffeomorphism of $\Gamma \times \mathbb{R}^{n-p} \setminus \Gamma$ onto $\Gamma \times \mathbb{R}^{n-p} \setminus \Gamma$, because its inverse on $\Gamma \times \mathbb{R}^{n-p} \setminus \Gamma$ is

$$g^{-1}(u,w) = \left(u, \varepsilon\omega(u) \psi^{-1}\left(\frac{|w|}{\varepsilon\omega(u)}\right)\frac{w}{|w|}\right),$$

where $\psi: (0, +\infty) \to (0, +\infty)$ is a \mathcal{C}^1 -diffeomorphism defined by the formula $\psi(t) := \varphi(t)t$.

Furthermore, g is C^1 on $\Gamma \times R^{n-p}$, because for any $j \in \{1, \ldots, n-p\}$

(2.8)
$$\frac{\partial g}{\partial v_j}(u,v) = \left(0, \frac{v_j}{|v|} \cdot \frac{1}{\varepsilon\omega(u)} \cdot \varphi'\left(\frac{|v|}{\varepsilon\omega(u)}\right)v + \varphi\left(\frac{|v|}{\varepsilon\omega(u)}\right)e_j\right),$$

M. CZAPLA — W. PAWŁUCKI

where $e_j = (0, \ldots, \underset{(j)}{1}, \ldots, 0)$. It follows that $(\partial g/\partial v_j)(u, v) \to (0, 0)$, when $(u, v) \to (u_o, 0) \in \Gamma$. Similarly, $(\partial g/\partial u_i)(u, v) \to (e_i, 0)$, when $(u, v) \to (u_0, 0) \in \Gamma$.

Now we define $h: |\mathcal{K}| \to |\mathcal{K}|$ by putting h(x) = g(x), for each $x \in G$, and h(x) = x on $|\mathcal{K}| \setminus G$. It is clear that h is a homeomorphism of $|\mathcal{K}|$ onto $|\mathcal{K}|$ and a \mathcal{C}^1 -diffeomorphism of each simplex $\Lambda \in \mathcal{K}$ onto itself. It follows from (2.8) and the boundedness of first-order partial derivatives of $f|\Lambda$ (due to (2.5)) that

(2.9)
$$\frac{\partial (f|\Lambda \circ h)}{\partial z}(u,v) \to (0,0), \quad \text{when } (u,v) \to (u_o,0) \in \Gamma,$$

where $\Lambda \in \operatorname{St}(\Gamma, \mathcal{K}) \setminus \{\Gamma\}$ and z is any nonzero vector from the intersection of the linear subspace L generated by Λ with \mathbb{R}^{n-p} . On the other hand we have for any $i \in \{1, \ldots, p\}$ and $(u, v) \in G \cap \Lambda$

$$(2.10) \quad \frac{\partial(f|\Lambda \circ h)}{\partial u_i}(u,v) = \frac{\partial(f|\Lambda)}{\partial u_i} \left(u, \varphi\left(\frac{|v|}{\varepsilon\omega(u)}\right) v \right) \\ + \sum_{\nu=1}^q \frac{\partial(f|\Lambda)}{\partial z_\nu} \left(u, \varphi\left(\frac{|v|}{\varepsilon\omega(u)}\right) v \right) (-1) \frac{\partial\omega}{\partial u_i}(u) \frac{|v|}{\varepsilon\omega^2(u)} \varphi'\left(\frac{|v|}{\varepsilon\omega(u)}\right) v_\nu,$$

where z_1, \ldots, z_q is an orthogonal basis of $L \cap \mathbb{R}^{n-p}$ and v_{ν} are coefficients of v with respect to this basis. It follows from (2.6) and from flatness of ω on $\partial \Gamma$ that

(2.11)
$$\frac{\partial(f|\Lambda \circ h)}{\partial\mu}(u,v) \to \frac{\partial(f|\Delta)}{\partial\mu}(u,0),$$

when $\Lambda \ni (u, v) \to (u_o, 0) \in \Delta$, for any simplex $\Delta \in \mathcal{K}$ contained in $\overline{\Gamma}$ and any unit vector μ parallel to Δ . This has two consequences. Firstly, all first-order partial derivatives of $f | \Lambda \circ h$ have finite limits when approaching Γ (see (2.9) and (2.11)). Secondly, the new triangulation $f \circ h$ satisfies the condition (2.6) at faces Δ of Γ where it may fail to be \mathcal{C}^1 -extendable. But such Δ are of dimension less then $p = \dim \Gamma$, and our procedure works by decreasing induction on $p = \dim \Gamma$.

Consequently, after finite number of steps, we obtain a definable \mathcal{C}^1 -triangulation $f: |\mathcal{K}| \to \mathbb{R}^n$ of A which has all first-order partial derivatives continuous on $|\mathcal{K}|$. Hence, by a definable version of Whitney's extension theorem (see [4] or [11]), f can be extended to a definable \mathcal{C}^1 -mapping defined on the whole space \mathbb{R}^n .

References

- M. COSTE, An Introduction to O-minimal Geometry, Dottorato di Ricerca in Matematica, Dipartimento di Matematica, Università di Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
- M. CZAPLA, Invariance of regularity conditions under definable, locally Lipschitz, weakly bi-Lipschitz mappings, Ann. Polon. Math. 97 (2010), 1–21.

746

STRICT C^1 -TRIANGULATIONS

- [3] M. CZAPLA, Definable triangulations with regularity conditions, Geom. Topol. 16 (2012), no. 4, 2067–2095.
- [4] K. KURDYKA AND W. PAWŁUCKI, O-minimal version of Whitney's extension theorem, Studia Math. 224 (2014), no. 1, 81–96.
- [5] T.L. LOI, Whitney stratifications of sets definable in the structure ℝ_{exp}, Singularities and Differential Equations (Warsaw, 1993), Banach Center Publ. 33, Polish Acad. Sci., Warsaw, 1996, 401–409.
- [6] T.L. LOI, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998), 347–356.
- [7] S. LOJASIEWICZ Stratifications et triangulations sous-analytiques, Geometry Seminars, 1986 (Italian) (Bologna, 1986); Univ. Stud. Bologna, 1988, 83–97.
- [8] S. LOJASIEWICZ, J. STASICA AND K. WACHTA, Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. (Math.) 34 (1986), 531–539.
- T. OHMOTO AND M. SHIOTA, C¹-triangulations of semialgebraic sets, arXiv:1505.03970v1 [math AG] 15 May 2015.
- [10] T. OHMOTO AND M. SHIOTA, C¹-triangulations of semialgebraic sets, J. Topol. 10 (2017), 765–775.
- [11] A. THAMRONGTHANYALAK, Whitney's extension theorem in o-minimal structures Ann. Polon. Math. 119 (2017), no. 1, 49–67.
- [12] L. VAN DEN DRIES, Tame Topology and O-minimal Structures, Cambridge University Press, 1998.

Manuscript received November 30, 2017 accepted December 25, 2017

MAŁGORZATA CZAPLA AND WIESŁAW PAWŁUCKI Instytut Matematyki Uniwersytet Jagielloński ul. Prof. St. Łojasiewicza 6 30-348 Kraków, POLAND

 $E\text{-}mail\ address:\ Malgorzata.Czapla@im.uj.edu.pl,\ Wieslaw.Pawlucki@im.uj.edu.pl$

747